EXERCISES FOR ASPECTS OF YANG-MILLS THEORY, 4

JONATHAN DAVID EVANS

1. Principal bundles

1.1. Flatness: A connection is called flat if $F_{\nabla} \equiv 0$.

- Prove that ∇ is flat if and only if for every point $x \in M$ there is an open set $U \ni x$ and there is a horizontal local section defined over U.
- Let γ be a smooth immersion $S^1 \to M$ and consider the parallel transport diffeomorphism $P_{\gamma} \colon G_{\gamma(0)} \to G_{\gamma(2\pi)}$ given by flowing along the horizontal lift $\gamma_* \partial_t$ (where $t \in [0, 2\pi]/(0 \sim 2\pi)$ is a coordinate on S^1). If ∇ is flat prove that parallel transport is independent of γ up to homotopy and hence write down a representation of $\pi_1(M)$ in G (called the monodromy representation).
- Given a representation $\rho: \pi_1(M) \to F$ construct a flat *G*-bundle with monodromy ρ . What happens when you change basepoint? Deduce that representations up to conjugacy biject with flat *G*-bundles.

1.2. Classifying spaces: (Thanks to Atiyah's wonderful book on K-theory for this.) Recall that a rank n complex vector bundle is the associated bundle to a U(n)-bundle and the standard representation $U(n) \to GL(n, \mathbb{C})$ (there are perhaps better ways of defining this). Write $\Gamma(E)$ for the space of smooth sections of a complex vector bundle $\pi : E \to M$ and define a subspace $V \subset \Gamma(E)$ to be *ample* if for all $e \in E$ there exists a section $s \in \Gamma(E)$ such that $s(\pi(e)) = e$.

- If E is trivial prove that there exists a finite-dimensional ample subspace (in fact *n*-dimensional). By using partitions of unity prove that there is always an ample subspace. When is this ample subspace *n*-dimensional?
- By considering the evaluation map $V \times M \to E$, sending (s, x) to s(x) observe that any bundle can be written as the quotient of a finite-dimensional trivial bundle. Prove that for any vector bundle $E \to M$ there exists another bundle $E' \to M$ such that $E \oplus E' \to M$ is trivial.

If V is a complex vector space we define the Grassmannian of codimension n subspaces $W \subset V$, $\operatorname{Gr}_n(V)$. Fix a Hermitian metric on V. We topologise $\operatorname{Gr}_n(V)$ as a subspace of $\operatorname{End}(V)$ consisting of projection operators with rank n by sending W to the orthogonal projection onto W^{\perp} .

- Given a rank *n* complex vector bundle and an ample subspace of sections V define $\operatorname{ev}_x : V \to E$ to be the evaluation map $\operatorname{ev}_x(s) = s(x)$ and define a map $\Phi : M \to \operatorname{Gr}_n(V)$ by sending $x \mapsto \operatorname{ker}(\phi_x)$. Define the bundle $U \to \operatorname{Gr}_n(V)$ to be the bundle whose fibre at W is the space V/W. Check that $\Phi^*U \cong E$ and that the isomorphism class of Φ^*U is unaffected by homotopies of Φ .
- Suppose that V and V' are both ample subspaces and V'' = V + V' is their (ample) sum. Prove that when the dimension of V'' is large enough the

JONATHAN DAVID EVANS

homotopy classes of $\iota \circ \Phi$ and $\iota' \circ \Phi'$ agree (where $\iota \colon \operatorname{Gr}_n(V) \to \operatorname{Gr}_n(V'')$, etc.)

• Deduce that there is a bijection

 $\lim_{m \to \infty} [M, \operatorname{Gr}_n(\mathbb{C}^m)] \leftrightarrow \{ \text{iso. classes of complex vector bundles of rank } n \}$

where square brackets indicate homotopy classes of map. Interpret this as [M, BU(n)] for some space BU(n).

- Prove that the infinite-dimensional sphere is contractible. Observe that $BU(1) = S^{\infty}/U(1)$ is the limit of \mathbb{CP}^i as $i \to \infty$ and compute its cohomology. More generally BU(n) = EU(n)/U(n) where EU(n) is the limit of the U(n)-frame bundles over $\operatorname{Gr}_n(\mathbb{C}^m)$. Prove that EU(n) is contractible.
- Observe that we can equivalently understand this as a classification of principal U(n)-bundles (pulling back EU(n) along the classifying map). Write down a classifying map for the Hopf fibration.

More generally, given any topological group G it turns out that principal G-bundles are classified by homotopy classes of maps into a space BG which is a free quotient of a contractible space EG by an action of G. Prove that this defines BG uniquely up to weak homotopy equivalence and try to construct a contractible space EGwith a free G-action.

1.3. \mathbb{Z} : Prove that S^1 is $B\mathbb{Z}$ and reinterpret the statement that $H^1(M;\mathbb{Z}) = [M, S^1]$ (in particular show that $H^1(M;\mathbb{Z}) = \text{Hom}(\pi_1(M),\mathbb{Z}))$.

1.4. U(1)-bundles over surfaces: What is a once-punctured orientable surface, topologically? Prove that the classifying map for a U(1)-bundle over a closed orientable surface factors (up to homotopy) through a map $S^2 \to BU(1)$. Compute $\pi_2(BU(1))$ and hence classify U(1)-bundles over surfaces.

1.5. Another bundle: Prove that SU(2) is topologically a 3-sphere. Write down an interesting SU(2)-bundle over the 4-sphere and interpret this in terms of the quaternions.

1.6. **Bianchi identity:** Let P be a principal G-bundle with a connection ∇ . Write out the formula for the covariant derivative of an $\operatorname{ad}(P)$ -valued 2-form, prove that $F_{\nabla}(X,Y) = \alpha([\tilde{X},\tilde{Y}])$ (the curvature of ∇) is an $\operatorname{ad}(P)$ -valued 2-form and that $\nabla F_{\nabla} = 0$ (the Bianchi identity).

 $\mathbf{2}$