Jonny Evans : Aspects of Yang-Mills Theory
News | Research | Teaching | Blog | Videos

Room 501, Department of Mathematics,
UCL, Gower Street, London, WC1E 6BT
j.d.evans •

This was a graduate course I taught at ETH in 2011. Here are some of the problem sets: Set 1, Set 2, Set 3, Set 4, Set 5

All teaching materials available from this site are released under a CC-BY-SA 3.0 Licence. That means you're free to use them as long as you give appropriate attribution and release derivatives under an isomorphic licence.

The following recommended reading list lists some of the papers I covered and much much more. Some people asked for a good place to read about principal bundles...besides the books listed there are some nice lecture notes of Figueroa-O'Farrill which lay things out in perhaps a more ordered way than I did.

  1. Abelian gauge theory
  2. Non abelian gauge theory
    • Lecture 6: Principal bundles (notes, audio)
    • Lecture 7: Yang-Mills functional (notes, video)
    • Lecture 8: The Kempf-Ness theorem (notes, video)
    • Lecture 9: The moment map for Yang-Mills (notes, video)
    • Lecture 10: Holomorphic bundles I (Existence) (notes, video)
    • Lecture 11: Holomorphic bundles II (Stability) (notes, video)
    • Lecture 12: Holomorphic bundles III (Harder-Narasimhan) (notes, video)
    • Lecture 13: Narasimhan-Seshadri theorem I (notes, video)
    • Lecture 14: Narasimhan-Seshadri theorem II (notes, video)
    • Lecture 15: Narasimhan-Seshadri theorem III (notes, video)
    • Lecture 16: Narasimhan-Seshadri theorem IV (notes, video)
    • Lecture 17: Gauge-fixing I (notes, video)
    • Lecture 18: Gauge-fixing II (notes, video)
  3. Topology of the moduli space
    • Lecture 19: Equivariant cohomology I (notes, video)
    • Lecture 20: Equivariant cohomology II (notes, video)
    • Lecture 21: Equivariant cohomology III (notes, video)
    • Lecture 22: The Harder-Narasimhan stratification (notes, video)
    • Lecture 23: The Atiyah-Bott formula (notes, video)
    • Lecture 24: Equivariant perfection and Morse strata (notes, video)

Maxwell's equations form the basis of modern physics and have inspired much of modern geometry. That is where this course will begin, illustrating how one arrives naturally at the concept of a gauge theory starting with Maxwell's equations and how one can solve the resulting field equations (though we will cheat and work over the compact Riemannian manifolds and hence only with magnetostatics). This Riemannian version of Maxwell theory is variously called 'abelian gauge theory' or the 'Hodge theory of harmonic forms' and is a beautiful application of linear elliptic PDE. For instance we can deduce that each de Rham cohomology class contains a unique harmonic form.

Next we will progress to non-abelian gauge theory, (the eponymous Yang-Mills theory) which underlies the chromodynamic and electroweak theories in physics. Not being so ambitious we concentrate on the case of Yang-Mills over a compact Riemann surface (a real 2-dimensional manifold). Through the Narasimhan-Seshadri theorem we will see that the solutions to the field equations are intimately related to objects of algebraic geometry: stable holomorphic vector bundles. This allows us to probe the topology of the space of stable holomorphic vector bundles e.g. to compute its Betti numbers, a computation which before Atiyah and Bott did it this way required the Weil conjectures in characteristic p.

Further directions

For those interested in further directions in the subject, here are some good places to look.