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The aim of today’s lecture is to prove the following theorem modulo
analytical details.

Theorem

There is an orthogonal decomposition

Ωk(M) = im(∆)⊕ ker(∆)

Moreover ker(∆) is finite-dimensional.
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Here Ωk(M) is the space of k-forms and ∆ = dd∗ + d∗d is the
Laplace-Beltrami operator. The forms satisfying ∆(κ) = 0 are the
harmonic forms. The hope is to make rigorous the following argument by
passing to Hilbert space completions:

Nonsense

“The space of forms admits a direct sum decomposition into
im(∆)⊕ im(∆)⊥. If κ is in im(∆)⊥ then 0 = 〈κ,∆ω〉 = 〈∆κ, ω〉 for all ω
because ∆ is self-adjoint. Therefore ∆κ = 0 so im(∆)⊥ = H and the
Hodge decomposition follows.”
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We have the following nice lemmas.

Lemma (Sobolev, (GiT, Corollary 7.11))

If k − n
2 > r then L2

k ⊂ Cr where Cr denotes the space of Cr -smooth
p-forms.

Lemma (Rellich, (GiT, Section 7.10)

For all k, L2
k+1 ↪→ L2

k is a compact operator (i.e. the image of a bounded
set has compact closure).
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Given κ ∈ L2
k+2 we can still define ∆κ ∈ L2

k .

Proposition (Elliptic regularity)

Suppose we are given u ∈ L2
1 for which there exists v ∈ L2

k satisfying

〈v , ω〉 = 〈u,∆ω〉

for all ω ∈ L2
2. Then u ∈ L2

k+2 and

||u||k+2 ≤ Ck(||v ||k + ||u||0).

These theorems we will treat as magical black boxes. Either you’ve studied
enough PDE to prove them by yourself or you haven’t and you now have
motivation to do so. Let’s prove the Hodge theorem assuming this
inequality. We will take as our Hilbert spaces

∆ : L2
3 → L2

1

Jonathan Evans () Lecture 5: Hodge theorem 4th October 2010 5 / 15



Elliptic bootstrapping

Observe that

Lemma

An element u ∈ ker(∆) ⊂ L2
3(Ωk(M)) is automatically in C∞

Proof.

This is because ∆u = 0 ∈ L2
k for all k so by the Proposition u ∈ L2

k+2 for
all ` and hence by the Sobolev lemma it’s in Cr for all r . Neat.

This is an argument called elliptic bootstrapping. According to Wikipedia
the origin of the word bootstrapping to describe a self-sustaining process is
the notion that one could effect vertical displacement by pulling oneself up
by one’s bootstraps (small loop at the top of a boot). In our case the
harmonic form turns out to be more and more differentiable just by dint of
being harmonic.
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Finite-dimensionality

Let’s now prove that ker(∆) is finite-dimensional. If ∆(u) = 0 then elliptic
regularity implies

||u||3 ≤ C3||u||0
It suffices to prove that the L2

3-unit ball is compact, so choose a sequence
xm with ||xm|| ≤ 1 and ∆xm = 0. By Rellich’s lemma, boundedness of xm
implies there is a subsequence which is L2-convergent. Now by the above
inequality this subsequence is L2

3-Cauchy and hence by completeness of L2
3

there is a L2
3-convergent subsequence, which proves compactness of the

unit ball.
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The Hodge decomposition

We assume for a moment that ∆ : L2
3 → L2

1 has closed range and deduce
the Hodge decomposition. Because ∆(L2

3) is closed in L2
1 we get an

orthogonal decomposition L2
1 = ∆(L2

3)⊕∆(L2
3)⊥. We know that

ker(∆) ⊂ ∆(L2
3)⊥ and we want to show the converse inclusion. If κ ∈ L2

1

is L2-orthogonal to ∆(L2
3) then it satisfies the hypotheses of the elliptic

regularity theorem and hence is a smooth form, which is harmonic by
integrating by parts.
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Closed range

To see that ∆ has closed range, we first restrict the domain to the
orthogonal complement of the kernel so that ∆ is injective. Let
y = limm→∞∆xm be in the closure of ∆(L2

3).

xm is L2
3 bounded: Suppose not and take a subsequence with

||xm||3 →∞. Then x ′m := xm/||xm||3 consists of elements with
L2
3-norm equal to 1 and ∆x ′m converges to zero. By Rellich’s lemma

we can assume that ||x ′m||0 converges so that x ′m is L2
3-Cauchy by the

elliptic inequality (Ex: Show that x ′m is L2
3-Cauchy). Now extract a

convergent subsequence x ′m with limit ξ and observe that ∆ξ = 0.
However, ||ξ||3 = 1 and ∆ is injective so this is a contradiction.

Boundedness of xm means (via Rellich compactness) that xm has an
L2-convergent subsequence. The elliptic inequality implies that this
subsequence is also L2

3-Cauchy and hence by completeness there is a
convergent subsequence whose limit x satisfies ∆x = y . Therefore
the range of ∆ is closed!
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Principal bundles

With the Hodge theorem under our belt we are ready to move on to
nonabelian gauge theory. The definition of a principal G -bundles for
nonabelian G generalises that of a U(1)-bundle given earlier in the course.
We’ll still spell out all the details because there are some subtleties that
are not present in the abelian case. By the end of next lecture we will have
written down the Yang-Mills equations.

Jonathan Evans () Lecture 5: Hodge theorem 4th October 2010 10 / 15



The setup

This time we let G be any compact Lie group.

Definition

A principal G -bundle is a space P with a free (right) G -action. Write
π : P → M for the projection to the base space M = P/G .

A (local) section is a map σ : M → P such that π ◦ σ = id (defined
over an open set).

A gauge transformation is a G-equivariant diffeomorphism of P living
over the identity, i.e. a diffeomorphism φ : P → P such that
π ◦ φ = π and such that φ(p)g = φ(pg) for any p ∈ P, g ∈ G .
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Gauge transformations

Given a gauge transformation φ of P we get a map g : P → G which
measures the displacement of the point p in the fibre π−1(π(p)) =: Gp, i.e.

φ(p) = pg(p)

Equivariance φ(p)h = φ(ph) now implies

hg(ph)h−1 = g(p)

When G is abelian notice that this implies g(ph) = g(p) so we were able
to think of φ as a map M → G .

Remark

Note that confusingly the action of G on P is not via gauge
transformations! If we set φ(p) = pg then φ(ph) = phg 6= pgh unless
g ∈ Z (G ), the centre of G . Therefore the only ‘constant’ gauge
transformations are by elements of the centre of G .
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Tangent bundle

Recall

Recall that the tangent space of G at 1 is called the Lie algebra g and that
one has a canonical trivialisation

G × g
∼=→ TG

which sends the point (g , v) to the vector g∗v at the point g (where we
think of g as a diffeomorphism of G and write g∗ for its derivative).

Now we want to understand the tangent space of a principal G -bundle P
at a point p ∈ P.

Definition

The tangent vectors to fibres of π give us a subbundle V of the tangent
bundle TP called the vertical tangent bundle.
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Alternatively, at a point p one obtains a vector v ∈ TpP for each v ∈ g by
considering the infinitesimal action of g on P (i.e. differentiating the
G -action P ×G → P to get TP ×G × g→ TP and considering the image
of (p, 1, v)). Of course, these vectors span the vertical tangent bundle, so
we see immediately that we have a canonical vertical inclusion

P × g ↪→ V ⊂ TP

Now we want to understand the quotient bundle TP/V → P. I claim
TP/V ∼= π∗TM. Here π∗ denotes pullback:

Definition

The pullback of a bundle E → Y along a map f : X → Y is just the
bundle over X whose fibre at x is Ef (y) (one can think of this as the subset

f ∗E ⊂ X × E

consisting of points (x , e) such that e ∈ Ef (x)).
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As usual...

Definition

A connection is a G -equivariant choice of horizontal space Hp in each
TpP, i.e. a subspace which projects via π∗ to Tπ(p)M and such that

g∗(Hp) = Hg(p) for all g ∈ G . We write X̃ for the unique horizontal
vector field which projects along π∗ to the vector field X on M.

We see that this is the same as a g-valued 1-form α on P, which projects
tangent vectors onto their vertical part (i.e. kerα = H) and takes vertical
vectors v ∈ g to themselves. G -equivariance of H translates into the
equivariance

α(g∗v) = g∗α(v)

of α.
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