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In “Models and Reality”, Putnam sketched a version of his internal realism as it might arise in
the philosophy of mathematics. The sketch was tantalising, but it was only a sketch.
Mathematics was not the focus of any of his later writings on internal realism, and Putnam
ultimately abandoned internal realism itself. As such, I have often wondered: What might a
developed mathematical internal realism have looked like?

I will try to answer that question here, by reflecting on a discussion between Putnam,
Dummett, Parsons and McGee which spanned nearly five decades. This paper also builds on
work I'have co-authored with Walsh. For readability, I have abandoned many of the historical
contours in favour of “rational reconstruction”, and I have relegated most of my commentary
on the origins of various ideas to footnotes. But I should like to make it perfectly clear that,

without the work of the people just mentioned, this paper could not even have begun.

1. Acquisition and manifestation

I want to start by considering our NATURAL NUMBER concept. For clarity: I am not interested
in specific number concepts, like FOUR or TWENTY. I am interested in the general NATURAL
NUMBER concept, as used within serious mathematics.

We have to acquire our mathematical concepts. Even if we are born with the capacity to
acquire mathematical concepts, we are not born with the concepts themselves. No baby has
the general NUMBER concept.

Equally, we must be able to manifest our mathematical concepts. Whilst mathematicians
sometimes work alone, mathematical practice is fundamentally communal. Mathematicians
present each other with proofs and projects.'

In our early steps towards acquiring the NUMBER concept, we learn how to recite
sequences like “1, 2, 3, 4, 57, and learn how to use such sequences to count out small

collections of objects (fish, fingers, beads, or cows). Later, we master algorithms for adding

! Here I intend to connect with Dummett’s long-held insistence on the importance of manifestation and
acquisition (see e.g. Dummett 1963: 188-90).



and multiplying numbers in decimal notation. And so it goes. But my interest here is not in
numerical cognition, infant or adult. It is in the NUMBER concept itself, as used in serious
mathematics. And, whatever developmental and pedagogical steps we might take fowards
acquiring that concept, we qualify as having acquired it fully, only when we have grasped some
full-blown arithmetical theory, such as Peano Arithmetic.” Equally, we fully manifest our grasp
of the concept, only by articulating and using some such theory.

In what follows, then, I will assume that serious mathematical concepts can be (and only
can be) fully acquired and manifested by mastering and articulating some theory. Much more
could be said in defence of this assumption. But I think the assumption is correct, and this
paper is an attempt to work through its consequences. In §§2—4, I will explain this assumption
threatens to constrain the precision of our mathematical concepts; then, in §§5-10, I will

explain how we can overcome that threat by developing Putnam’s internal realism.

2. Modelism

Consider this question: How precise is our NATURAL NUMBER concept?® A specific philosophical

character, the modelist, answers this question with a slogan. She says:
The NATURAL NUMBER concept is precise up to isomorphism.

But, of course, the modelist will need to flesh out this slogan. To this end, she makes the

following speech:

To consider the NATURAL NUMBER concept, we can simply consider the class of all natural-number
sequences. After all, that class encodes everything we could ever want to know about the NATURAL
NUMBER concept. So, when you ask, “How precise is our NATURAL NUMBER concept?”, I attack this
by instead asking, “How refined is the class of arithmetical models?”

Well, on the one hand: suppose we had two sequences that were not isomorphic. In that case,
we would not allow that both were natural-number sequences, since they would differ in some
arithmetically important respect. So: every model in the class must be isomorphic to every other.

On the other hand: arithmetic does not really seem to care about the differences between
isomorphic sequences. So: the class should be closed under isomorphism.

Combining these two points: every model in the class must be isomorphic to every other,
and the class must be closed under isomorphism. In short, the class of arithmetical models is an

isomorphism type.* And that is what I mean, when I say that the NUMBER concept is precise up to

? For interesting discussion concerning the stage at which we (implicitly) grasp Peano Arithmetic (or something
like it), see Rips et al (2008 and the subsequent ‘Open Peer Commentary’).

3 Dummett (1963) and Parsons (1990) ask roughly this question. Putnam (1980) raises very similar issues, but
via questions which focus more on objects than on concepts. However, objectual and conceptual versions of the
question are very similar (see Button & Walsh, 2018: chs.6-8); so, for simplicity, I will focus solely on the
conceptual version.

* Our modelist might do better to focus on definitional equivalence instead of isomorphism (see Button & Walsh
2018: §§5.1-5.2); but this would not change the dialectic, so I will ignore this complication.



isomorphism. I mean that we can (and should) use an isomorphism type as a surrogate for the
NUMBER concept.

Note that many mathematical concepts are not so precise. As an example: the LINEAR ORDER
concept is a perfectly decent concept, but plenty of linear orders are not isomorphic, so that the
LINEAR ORDER concept is not precise up to isomorphism. My view is roughly that our foundational
mathematical concepts are (or, aim to be) precise up to isomorphism. Admittedly, the idea of a

“foundational” concept is a little imprecise, but I hope you get a sense of my ambition.

That is modelism, in a nutshell. Modelism is obviously structuralist, but it is just one version of

structuralism. And its special reliance on model theory gives rise to its name, modelism.’

Modelism is appealing. Unfortunately, as Putnam taught us, it is dead wrong. It succumbs to
the model-theoretic argument.’

In §1, I insisted that mathematical concepts must be tied to theories, via manifestation
and acquisition. So, if the modelist is right that the NUMBER concept is precise up to
isomorphism, then our arithmetical theory must pick out an isomorphism type. But formal
theories are offered in formal languages, and formal languages have certain provable

limitations. For example, we have:

The Lowenheim-Skolem Theorem. If a (countable, first-order) arithmetical
theory has any infinite models, then it has models of every infinite cardinality.
A Corollary of Compactness. If a (first-order) arithmetical theory has any

infinite models, then it has models containing non-standard elements.

So — assuming we are limited to (countable) first-order theories — our theory cannot pick out
a unique isomorphism type. In which case, given that the NUMBER concept was supposed to
be precise up to isomorphism, no theory will allow us (fully) to manifest or acquire our
NUMBER concept. And that contradicts what I insisted upon in §1.

This is the kernel of the model-theoretic argument against modelism. To make it stick,
though, we must defend the assumption that the modelist is limited to considering formal,

(essentially) first-order, theories.

First, then, consider formality. As a practice, arithmetic is not just a list of axioms, but rather a
“MOTLEY of techniques and proofs”, to use Wittgenstein’s imagery.” A modelist might want

to suggest that this informal motley plays some role in picking out an isomorphism type.®

S Button & Walsh coined the term “modelism”; see (2018: ch.6) for more.

¢ The remainder of this section presents the central problem I extract from Putnam’s (1980) invocation of the
Léwenheim-Skolem Theorem. Admittedly, Putnam raised the issue in a more “objectual” than “conceptual”
key; but see footnote 3, above. Dummett (1963: 192) raised a similar problem, focussing on Gédelian
incompleteness. For more, see Button & Walsh (2018: ch.7).

7 Wittgenstein (1956: §46).

8 This seems to be Benacerraf’s (1985: 108-11) response to Putnam (1980).



Now, insofar as model theory (as a branch of pure mathematics) considers theories, it
considers only formal theories. So, if a modelist appeals to informal mathematics, we cannot
just deploy results from model theory to raise problems for her. And this might seem like a
strike in favour of an “informalist” modelism.

However, this point cuts both ways. The very notion of an ISOMORPHISM TYPE is
something we define within model theory. So it is hard to see how anyone could even hope to
explain how an informal theory could pin down a unique isomorphism type. Moreover,
leaving this issue unexplained is not a viable option. After all, to treat the matter as inexplicable
would be to say that it is just a brute feature of the world - a “surd metaphysical fact™ — that
our informal mathematical practice pins down one particular isomorphism type. And this

would be tantamount to the patently ridiculous claim:

Everyone who wears this particular motley just happens to pick out this very specific thing; which is
really rather fortunate, since (a priori) any of us might have picked out different things, or indeed

have failed to pick out anything at all!

On pain of embarrassment, then, I take it that modelists are restricted to using formal theories,

and will seek to explain how




















































