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Abstract

I examine how disruptions to students’ ability to study spill over to their
classmates to understand the mechanisms behind social interactions in the class-
room. I combine administrative and survey information on students with de-
tailed information on damages to their homes caused by the sixth most-violent
earthquake ever recorded, which occurred in Chile in 2010. I find that damages
to a student’s own home increased the self-reported cost of study effort, that
schools mitigated detrimental effects from average damages among classmates,
and that the dispersion in damages among a student’s classmates affected stu-
dents’ achievement and GPA heterogeneously across the initial performance dis-
tribution, but without changing students’ initial ranks. I show that a game of
status model in which students strategically interact to compete for grades can
rationalize these findings. The result suggests that, beyond the much-studied
desire to conform, a desire to compete could be a reason why the ability to
study of peers matters for learning in many contexts.

1 Introduction

Childhood and early adulthood are fundamental years for cognitive development

(Cunha, Heckman, Lochner, and Masterov (2006)). The academic ability of school

peers can affect cognitive achievement during these crucial years1, but the mechanisms

∗I would like to thank Orazio Attanasio, Richard Blundell, Martin Cripps, Mariacristina De
Nardi, Steven Durlauf, Ed Hopkins, Áureo de Paula, Imran Rasul, Bryony Reich, Elie Tamer, Petra
Todd, and participants at various seminars and conferences for insightful comments. Julia Schmieder
provided excellent research assistance. Research funding from the Centre for Microdata Methods
and Practice and from the European Research Council’s grant number IHKDC-249612 is gratefully
acknowledged. I am grateful to the Chilean Ministry of Education and Agencia de Calidad de la
Educación for access to some of the data used in this research.

1See Ammermueller and Pischke (2009); Arcidiacono, Foster, Goodpaster, and Kinsler (2012);
Booij, Leuven, and Oosterbeek (2017); Carrell, Sacerdote, and West (2013); Duflo, Dupas, and Kre-
mer (2011); Garlick (2018); Hanushek, Kain, Markman, and Rivkin (2003); Hoxby (2000); Imberman,
Kugler, and Sacerdote (2012); Lyle (2009); Sacerdote (2001).
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are not fully understood, limiting our ability to design policies that can be effective

across contexts.

This paper studies why the ability to study of peers can shape the academic

achievement of schoolchildren. It introduces a new dataset that links students’ aca-

demic outcomes and self-reported study ability to newly constructed measures of

disruptions to their environment stemming from one of the most violent earthquakes

ever recorded. The dataset allows me to examine how disruptions to students’ ability

to study spill over to their classmates. Identification relies on variation in the disrup-

tions to peers, keeping their characteristics constant. It does not rely on variation in

peers’ lagged test scores, avoiding the usual confounding influences that have been the

focus of much of the empirical literature on ability peer effects in education.2 This

approach allows me to draw on the empirical evidence to understand what drives

students’ effort choices in the classroom, and propose a new theory of peer influence

in cognitive development. While formulated within the context of an environmental

shock, the theory can be extrapolated to understand why the ability of peers matters

for learning in many contexts.

The empirical context is the 2010 Maule mega-earthquake, the sixth strongest

ever instrumentally recorded (USGS, 2023). I combine administrative and survey

data with information on damage propagation among over 150,000 students. I start

by building a measure of each student’s home’s vulnerability to the earthquake using

information on housing quality. From the last pre-earthquake census I obtain infor-

mation on the construction materials of the homes of the nearly one million Chilean

households with at least one school-aged child. I employ an unsupervised learning

algorithm to stochastically assign their homes to seismic resistance classes (Massone

et al. (2010)). Armed with this housing quality measure, I develop a model that can

accurately predict housing quality from a household’s characteristics, and apply it to

administrative data on Chilean students to predict the quality of their homes. Draw-

ing upon the structural engineering literature, I then combine this newly developed

measure of housing quality with geocoded information on ground-shaking intensity in

each student’s hometown to construct a measure of home damages for each student.3

This variable measures the shock to each student’s environment.

2Examples of studies using naturally occurring exogenous variation in peer characteristics to ac-
count for such confounding effects are Hoxby (2000); Angrist and Lang (2004); Hoxby and Weingarth
(2005); Lavy, Paserman, and Schlosser (2012); Imberman, Kugler, and Sacerdote (2012).

3I gratefully acknowledge Prof. Sergio Ruiz of the Geology Department at the University of
Chile, a leading expert on the seismic vulnerability of Chilean buildings, for feedback on the dam-
age measure. The measure falls within Deterministic Earthquake Loss Estimation, which aims to
estimate losses from a specific seismic event. It stands in contrast to Probabilistic Earthquake Loss
Estimation, which aims to predict potential losses from many possible seismic events (McGuire
(2004)).
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I link the damage measure to administrative and survey data from the Chilean

Ministry of Education. Data on students include standardized test scores at two

points in time (in fourth and eighth grade), GPA, GPA rank in the classroom, family

background, type of school attended, and survey information on self-reported ability

to study and to engage with course content. Data on teachers include the fraction of

the curriculum they were able to cover. All observations can be assigned to classrooms

and schools through unique student, teacher, classroom, and school identifiers.

Using this newly constructed dataset, I first document a new fact about socioeco-

nomic segregation among Chilean children. Poorer students were more likely to live

in the rural localities experiencing more ground shaking, and conditional on local-

ity, their homes were built according to worse construction standards. As a result,

compared with students whose parents have more than 14 years of education (who

likely attended some college), those whose parents have at most 14 incurred twice

the amount of home damages (USD 1,607 vs. USD 798, or 49% vs. 25% of annual

income).

I then estimate the causal impacts on students’ outcomes of damages to their

own homes and to the homes of their classmates, focusing on the mean and stan-

dard deviation of damages among classmates. The identification strategy relies on a

difference-in-differences framework leveraging the different correlation between seis-

mic vulnerability and outcomes across two cohorts of students, one whose outcomes

were measured in 2009, before the earthquake struck, and one whose outcomes were

measured in 2011, after the earthquake struck. This strategy eliminates confound-

ing effects that could arise if the measures of earthquake vulnerability correlated

with unobserved outcome determinants. The identifying assumption is that the re-

lationship between outcomes and earthquake vulnerability would be the same across

cohorts absent the earthquake. I provide evidence supporting this assumption using

data from the regions that were never affected by the earthquake, showing that the

seismic vulnerability of the students’ homes and of their peers’ homes are not differ-

ently correlated with outcomes across cohorts in these regions. Finally, to gauge how

schools responded to the earthquake, I estimate two models: one with and one with-

out school-by-cohort fixed effects. As the fixed effects absorb the (assumed constant)

effect of school-level responses to the earthquake, comparing the estimates from the

two models informs us on schools’ mitigation efforts.

Using this strategy, I find that the damage incurred by a student’s own home had

a negative and non-negligible effect on test scores 22 months post-earthquake. A 1

standard deviation increase in damages lowered test scores by 0.033-0.036 standard

deviations. Using survey data, I provide evidence that damages at the students’ own

homes decreased students’ reported ability to study and engage with course content,

3



suggesting a diminished ability to study could have mediated the detrimental impacts

on achievement.

Regarding the spillover effect of damages to peers’ homes keeping fixed a student’s

own exposure to the earthquake, I find that increasing the average damages suffered

by classroom peers increases own test scores, and the effects are not significantly

different across students with different initial performance. This appears to be the

result of schools overcompensating any potential negative impacts, as in the model

with school-by-cohort fixed effects the estimated effect of increasing average damages

is (imprecisely) null. In contrast, schools do not appear to react to the standard

deviation of damages in their classrooms, which lowered the achievement of students

with high initial performance and increased the achievement of those with low initial

performance, regardless of fixed effect inclusion. A possible reason for the asymmetry

in the schools’ response is that emergency funds were granted depending on the overall

damage severity, not its dispersion (Gobierno de Chile (2010)).

Next, I analyze potential mediators of the damage spillover effects. I do not find

evidence that the mean and standard deviation of damage among peers influenced the

percentage of the curriculum teachers were able to cover. This suggests that teachers

adapting their pace of instruction is not a mechanism behind schools’ mitigation efforts

in response to mean damages. It also suggests that teachers did not slow their pace

of instruction to focus on lower-ability students in response to an increase in damage

dispersion, which could have rationalized why these students’ outcomes benefit from

damage dispersion, while those of higher-ability students suffer. Teachers did not

adapt their grading either, as the impacts on GPA, graded by teachers, traced those

on the centrally-graded test scores.

To better understand the mechanisms behind the spillover effects, I analyze im-

pacts on GPA rank in the classroom. Since average damages had similar impacts

across the baseline performance distribution, we do not expect them to affect stu-

dents’ GPA rank, and this is what the evidence shows. In contrast, the heterogeneous

impacts of damage dispersion on GPA could have triggered changes to students’ GPA

rank in the classroom. But surprisingly, I find that this is not the case. Students

with higher initial performance experienced drops in GPA in classrooms with more

dispersed damages, without an accompanying drop in their GPA rank. A possible

reason for this is that students care about their GPA rank. Faced with a changed

ability to study among their peers, students adjust their effort and learning (a peer

effect), but not at the expense of their classroom standing.

Drawing on this empirical insight and the empirical findings, I formulate a new

theory of interactions in the classroom. I formalize the simple intuition that students

care about their classroom standing through a game-of-status model of simultaneous
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effort choices in the classroom. In the model, students are characterized by an effort

cost type, which is affected by the damages to their home. They produce GPA by

exerting costly effort, and derive utility from GPA and GPA rank. To account for

the evidence on the schools’ reactions to the earthquake, in the model schools can

mitigate the impacts of average damages. I show that the model, which admits a

unique symmetric Bayesian Nash equilibrium, can rationalize the empirical findings.

Specifically, a school’s mitigating efforts lead to positiv, Ludovica, e effects of average

damages, which would be null or negative absent the school’s response. The com-

petition motive behind students’ effort choices causes the damage dispersion to have

heterogeneous impacts on GPA, and null effects on GPA rank, along the baseline test

score distribution. By changing the density of nearby competitors differently for dif-

ferent students, damage dispersion has heterogeneous effects on the returns to effort,

generating exactly the heterogeneous effects on GPA observed in the data: positive

impacts for students with low initial performance and negative impacts for those with

medium initial performance, who face, respectively, more and less competition from

similarly able students, and negative impacts for those with high initial performance,

who now face less competition from below.

The central theoretical insight can be applied more broadly outside the realm

of environmental shocks: when competitive motives drive study effort, changing the

dispersion of peers’ ability to study, be it through a shock or through a compositional

change from classroom assignment policies, affects learning, and does so differently

for different students depending on how the change affects the number of nearby

competitors and the effort of all competitors. This has important and so far mostly

unexplored implications for policy, as I discuss in this article’s concluding section.

Methodologically, this study relates to the small literature that examines peer

interactions relying on random shocks to students that keep group composition con-

stant (see the survey in Bramoullé, Djebbari, and Fortin (2020)). One of the closest

studies is Fruehwirth (2013), who exploits the introduction of a student accountability

policy in North Carolina targeted at low-achievers. The policy serves as a shock to

the effort of some but not all students in the classroom; the fraction of affected peers

is used to estimate the impact of peers’ achievement on own achievement within a

linear-in-means framework.4 The estimates are interpreted as best-response functions

through the lens of a model of effort choices in a strategic environment where students

desire to conform to each other. In contrast, this paper considers a continuous shock,

4Berlinski, Busso, and Giannola (2023) have applied a similar strategy to data from a literacy
remediation program in Colombia, and Dieye, Djebbari, and Barrera-Osorio (2014) to data from
a randomized experiment on a scholarship program in Colombia. See also Fruehwirth (2014) for
an in-depth analysis of the identification of the effect of contemporaneous peer outcomes on own
outcomes when outcomes are partly determined by unobserved factors.
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the extent of damages that each student’s home incurred. Rather than identifying

best-response functions, an ‘endogenous peer effect’ in the terminology of Manski

(1993), this paper examines the reduced-form impact of changing the distribution of

the shocks within the classroom, an ‘exogenous peer effect’ in this terminology. It

interprets the estimates as comparative statics on the equilibrium outcomes of class-

rooms characterized by different distributions of shocks to students’ ability to study,

through the lens of a model where students desire to compete with each other.5 The

impacts of the mean and of the dispersion of this continuous shock among peers are

shown to be helpful to inform a new theory of peer influence.6

Within the vast literature on peer effects in education, relatively few studies have

developed theories of peer influence. Existing theories commonly assume that students

have a desire to conform to their peers, or that there are complementarities between

peers in the achievement production technology (e.g. Brock and Durlauf (2001a,

2006); Calvó-Armengol, Patacchini, and Zenou (2009); Fruehwirth (2013); Conley,

Mehta, Stinebrickner, and Stinebrickner (2023)). Both assumptions rationalize the

workhorse linear-in-means model of peer effects with continuous outcomes (Blume,

Brock, Durlauf, and Jayaraman (2015)). In contrast, I present a new theory that

rationalizes why moments beyond the mean may matter. It offers a simple insight:

when students derive utility from rank, changing the ability of peers affects own effort,

because it changes the ability of competitors. Empirically, this generates a peer effect

where moments beyond the mean matter. Such a mechanism has been largely ignored

despite its intuitive appeal.7

There are several reasons for students to care about their achievement rank in

school. It provides future benefits (Elsner and Isphording (2017); Murphy and Wein-

hardt (2020)). Often teachers grade on a curve (Calsamiglia and Loviglio (2019)).

And increasingly, higher education systems assign college seats based partly (Grau

(2018)) or entirely (Horn, Flores, and Orfield (2003)) on within-school rank. More-

over, recent experimental evidence from Chilean schools confirms that study effort

responds to rank incentives (Tincani, Kosse, and Miglino (2023)).8 These implicit

5The choice of estimating an exogenous rather than endogenous social effect to inform the theory
is driven by the fact that game-of-status models do not typically deliver best-response functions as
functions of peers’ choices. Instead, the model delivers an equilibrium effort function, that is, effort
as a function of a student’s own ability, which varies with the distribution of the ability to study of
peers, which I assume to be affected by the earthquake shocks. The parameters I estimate, therefore,
are the empirical counterparts of the theory-derived comparative statics.

6De Giorgi and Pellizzari (2013) also test theories of peer influence. They use evidence on the
effects of changing peer composition, which is deliberately kept constant here.

7In line with the theory first introduced in this paper (as detailed in e.g. Tincani (2017)),
Rosenzweig and Xu (2023) recently provided evidence supporting this mode of interaction within
the context of Southeast Asian refugee students in the US.

8A small strand of the literature on college admissions has developed models capturing how
rank incentives affect student effort in high school (Bodoh-Creed and Hickman (2017); Grau (2018);
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and explicit reward structures, therefore, could plausibly be one of the reasons why

peer ability matters for learning in many contexts.

This paper also relates to the empirical literature using natural disasters to identify

peer effects in education, such as Cipollone and Rosolia (2007), Imberman, Kugler,

and Sacerdote (2012), and Sacerdote (2008). In contrast to previous studies, this

paper does not use forced relocations of students for identification.9 Finally, the pa-

per relates to the empirical literature on ability peer effects studying the impacts of

moments beyond the mean (Lyle (2009); Booij, Leuven, and Oosterbeek (2017); Ding

and Lehrer (2007); Vigdor and Nechyba (2007); Hoxby and Weingarth (2005)) and of

partitioning the support of ability, which varies first and higher-order moments simul-

taneously (Carrell, Sacerdote, and West (2013); Duflo, Dupas, and Kremer (2011)).

These studies tend to find that moments beyond the mean matter for learning.

The article is structured as follows. Section 2 details the data, damage measure,

and describes damage propagation among students. Section 3 delves into the empirical

analysis of damage effects on achievement, and assesses the identifying assumption and

robustness. Section 4 presents evidence on mediating factors using administrative and

survey data. Section 5 introduces the theory of peer influence based on rank concerns,

rationalizing the evidence. Section 6 concludes, discussing policy implications and

suggesting future research avenues.

2 Data and Measurements

This section describes the data sources and measurements and performs a descriptive

data analysis.

2.1 Data

I construct a dataset on two cohorts of students combining information from the

SIMCE dataset (Sistema de Medición de la Calidad de la Educación) and enrollment

and grade registries (Rendimiento). I refer to the two cohorts as pre- and post-

earthquake cohorts, depending on whether their outcomes were measured before or

Tincani, Kosse, and Miglino (2023)). The most relevant to this paper is Tincani, Kosse, and Miglino
(2023). After showing experimentally that rank incentives affect study effort, they develop and
structurally estimate a tournament model of simultaneous effort choices using data from Chilean
high schools, in which college seats are assigned according to the within-school GPA rank. The goal
of these papers, however, is not to study ability peer effects given rank incentives, but to explore the
impacts of changing the rank incentives, keeping fixed peer ability.

9This distinguishes this paper also from the experimental and quasi-experimental literature that
use variation in assignment to peer groups, such as dorms (Sacerdote (2001); Zimmerman (2003);
Stinebrickner and Stinebrickner (2006); Kremer and Levy (2008); Garlick (2018)) or classrooms
(Duflo, Dupas, and Kremer (2011); Whitmore (2005); Kang (2007)).
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Figure 1: Data time-line.

after the earthquake. The 8th grade outcome for the pre-earthquake cohort is observed

in 2009, before the 2010 earthquake, the 8th grade outcome for the post-earthquake

cohort is observed in 2011, 20 to 22 months after the 2010 earthquake (Figure 1).

The sample includes students in public and private subsidized schools.10 I obtained

from the Ministry of Education the list of schools that closed as a consequence of the

earthquake, and used registry data to identify the schools where the evacuated stu-

dents relocated to. I dropped from the sample both sets of schools, from both cohorts,

to ensure the absence of earthquake-induced relocations in my sample.11 Such reloca-

tions could directly affect the outcomes of evacuated students and indirectly those of

incumbent students in receiving schools through changes in peer composition. Such

effects could confound the effects of interest in this paper. I dropped observations with

missing classroom identifiers,12 and classrooms with five or fewer students.13 The final

sample consists of 354, 108 students in 13, 267 classrooms and in 4, 798 schools. As

explained in the next section, to mitigate measurement error on the damage measure,

the main analyses exclude around a quarter of observations, corresponding to schools

located in coastal towns. The sizes of the pre- and post-earthquake samples, with and

without such restriction, can be seen in Table 1.

For both cohorts I observe administrative records on 8th grade and 4th grade

Mathematics and Language standardized test scores and school grades, gender, town

of residence and unique student, classroom and school identifiers. I complement these

data with linked survey data on students’ perceptions, on the household socioeconomic

background, and on teachers’ instruction. Administrative school-level information

includes rurality and public or private status. Finally, I match students to classrooms,

teachers and schools through unique pseudo-identifiers.

10I exclude students from the elite private unsubsidized schools. They represent approximately
7% of the student population and they come from the most well-off families in the country.

11I dropped 36, 941 observations from the post-earthquake cohort and 38, 784 from the pre-
earthquake cohort, corresponding to 16% of the sample.

12These are 17, 969 observations in the post-earthquake cohort and 21, 194 observations in the
pre-earthquake cohort. The school and student identifiers are never missing.

13These correspond to 2, 484 student-level observations, or 0.7 percent of the sample.
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2.2 Measuring damages to homes

Earthquake. On February 27th 2010, at 3.34 local time, Chile was struck by a

magnitude 8.8 earthquake, the sixth-largest ever instrumentally recorded and tech-

nically referred to as a mega-earthquake (Astroza, Ruiz, and Astroza (2012), USGS

(2023)). Figure 2 shows its position in the global earthquake distribution since 1900.

Shaking was felt strongly throughout 500 km along the country, covering six regions

that together make up approximately 80% of the country’s population. Damage was

widespread, with costs estimated at 18 percent of GDP (WHO (2010)). The Gov-

ernment implemented a national plan to rebuild or repair housing units for low- and

middle-income families. The mega-earthquake had continued impact on people’s lives

during the period covered by my sample. The post-earthquake cohort, whose out-

comes were collected when they were in the 8th grade in 2011, was about to start

the 7th grade when the earthquake struck. By the time the 2011 outcome data were

collected, 20-22 months had passed since the earthquake struck. Yet, only 24 percent

of home reconstructions and repairs had been completed (Comerio (2013)), leading

to frustration in the population (Appendix Figure A1).

Figure 2: Source: Global Earthquake Catalog maintained by the United States Geological Survey
(USGS (2023)).

Measuring earthquake damage to a student’s home. The damage to a stu-

dent’s home depends on the level of ground shaking and on the construction materials.

I proceed in three steps. First, I construct a measure of the shaking that each stu-

dent’s home was subject to. Second, I build a measure of the seismic vulnerability of

each student’s home, which depends on the construction materials. Third, I combine

these two measures to calculate home damages. I now describe each step.
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Step one: ground shaking. For students who reside in earthquake-afflicted re-

gions, I build a measure of distance between each student’s town of residence and

the asperity centroid as ∆A =
√
R2 + h2, where R is the distance between the town’s

center and the point on the earth’s surface vertically above the asperity centroid,

whose coordinates are (34.8oS, 72.6oW), and h = 20km is the depth of the latter. I

then apply the intensity attenuation formula derived by Astroza, Ruiz, and Astroza

(2012) for the 2010 Chilean earthquake that gives for each distance ∆A a level of

severity of ground shaking, I, measured on the Medvedev-Sponheuer-Karnik (MSK)

scale: I = 19.781− 5.927 log10(∆A) + 0.00089∆A (R2 = 0.9894).14

Step two: seismic vulnerability. A building’s seismic vulnerability depends on

its construction materials. The construction materials of students’ homes are not

included in the education dataset, but they are included in census data. Therefore, I

use census data to develop a model that can accurately predict the seismic vulnerabil-

ity of a household’s home from a set of observable household characteristics that are

available in the education dataset, and I apply this model to the education dataset

to build a measure of the seismic vulnerability of the homes of the students in my

sample. The procedure comprises three steps. In the first, using census data I build a

measure of seismic vulnerability of a building based on its construction materials. In

the second, using census data I develop the prediction model and assess its ability to

correctly predict housing quality from household characteristics. Finally, I apply the

prediction model to the students in my sample (the education data). I now describe

the first two steps in more detail (the third step is trivial).

The first step consists in building a measure of seismic vulnerability of a home

from information on its building materials as per census data. I obtained the 2002

census data, the last one before the earthquake struck, from the Chilean National

Institute for Statistics. I restricted the data to the nearly one million households with

at least one school-aged child, and extracted information on the construction materials

of their homes: for the exterior walls, roof and floor. Table A4 in the Appendix shows

the distribution of building materials in this population.

I then mapped the vector of building materials into a predicted seismic vulnera-

bility class (Grünthal (1998), Table 1). To do so, I estimated a logistic latent-class-

analysis (LCA) model that assigns to each home the predicted probabilities of belong-

ing to each of three classes, an unsupervised learning algorithm.15 Post-estimation,

I predicted the distribution of building materials by class. As an unsupervised algo-

14∆A is non-negative because it measures a distance, and it is never equal to zero because no
town was directly above the asperity, which was in the ocean.

15The estimation of the LCA model is performed on a randomly selected sample of 100,000
households from this population, for computational reasons.
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rithm, LCA does not label the classes, a step requiring human input. Therefore, I

attached a label to each class (low, medium or high seismic vulnerability) depending

on the similarity between the predominant construction materials within each class

generated by the LCA model and the predominant construction materials used in

Chile within each seismic vulnerability class (Massone et al., 2010). In this step of

the data construction, I obtained feedback from a leading expert on the seismic vul-

nerability of Chilean buildings.16,17 Figure 3 shows the predicted class proportions

in the population of households with at least one school-aged child in the census and

the within-class distributions of construction materials.

The second step consists in building a model that can accurately predict the seis-

mic vulnerability of a household’s home based on household characteristics, in the

population of families with school-aged children. The dependent variable is seismic

vulnerability as obtained from the LCA model, that is, a vector containing the proba-

bilities that a home belongs to the low-, medium- or high-vulnerability class. For the

independent variables, I restrict attention to the characteristics that are available in

both the census and the education data. These are: the age of the household head,

the average years of education of mothers and fathers, and the region of residence, to

capture any differences in construction standards across regions.18

Predicting seismic vulnerability from household characteristics is remarkably easy

in Chile, as I find striking socioeconomic stratification in housing quality among

Chilean families with school-aged children. As shown in Figure 4, students from

high socioeconomic status (SES) households are those most likely to live in homes

with low seismic vulnerability, students from middle SES households in homes with

medium seismic vulnerability, and students from low SES households in homes with

high seismic vulnerability. Such socioeconomic segregation is not built into the seismic

vulnerability measure, which is constructed only from construction materials. There-

fore, the fact that the distribution of seismic vulnerability varies as expected with

SES informally validates the procedure I developed to construct seismic vulnerability.

To my knowledge, this is the first direct evidence that housing quality, in terms of

16I thank Professor Sergio Ruiz of the Geology Department at the University of Chile for his
expert feedback on this step of the data construction, confirming that the distribution of building
materials within the classes generated by the algorithm correspond to that found within the seismic
vulnerability classes in Chile.

17Astroza, Ruiz, and Astroza (2012) identify four seismic vulnerability classes in Chile, but two
of them (confined masonry and confined masonry designed according to the NCh2123 Chilean Code)
are indistinguishable from each other using census information. Therefore, I group them into one
class. These two types of constructions have the best earthquake resistance profiles (see Table 2
in Astroza, Ruiz, and Astroza (2012)), so they are assigned to the low vulnerability class. But in
calculating damages, I acknowledge that this class contains two different kinds of constructions: I
assume that half of these homes are built according to the NCh2123 Chilean Code, and half are not.

18I assume that the parent who fills out the education questionnaire is the household head.
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Figure 3: Results of the latent-class-analysis model estimated on census data: distribution of seismic
vulnerability classes and of building materials within each class. Notes: The percentages next to
each class label represent the proportion of homes in that class in the population of households with
at least one school-aged child according to the 2002 census.

earthquake resistance, is highly segregated along socioeconomic lines among Chilean

students.

I build the prediction model by estimating a LASSO regression on census data.

The model can be used to predict the seismic vulnerability of the homes of students

in the education dataset because it uses household characteristics available in both

the census and the education dataset. Appendix A.1 describes the model. For each

household, the model predicts the probabilities that the home belongs to each of

the three seismic vulnerability classes. Figure 5 shows that its fit is excellent: the

housing quality predicted using the estimated LASSO model traces very closely the

actual housing quality built from information on building materials. The fit worsens

slightly only among very old or very highly educated parents, who are very few in the

education dataset. This gives me confidence that the model can accurately predict

seismic vulnerability for nearly all students in the education dataset.

Step three: combining ground shaking and seismic vulnerability to build a

measure of damages. For each student in the sample I now have measures of the
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Figure 4: Evidence of socioeconomic segregation in housing quality among Chilean families with
school-aged children. This graph plots the probability that the home of a school-aged child belongs
to each of three seismic vulnerability classes (low-, medium- and high-vulnerability) by the education
of the parents. Sources: census 2002 data, restricted to households with at least one school-aged
child. Class probabilities stem from latent-class-analysis using census information on the construction
materials of the families’ homes.

Figure 5: Goodness of fit of predicted seismic-vulnerability-class probability by parental education
and by age of household head. Notes: census 2002, families with school-aged children.

intensity of ground shaking and of the seismic vulnerability of her home. I combine

these two pieces of information to build a measure of expected damage, defined as the

fraction of the home that needs to be rebuilt. The procedure is as follows.
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For each vulnerability class and ground shaking level, Astroza, Ruiz, and Astroza

(2012) provide the distribution of damage grades, which are divided into six categories,

ranging from no damage (DGm = 0) to complete collapse: (DGm = 5). Following

Bommer et al. (2002), I assign to each category DGm a numerical damage measure

d ∈ [0, 1], called “damage ratio,” which measures damages as a fraction of complete

collapse, where d = 1 represents complete collapse. If the vulnerability class was

observed, we could obtain the expected damage ratio of household i given its vulner-

ability class vci and ground shaking intensity level Ii as E[di|vci, Ii] =
∑5

m=0 d(DG =

m)pm(vci, Ii), where p
m(vci, Ii) is the probability that a house of vulnerability class

vci subject to ground shaking Ii suffers a damage grade DG = m, which carries a level

of damage ratio equal to d(DG = m). But the vulnerability class is not observed.

Instead, for each student in the data I observe a vector of predicted probabilities that

her house belongs to one of each vulnerability class. Therefore, for each household

with characteristics xi I use the predicted likelihood that it belongs to each vulner-

ability class j = 1, 2, 3 (p̂j(xi) in Appendix A.1) to build a measure of the expected

damage ratio:

di = E[d|xi, Ii] =
3∑

j=1

p̂j(xi) ·

(
5∑

m=0

d(DG = m)pm(vc = j, Ii)

)
(1)

I standardize this measure in the sample so that it has mean zero and unit variance.

This is the measure of home damage used throughout the analysis.

Tsunami. The damage ratio is not designed to measure damage stemming from

the accompanying tsunami that afflicted coastal towns. In coastal areas it may suffer

from larger measurement error, which would lead to attenuation bias. To avoid this,

I restrict the sample to non-coastal towns, defined as those located more than 0.5

km from the coast, verifying the robustness of the results to different geographical

restrictions. This sample restriction excludes approximately 25% of the observations

from the analysis.

2.3 Descriptive analysis

I use the student-level measure of earthquake damage to document new facts about

the propagation of damages from the 2010 Maule earthquake among students.

Among students of the post-earthquake cohort who live in earthquake regions

(i.e., the students affected by the earthquake), the fraction of the home that collapsed

ranged from 0% to 57%, and on average was 1.8%. The distribution was right-skewed,

with most students suffering damage ratios below 10%. Average reconstruction costs
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amounted to USD 1, 498, i.e., around 46% of the average annual earnings of house-

holds who incurred the damages.19 Lower earners incurred disproportionately higher

damages; a 1% increase in earnings is associated with USD 91 fewer damages.

We have already seen that students from lower SES live in homes with larger seis-

mic vulnerability (Figure 4). Figure 6 shows that also the level of home damage, which

depends on both seismic vulnerability and ground shaking, decreased with students’

SES, as measured by parental education. On average, the homes of students whose

parents have at least some college education incurred 809 fewer USD of damages,

or half the amount, than those of students whose parents do not have any college

education. The Figure also shows that at all levels of parental education, students in

public schools suffered more home damage than those in private schools, and those in

rural schools more than those in urban schools. The evidence therefore suggests that

the homes of the more disadvantaged students (i.e., those with less educated parents,

those in public schools, those in rural schools) suffered the largest earthquake dam-

ages. Appendix Tables A2 and A3 show how all student and school characteristics

correlate with home damages and building quality.

Why did homes of disadvantaged students incur greater damage? Figure 7 visu-

ally displays this disparity across two panels, each featuring a map of how damage

propagated geographically. The left panel is based on lower-SES students — those

without college-educated parents — while the right is based on higher-SES students

— those with college educated parents. The circle size indicates the proportion of the

respective SES populations living in a particular town. The color intensity indicates

the average damage severity for students in that town and SES group, with darker

colors indicating worse damage.

The maps reveal that lower-SES students were more likely to live in the (mostly

rural) areas most affected by the earthquake than higher-SES students. But even

conditional on residing in the same town, the homes of lower-SES students were

more damaged, because of lower-quality housing. Damage propagation, therefore, was

unequal across socioeconomic lines in Chile because of differences in residential choice

and housing quality. While such socioeconomic inequality may appear unsurprising,

this is one of the first times it was documented.

19These back of the envelope calculations use the 2010 USD to CLP exchange rate, and depend
on the assumed cost of reconstructing a completely collapsed home. I assume the cost is equal to
the average market price of a 50m2 home in Chile in 2010, which was USD 84, 175 (see https:

//www.globalpropertyguide.com/Latin-America/Chile/square-meter-prices and https://

cchc.cl/centro-de-informacion/indicadores/indice-real-de-precios-de-vivienda). If a
home suffered an unstandardized damage ratio of x%, then the damage in dollars is measured as
x% · 84, 175. In the remainder of the paper I use the standardized damage ratio di, defined in equa-
tion (1), as the measure of damages, because its value does not depend on assumptions on home
reconstruction costs.
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Figure 6: Relationship between home damage and parental education by school characteristics.
Notes: sample of students in earthquake-affected regions in the post-earthquake cohort and residing
more than 0.5 km from the coast. The figures present local polynomial regression estimates with
95% confidence intervals. Home damage is measured by the standardized damage ratio di, defined in
equation (1). The top and bottom 1% of observations in terms of parental education were trimmed.

Figure 7: Damage propagation among students by socioeconomic demographics. Notes: The left
panel shows damage propagation among students whose parents do not have college education, the
right panel among students whose parents have college education. Each circle represents a town. Its
size represents the percentage of the sample of college-educated parents (left panel) or of non-college-
educated parents (right panel) living in that town. The shade reflects the average level of damages
to the homes of the students without (left panel) or with (right panel) college educated parents in
that town, measured in USD. For reference, the average annual wage in the entire sample is USD
8,378. College education is defined as having more than 14 years of education, as most vocational
higher-education degrees require at most 14 years of education.
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There is variation in how students in the same classroom were affected by the

earthquake: 98% of students from the post-earthquake cohort going to school in

affected regions were enrolled in classrooms where not all students suffered equal

damages. This fraction is the same across public and private schools, and slightly

larger among urban (99%) than rural (97%) schools. Students in these classrooms were

exposed to a standard deviation in non-standardized damage ratios of 0.5% on average,

or USD 422 at 2010 reconstruction costs (over half the average monthly household

income), but in some classrooms the standard deviation in damages reached staggering

levels, such as 6.2% at the 99th percentile, or USD 5, 146, over seven months worth

of income. Therefore, while students attending the same classroom tended to live in

nearby towns and belong to similar socioeconomic classes, there was variation within

classrooms in how students were affected by the earthquake, driven by differences in

ground shaking and housing quality. This provides rich within-classroom variation in

individual-level shocks.

Finally, Table 1 presents country-wide descriptive statistics of the pre- and post-

earthquake cohorts of students, which display similar characteristics.

Table 1: Summary statistics of student and school characteristics in all regions of Chile.

Pre-earthquake cohort Post-earthquake cohort

Mean St.dev. N Mean St.dev. N

(1) (2) (3) (4) (5) (6)

A. All students

Baseline test score .175 .822 155958 .159 .82 150791

Parental education (years) 10.9 3.11 175511 11 3.06 167565

Female student .504 .5 180244 .504 .5 173864

Rural school .113 .317 180244 .106 .307 173864

Public school .478 .5 180244 .466 .499 173864

Earthquake-affected region .754 .431 180244 .739 .439 173864

B. Excluding coastal towns

Baseline test score .174 .823 117446 .153 .822 110577

Parental education (years) 10.8 3.11 132564 10.9 3.06 122867

Female student .504 .5 135950 .505 .5 127583

Rural school .12 .325 135950 .115 .319 127583

Public school .471 .499 135950 .463 .499 127583

Earthquake-affected region .826 .379 135950 .806 .395 127583

Notes: Baseline test scores are the average of Mathematics and language SIMCE test scores in fourth grade,
standardized in the population of test takers. A town is defined as coastal if it lies within 0.5 km of the coast.
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3 Empirical Analysis of Earthquake Effects

3.1 Main findings

Damages to students’ homes varied based on the quality of their homes and the

distance of their hometown from the earthquake’s asperity. This suggests that we can

estimate the causal impact of earthquake damages on student outcomes by using data

from a cohort of students with measurable pre-existing vulnerability to the earthquake

but whose outcomes were measured before the earthquake struck. A difference-in-

differences estimator exploits the differential correlation between vulnerability and

outcomes across cohorts to tease out causal impacts.20

Equation (2) presents the regression model I estimate. I use the damage ratios de-

fined in equation (1) to measure pre-existing earthquake vulnerability, which reflects

actual home damages for the cohort exposed to the earthquake. The vector Dic of

vulnerability variables comprises the student’s damage ratio and the (leave-one-out)

mean and standard deviation of damage ratios in the classroom. The dummy vari-

able posti takes on value 1 if a student belongs to the post-earthquake cohort, the one

exposed to the earthquake, and 0 otherwise. The vector xi of student characteristics

includes a lagged achievement measure (the standardized test score in grade 4), mak-

ing this a value-added model. The vector wcs of school and classroom characteristics

includes the school building’s vulnerability.21 Results from different specifications are

reported in Appendix Table A7. The Table notes contain the full list of regressors.

yics = α0 + α1 · wcs + α2 · xi + β
′ ·Dic + posti ·

[
γ + δ

′ ·Dic

]
+ ϵics. (2)

For the pre-earthquake cohort, the parameter β captures the spurious relationship

between vector Dic and outcomes: the location and quality of a student’s and her

classmates’ homes could correlate with unobserved outcome determinants. If such

spurious relationship is constant across cohorts, an assumption I assess in section 3.2,

the δ parameters reveal the effects of earthquake damages on test scores, keeping

school building damages fixed. This is the parameter vector of interest.

The impacts estimated from equation (2) could be mediated by the school’s re-

sponse to the earthquake. For example, schools suffering more extensive average

20In this section, “vulnerability” refers to overall vulnerability, measured in damage ratios, which
considers both construction quality and distance from the asperity.

21I do not observe the construction materials of the school building, but I observe the shaking
intensity in the school’s town. To allow for different shaking-resistance levels depending on construc-
tion materials, I include as regressors the shaking in the school’s town, the shaking interacted with
whether the school is public or private (to account for building quality differences across public and
private schools), the latter interacted with the cohort dummy, and the cohort dummy interacted
with whether a school is public or private.
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damages in their classrooms might have received more emergency funds. The impacts

estimated by δ thus capture the net effect of the disruptions and any remedial ac-

tions by schools. To account for school responses, I introduce a modified model that

includes school-by-cohort fixed effects:

yics = α̃0 + α̃1 · wcs + α̃2 · xi + β̃
′ ·Dic + posti · δ̃

′ ·Dic + ηsp + νics (2’)

The model in equation (2’) draws on comparisons across classrooms within the same

school and cohort. The fixed effects absorb school-wide reactions to the earthquake,

such that the δ̃ parameters capture the damage impacts not mediated by school

responses. These include the direct impacts on students’ ability to learn, and any

indirect ones such as teachers’ reactions.

Table 2 presents the results. The outcome is the average between the Mathemat-

ics and Language SIMCE standardized test scores. Appendix Table A6 shows that

considering the two subjects separately yields similar patterns. A one standard devi-

ation increase in a student’s damage ratio, corresponding to increasing the collapsed

portion of the home by 4.4 percentage points, lowers test scores by 0.033-0.036 stan-

dard deviations (std). The effect does not vary substantially with the inclusion of

the school-by-cohort fixed effects. To put the magnitude into perspective, this impact

is a quarter of that of a one-standard-deviation improvement in teacher value added

(Chetty, Friedman, and Rockoff (2014)).22

The average damages to the homes of classmates have positive effects on own test

scores when the school-by-cohort fixed effects are not included, but the effect becomes

null and insignificant once they are included. This suggests that schools counteracted

any potential adverse learning conditions caused by average damages. Overcompen-

sation in response to the earthquake was evidenced also in post-earthquake crime

prevention in Chilean municipalities (Hombrados (2020)). The inclusion of the fixed

effects, however, renders the estimate more imprecise, suggesting, unsurprisingly, that

there is limited variation in mean damages across classrooms within schools. In con-

trast, the damage dispersion effect can be estimated with similar precision regardless

of the inclusion of fixed effects. The damage dispersion had a negative but insignificant

effect on test scores.

To summarize, damages affected the learning of the student living in the dam-

aged home. The detrimental impacts occurred at a critical time in the educational

path of students (the year before transferring to secondary education) and were dis-

proportionately borne by students of lower socioeconomic status due to their greater

22Teachers are one of the most important school inputs into the production of achievement, but
school inputs are generally not as impactful as home interventions (e.g. Heckman, Liu, Lu, and Zhou
(2022), Heckman (2006)).
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Table 2: Impacts of earthquake damages on standardized eighth-grade
test score

(1) (2)

Effect of damage to own home -0.033∗∗ -0.036∗∗∗

(0.013) (0.014)

Effect of average damage among classmates 0.052∗∗∗ -0.000
(0.019) (0.128)

Effect of standard deviation of damage among classmates -0.049 -0.020
(0.045) (0.052)

Observations 154900 154900
R2 0.581 0.505
School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more
than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regressions
(2) and (2’). The outcome variable is the average between Mathematics and Language SIMCE
scores, standardized to have mean 0 and variance 1. The treatment variables are measured in
standard deviations of the damage distribution; Table A5 shows estimates where each treatment
variable is measured in standard deviations of the treatment variable itself. Regressions include
student and classroom characteristics. Student characteristics: fourth-grade test score, gender,
whether the student lives in the school town, parental education, age of household head, dummy
for region of residence. Classroom characteristics: public school dummy, rural school dummy,
shaking intensity in school’s town interacted with public and cohort dummies, cohort and public
dummies interacted, class size, classroom fractions of females and of local residents; classroom
average and standard deviation of lagged test scores and of parental education. The regression
with school-by-cohort fixed effects omits school-level controls and the cohort dummy. Damages’
mean and standard deviation are leave-one-out moments. Standard errors are clustered at the
school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

exposure (Figures 4 and 7). While schools could not mitigate the impact of such

individual-level shocks, they appear to have successfully mitigated the effect of the

average level of damage in the classrooms. Damage dispersion in the classroom had

insignificant effects, on average.

3.2 Identifying assumption

The identifying assumption underlying the estimator is that the relationship between

achievement and the earthquake vulnerability variables would be the same in the pre-

and post-earthquake cohorts in the absence of the earthquake. A concern is that

the estimates may capture changes in this relationship across cohorts, rather than

true damage impacts. For example, the estimate of the impact of mean damages in

the classroom would be biased if the government introduced a policy between 2009

and 2011, the period between the outcomes for the two cohorts were measured, that

changed the student composition across schools, such as changes to the vouchers for

disadvantaged students to attend private schools.23 If such a policy were introduced,

it could alter how a school’s socioeconomic composition, on which the mean damage

measure is based, correlates with its unobserved quality across cohorts. This would

violate the identifying assumption. To address such concerns, all specifications include

23Chile has a voucher policy in place, but it did not undergo any changes at this time (Neilson
(2021)).
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a set of controls for socioeconomic composition. By the same logic, they include

controls for individual characteristics.24

But bias could still arise if unmeasured components of socioeconomic composition

or of individual characteristics correlate with earthquake vulnerability variables dif-

ferently across cohorts. To address this concern, I assess the validity of the identifying

assumption using data from regions of Chile not affected by the earthquake. As Table

1 showed, around a quarter of students in the sample lived in regions so far from the

asperity that no damage to buildings occurred.

The ideal test would be to re-estimate equations (2) and (2’) on the sample of

students living in non-affected regions. Failing to reject the null hypotheses that

δ = 0 and δ̃ = 0 provides evidence in favor of the identifying assumption: we would

not be able to reject the notion that, in the absence of an earthquake, the measures of

earthquake vulnerability I built (own vulnerability, and mean and standard deviation

of vulnerability among classmates) correlate with outcomes identically across cohorts

(under the assumption that the evolution of such correlation across cohorts in the

regions unaffected by the earthquake equals that in the regions affected).25

I cannot run the ideal test because damage ratios are equal to zero by construction

in regions where the ground did not shake (d(DG = m) in equation (1) is zero). As

a result, I focus on variation in students’ home quality, which can be constructed for

any student nationwide. When holding the town of residence constant, this metric be-

comes a proxy for earthquake vulnerability. This is because within a town, differences

in damage ratios are determined solely by differences in housing quality.

Therefore, I use the sample of classrooms where every students resides in the same

town (the school’s town). I then re-estimate regressions (2) and (2’), using earthquake

vulnerability measures based on housing quality in vector Dic. For each student, we

have a vector of probabilities indicating the likelihood their home falls into one of

three seismic vulnerability classes. From this vector I construct an index. A value of

1 indicates that a student certainly lives in a high-vulnerability home, a value of 0

that she certainly lives in a low-vulnerability home.26 I standardize this index across

the entire sample, so that a one-unit increase corresponds to an increase in earthquake

vulnerability by one standard deviation. I also generate the leave-one-out classroom

mean and standard deviation of this vulnerability index.

24Appendix Table A7 shows that results are similar in specifications without such individual and
group controls, retaining only the three individual characteristics used to build the damage measure.

25More formally, letting y0 be the potential outcome in the absence of treatment D = d, and
E = 1 for regions affected by the earthquake and E = 0 for regions not affected, the assumption is
∂E[y0|post,D=d,E=1]

∂d − ∂E[y0|pre,D=d,E=1]
∂d = ∂E[y0|post,D=d,E=0]

∂d − ∂E[y0|pre,D=d,E=0]
∂d , ∀d.

26The index is 1 · p̂HV
i + 0.5 · p̂MV

i + 0 · p̂LV
i .
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Table 3 shows the results. As a plausibility check on the measure of earthquake

vulnerability only based on housing quality, the first two columns are based on the

sample of students from earthquake-affected regions. The patterns align with the

main findings presented in Table 2, suggesting that the measure of damages based on

housing quality and keeping location fixed is a good proxy for the measure based on

damage ratios used in the main analysis.27

Table 3: Validity of the identifying assumption

(1) (2) (3) (4)

Effect of own home vulnerability -0.038∗∗∗ -0.040∗∗∗ -0.006 -0.012
(0.012) (0.012) (0.021) (0.021)

Effect of average home vulnerability among classmates 0.071∗∗∗ -0.194 -0.034 -0.220
(0.027) (0.161) (0.028) (0.252)

Effect of standard deviation of home vulnerability among classmates 0.276∗∗ 0.134 -0.202 0.281
(0.132) (0.194) (0.160) (0.331)

Observations 46670 46670 31502 31502
R2 0.575 0.530 0.589 0.516
School-by-cohort fixed effects No Yes No Yes

Notes: Sample of classrooms where all students reside in the school’s town. Columns 1 and 2 restrict the sample to earthquake-
affected regions and towns more than 0.5km from the coast. Columns 3 and 4 restrict the sample to earthquake-unaffected regions.
Home vulnerability is measured as an index ranging from 0 (for sure living in low-vulnerability home) to 1 (for sure living in high-
vulnerability home), standardized to have mean zero and variance one in the entire sample. The average and standard deviation

of home vulnerability among classmates are leave-one-out moments of this standardized index. Parameters δ and δ̃ obtained from
OLS estimation of regressions (2) and (2’). The outcome variable is the average between Mathematics and Language SIMCE
eighth-grade test scores. Regressions include student and classroom characteristics. Student characteristics: fourth-grade test score,
gender, whether the student lives in the school town, parental education, age of household head, dummy for region of residence.
Classroom characteristics: public school dummy, rural school dummy, shaking intensity in school’s town interacted with public and
cohort dummies, cohort and public dummies interacted, class size, classroom fractions of females; classroom average and standard
deviation of lagged test scores and of parental education. The regressions with school-by-cohort fixed effects omit school-level
controls and the cohort dummy. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Columns (3) and (4) assess the validity of the identifying assumption, presenting

estimates of δ from equation (2) and δ
′
from equation (2’) using data from regions

not affected by the earthquake. We cannot reject the hypotheses that δ = 0 and

δ
′
= 0 at any conventional significance level. This suggests that any potential spurious

correlation between pre-existing vulnerability to the earthquake and outcomes —

attributable to correlations between housing quality and unobserved determinants of

student achievement — is constant across cohorts. This gives us more confidence in

interpreting the main findings from Table 2 as causal.

3.3 Heterogeneity by baseline test scores

The impacts of damages to students’ homes can vary depending on the students’ prior

preparation or ability. To explore this, I estimate models (3) and (3’), where ability

ai is measured through a standardized test in fourth grade:

27The main difference is the significant positive impact of the standard deviation when exclud-
ing school-by-cohort fixed effects. This can be explained by the fact that damage dispersion has
heterogeneous effects by ability (positive for low-ability and negative for high-ability students, as
per section 3.3), and the sample underlying Table 3 is selected (those attending schools that do not
attract students from other towns tend to be lower-ability students).

22



yics = α0 + α1 · wcs + α2 · xi + β
′

1 ·Dic

+ β
′

2 ·Dic · ai + posti ·
[
γ1 + γ2 · ai + δ

′

1 ·Dic + δ
′

2 ·Dic · ai
]
+ ϵics, (3)

yics = α̃0 + α̃1 · wcs + α̃2 · xi + β̃
′

1 ·Dic

+ β̃
′

2 ·Dic · ai + posti ·
[
γ̃2 · ai + δ̃

′

1 ·Dic + δ̃
′

2 ·Dic · ai
]
+ ηsp + νics. (3’)

The difference between these two models is whether the school-by-cohort fixed effects

are included or excluded. The parameters of interest are δ1, δ̃1, which capture the

effects of Dic for a student with mean ability (i.e., ai = 0), and δ2, δ̃2, the coefficients

on the interaction terms. These inform us about the variation in the effects across

students of different ability.

The results are presented in Table 4 and Figure 8. The detrimental impacts of

damages to a student’s own home did not substantially vary with a student’s ability, as

seen in the second row of Table 4 and top-left panel of Figure 8. In the model without

fixed effects, the average damage among classmates had (insignificantly) stronger

positive impacts on higher-ability students, as seen in the fourth row and first column

of Table 4. For higher-ability students, the impacts were positive and statistically

significant, as seen in the top-right panel of Figure 8. This suggests that remedial

measures undertaken by schools may have benefited higher-ability students more,

although the difference in impacts between students of different ability is imprecisely

estimated. Estimates of the impact of average damages become imprecise with the

inclusion of the fixed effects, as seen in the top-right panel Appendix Figure A2.

While the dispersion in damages in the classroom showed insignificant average ef-

fects (Table 2), the effects varied substantially and significantly across students (last

row of Table 4). A rise in such dispersion raised the achievement of lower-ability

students and lowered that of higher-ability students, as can be seen in the bottom-

left panel of Figure 8. Including school-by-cohort fixed effects does not meaningfully

change these findings, as seen by comparing Figure 8 to Appendix Figure A2, sug-

gesting that school reactions to damage dispersion were minimal. For some students,

the dispersion in damages had a similar or even larger effect than that of the damages

at their own home.28

28Magnitude comparisons rely on the unit of measurement. In Table 4, all treatment variables
are measured in terms of standard deviations of the distribution of damages. In Table A11, each
treatment variable is measured in terms of standard deviations of the distribution of the treatment
variable itself. For example, we consider the impact of increasing the damage standard deviation
by one standard deviation of the distribution of damage standard deviations across classrooms.
Regardless of the unit of measurement, for students near the tail of the ability distribution, the
impacts of the standard deviation of damages are similar or larger than the impact of the damage
to the student’s own home.
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Table 4: Heterogeneous impacts of earthquake damages on standardized
eighth-grade test score

(1) (2)

Effect of damage to own home -0.033∗∗ -0.039∗∗∗

(0.013) (0.014)

Interacted with baseline test score -0.008 -0.009
(0.017) (0.016)

Effect of average damage among classmates 0.051∗∗∗ -0.013
(0.019) (0.128)

Interacted with baseline test score 0.028 0.020
(0.019) (0.019)

Effect of standard deviation of damage among classmates -0.041 -0.017
(0.045) (0.051)

Interacted with baseline test score -0.096∗∗∗ -0.081∗∗∗

(0.037) (0.029)

Observations 154900 154900
R2 0.581 0.505
School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more
than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regressions
(3) and (3’). The outcome variable is the average between Mathematics and Language SIMCE
scores. The treatment variables are measured in standard deviations of the damage distribution;
Table A11 shows estimates where each treatment variable is measured in standard deviations
of the treatment variable itself. Regressions include student and classroom characteristics.
Student characteristics: fourth-grade test score, gender, whether the student lives in the school
town, parental education, age of household head, dummy for region of residence. Classroom
characteristics: public school dummy, rural school dummy, shaking intensity in school’s town
interacted with public and cohort dummies, cohort and public dummies interacted, class size,
classroom fractions of females and of local residents; classroom average and standard deviation
of lagged test scores and of parental education. The regression with school-by-cohort fixed effects
omits school-level controls and the cohort dummy. Damages’ mean and standard deviation are
leave-one-out moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, **
p<0.05, * p<0.10.

These findings hold regardless of the interaction term or specification used. Elim-

inating individual, classroom and school controls does not change the results (Ap-

pendix Table A14). Relaxing the linearity assumption using an interaction with deciles

of the ability distribution or including interactions with other student socioeconomic

characteristics result in less precise estimates but confirm the patterns (Appendix

Tables A12 and A13).29

In summary, the negative effects of damages to a student’s own home were similar

across the ability distribution. The positive effects of classroom mean damages, which

likely reflect school remedial actions, were (insignificantly) stronger for higher-ability

students. Relatively substantial earthquake impacts arose from damage dispersion in

classrooms, especially lowering the achievement of high-ability students.

29In principle, more flexible non-parametric approaches could be used to model the bias arising
from unobserved correlates within the difference-in-differences framework, as demonstrated in the
seminal conditional difference-in-differences method developed in Heckman, Ichimura, Smith, and
Todd (1998). In the context of social effects, this could be achieved by relaxing parametric restrictions
of control function approaches (see Brock and Durlauf (2001b, 2006), who, by bringing the insights
from Heckman (1979) and Heckman and Robb (1986) into the study of social effects, demonstrated
that control functions can aide in their identification.). The treatment effects could be modelled as
non-parametric functions of student characteristics to examine heterogeneity more flexibly. However,
such non-parametric methods deliver impractically large estimator variances in this empirical setting.
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Figure 8: Marginal effects on standardized eighth-grade test scores by baseline test score. Notes:
Marginal effects of own damage, leave-one-out average damage among classmates, and leave-one-out
standard deviation of damage among classmates. Effects obtained from estimating the regression
model in equation (3) (without school-by-cohort fixed effects). 90% confidence intervals reported.

3.4 Robustness

This section evaluates the robustness of the main results with regards to assump-

tions about earthquake damage measurement and potential spatial correlation of the

regression residuals.

The analyses restricted the sample to non-coastal towns to mitigate potential

attenuation bias from damages from the tsunami, which are not adequately accounted

for by damage ratios. A town is defined as coastal if it is within a 0.5 km strip of

the coast. I repeated the analyses defining coastal proximity as within 1 and 5km

of the coast. I also repeated the analyses in the unrestricted sample that includes

coastal towns. As shown in Appendix Table A10, the results are robust to different

definitions of coastal proximity. The conclusions stand even considering the entire

sample, but, as expected, the estimates are attenuated towards zero in this case.

The analyses allowed for correlation in the error terms of an unknown form between

students in the same school and cohort. But error terms of students in different

schools that are geographically close may correlate, as shaking is similar in nearby

schools. I employ two methods to account for this. First, I cluster the standard errors

at the school-town-by-cohort rather than the school-by-cohort level. Second, I use

Conley’s method (Conley (1999)) to compute the standard errors, allowing for a more

flexible spatial correlation in the residuals. The method assumes that the spatial

dependence between two students residing in different towns is a decreasing function

25



of the distance between the towns, and that beyond a pre-specified distance cutoff,

there is no dependence. I present results for different cutoff distances (10km, 25km,

50km, 100km, 587km), up to the distance between the asperity and the farthest

municipality experiencing damages (586.3 km). As shown in Appendix Tables A8

and A9, the standard errors are very similar across methods and distance thresholds,

suggesting that clustering at the school-by-cohort level accurately captures the spatial

correlation in the data-generating process.

4 Mediating Relationships

Tables 5 and 6 show impacts on potential mediators, using administrative and survey

data (survey items and variable construction are described in Appendix A.2).

Table 5: Impacts of earthquake damages on student cost of effort, course engagement, GPA

(1) (2) (3) (4) (5) (6)
Eff. cost Eff. cost Engage. Engage. GPA (std) GPA (std)

Damage 0.038∗∗ 0.038∗ -0.030 -0.022 -0.028∗ -0.035∗∗

(0.018) (0.020) (0.018) (0.021) (0.015) (0.016)

Damage average -0.043∗∗ 0.047 0.022 0.120 0.047∗ -0.032
(0.022) (0.118) (0.022) (0.180) (0.025) (0.171)

Damage standard deviation 0.083∗∗ 0.041 0.008 0.095 -0.100∗ -0.107∗

(0.034) (0.067) (0.045) (0.085) (0.052) (0.063)

Observations 156978 156978 137444 137444 156978 156978
R2 0.044 0.042 0.020 0.012 0.251 0.254
School-by-cohort fixed effects No Yes No Yes No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and resding more than 0.5 km from the
coast. Parameters δ and δ̃ obtained from OLS estimation of regressions (3) and (3’). The outcome variables in
columns 1-4 (perceived cost of study effort and engagement with the course) are built from items from the survey
administered in eighth grade, using the procedure described in Appendix A.2. The outcome variable in columns
5-6 is built from administrative GPA records in eighth grade. GPA is standardized to have mean 0 and variance
1. Regressions include student and classroom characteristics. Student characteristics: fourth-grade test score, gender,
whether the student lives in the school town, parental education, age of household head, dummy for region of residence.
Classroom characteristics: class size, classroom fractions of females and of local residents; classroom average and
standard deviation of lagged test scores and of parental education. Damages’ mean and standard deviation are leave-
one-out moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Study effort cost, course engagement and instruction. The first four columns

of Table 5 present the impacts of earthquake damage on students’ perceptions. A one-

standard-deviation increase in damage to a student’s home significantly increased their

perceived cost of study effort, by around 0.4 standard deviations, up to 22 months

post-event. At the same time, their ability to engage with the course material dimin-

ished (insignificantly) by 0.02-0.03 standard deviations. Potential reasons include lo-

gistical disruptions and psychological challenges. The medical literature has reported

that earthquake survivors, especially children, are prone to long-lasting Post Trau-
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matic Stress Disorder (PTSD).30 In the case of the 2010 Maule earthquake, children

living in strongly shaken areas displayed significantly higher PTSD rates compared

to similar children in unaffected areas;31 and adverse impacts on psychological func-

tioning were detected among preschoolers and primary school students.32 The results,

therefore, are consistent with the notion that post-earthquake trauma affects human

capital accumulation in schools.33

Keeping fixed a student’s home damage, an increase in the average damage suffered

by peers had a negative effect on own effort cost (Table 5 column 1). This result

aligns with the previous findings on achievement impacts and likely reflects schools’

compensatory actions. But once we account for the schools’ response using school-

by-cohort fixed effects (column 2), the impact on effort cost becomes insignificant.

Keeping fixed a student’s home damage, an increase in the damage dispersion in the

classroom had a positive effect on own effort cost, but this result is not robust to

the inclusion of the school-by-cohort fixed effects, suggesting that learning was more

difficult in schools with larger damage dispersion, but within schools, students in

classrooms with different damage dispersion had similar effort costs. The impacts on

course engagement of the mean and the standard deviation of damages are imprecisely

estimated; we cannot rule out null effects.

Next, I examine the impacts on classroom instruction using teacher survey data

on the fraction of the curriculum covered. On average, Language teachers cover 64.3%

of the curriculum in class, and Mathematics teachers 61.6%. Table 6 shows that the

distribution of damages among students in the classroom did not affect these figures.

The point estimates of the impacts of the classroom average and standard deviation

of damages are close to zero, and the confidence intervals are narrow, especially with

regards to the impacts of the standard deviation.

The lack of instructional pace adaptation suggests that the mitigating effort taken

by schools in response to the average level of damages among their students did not

take the form of teachers slowing down. Instead, other adaptations within the schools

led to the lower effort cost (Table 5 column 1) which, combined with teachers not

changing their instructional pace, resulted in higher achievement and GPA on average

30See, for example, Altindag, Ozen et al. (2005), Lui et al. (2009), Giannopoulou et al. (2006).
Children living closer to earthquake epicenters have been found to experience more severe PTSD
(Groome and Soureti (2004)).

31Zubizarreta, Cerda, and Rosenbaum (2013) measured PTSD using the self-rated Davidson
Trauma Scale, administered 3-4 months post-earthquake, and compared students in similar-quality
homes but with varying exposure to shaking.

32See Dutta et al. (2022), who find impacts up to one year after the earthquake. See also Gomez
and Yoshikawa (2017).

33Other papers have estimated earthquake impacts on student achievement (e.g. Shidiqi, Di Paolo,
and Choi (2023)), but exposure has typically been measured solely through location, abstracting from
housing quality conditional on location, which I find to be an important source of inequality.
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(Table 2 column 1 and Table 5 column 5). However, the lack of instructional pace

adaptation cannot help explain why we observed heterogeneous impacts of damage

dispersion. The evidence does not support the notion that in classrooms with higher

damage dispersion, teachers reduced the instructional pace to focus on the lower-

ability students — a scenario that could have explained the positive impact of damage

dispersion on the achievement of lower-ability students and detrimental impact on that

of higher-ability students.

Table 6: Impacts of earthquake damages on the percentage of the curriculum covered in class

(1) (2) (3) (4)
Language Language Mathematics Mathematics

Effect of average damage among classmates -0.000 -0.087 -0.002 0.064
[-0.012,0.012] [-0.218,0.044] [-0.017,0.013] [-0.089,0.217]

Effect of standard deviation of damage among classmates -0.025 0.019 -0.001 0.025
[-0.064,0.015] [-0.033,0.070] [-0.047,0.044] [-0.041,0.091]

Observations 6803 6803 6858 6858
R2 0.032 0.019 0.039 0.017
School-by-cohort fixed effects No Yes No Yes

Notes: Schools in regions affected by the earthquake, located more than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS
estimation of regressions (3) and (3’). The unit of observation is the classroom. The outcome variables were collected through surveys
administered to Language and Spanish teachers. They are the percentages of the Language (columns 1-2) and Mathematics (columns 3-4)
curricula they covered. Regressions include the following school and classroom characteristics: class size, classroom fractions of females and
of local residents; classroom average and standard deviation of lagged test scores and of parental education, dummy for public school, dummy
for rural school. Regressions with school-by-cohort fixed effects omit the school characteristicsy and cohort dummy. 95% confidence intervals
shown in brackets, constructed from standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

GPA and GPA rank. The last two columns of Table 5 present the impacts of

earthquake damage on GPA (standardized to have mean 0 and variance 1). The

impact of damage to a student’s home closely mirrors the test score impact shown in

Table 2, suggesting no change in grading standards. The alignment between GPA and

test score effects is further confirmed by the top panel of Figure 9, mirroring Figure

8. Yet, as shown in the bottom panel of Figure 9, the changes in GPA induced by

changes in the distribution of peer damages did not result in changes in GPA rank

patterns.34 The null impacts on GPA rank of the standard deviation of damages are

particularly striking, because the standard deviation did have heterogeneous impacts

on GPA across the baseline test score distribution. This implies that while higher

ability students experienced relatively large drops in GPA, they did not experience

any drop in their GPA rank.

Summary. At the individual student level, damage seemed to inhibit the ability to

study and engage with course content. At the classroom level, there’s no indication of

instructional adaptation: teachers did not change their pace. While this finding could

help explain why the mitigating efforts of schools resulted in positive learning impacts,

34See also Appendix Figure A3 for the version with school-by-cohort fixed effects.
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Figure 9: Marginal effects on GPA and within-classroom GPA rank by baseline test score. Notes:
GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA). Marginal effects
of the leave-one-out average and standard deviation of damage among classmates. Effects obtained
from estimating the regression model in equation (3) (without school-by-cohort fixed effects). 90%
confidence intervals reported.

it cannot easily explain why damage dispersion had heterogeneous impacts across the

ability distribution. Teachers do not appear to have focused on lower-ability students

by slowing down their pace, which could have generated such impacts.

The results on GPA and GPA rank are consistent with the notion that students

care about GPA rank. Faced with changed study effort costs among their peers,

students adjusted their effort and learning, but not at the expense of their classroom

standing. To ascertain whether this channel could rationalize the empirical findings,

the next section formalizes this notion through a simple model that introduces rank

concerns as a mechanism behind peer interactions.

5 A potential mechanism: peer interactions

In this section I propose a conceptual framework to interpret the empirical findings.

I follow the approach adopted in Blume, Brock, Durlauf, and Jayaraman (2015) of

micro-founding observed spillover effects through a model of behavior.

Motivated by the empirical evidence, I present a new theory of peer influence where

changing the ability to study of peers affects own outcomes through a competition
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motive: when students compete for academic standing, changing the academic ability

of peers changes the competition they face, resulting in different effort choices and

achievements.35 Empirically, this appears like an ability peer effect.

I adapt the model to the earthquake setting in two ways. I incorporate schools’

mitigating actions in response to the severity of the disruptions, and I assume that

damages from the earthquake act as an additive shock to the cost of exerting study

effort (or, equivalently, the ability to study) of each student, an assumption that is

supported by the evidence (columns 1 and 2 of Table 5). A result of this assumption

is that classrooms with different damage distributions, ceteris paribus, have different

distributions of the effort cost.36

The model is what allows me to extrapolate beyond the context of the earthquake.

I micro-found the choices of students of how much costly study effort to exert in a

strategic setting with competitive motives, and derive comparative statics on the

achievement impacts of varying the distribution of damages in a classrooms, keeping

the composition of classmate characteristics constant. I compare these predictions

to the empirical findings on the effects of varying the distribution of damages in a

classroom, and show that the theory can explain all the empirical results, including

seemingly unrelated ones, in a simple and intuitive way.

5.1 A theory of peer influence

Within a reference group there is a continuum of students, each indexed by i. Students

are heterogeneous in terms of effort cost type ci, which is distributed in the reference

group according to a twice continuously differentiable cumulative distribution func-

tion (c.d.f.) G(·) on [c, c̄], with c ≥ 0. The reference group is where interpersonal

interactions occur, such as the classroom.

Students choose how much costly effort ei to exert, and effort increases GPA yi.

Utility is increasing in own GPA and in the GPA rank in the reference group. Students

with a higher effort cost type ci incur a larger cost of exerting study effort for each

35Unlike Blume, Brock, Durlauf, and Jayaraman (2015), who assume that students choose achieve-
ment directly, I assume that students choose effort, and that effort affects achievement monotonically
like in Fruehwirth (2013). This assumption allows me to derive model implications in terms of the
observed achievement outcomes. Several studies show empirically that effort increases achievement
(Stinebrickner and Stinebrickner (2004, 2008); De Fraja, Oliveira, and Zanchi (2010)), providing
strong empirical support to this model’s assumption. Good measures of effort are typically unavail-
able in large scale administrative datasets like the ones used in this study, as they require costly
data collections to obtain detailed time diaries; researchers have been able to collect them from a
few hundred students at a time (see e.g. Conley, Mehta, Stinebrickner, and Stinebrickner (2015)).

36It is easy to show, under the assumption that cost of study effort is a linear function of damages
and other characteristics, that shifting the mean and variance of damages shifts the mean and
variance of effort costs when the classroom composition is held constant (Appendix C.1).
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effort level.37 Cost type ci captures all student characteristics, physical, psychological

and socioeconomic, that affect the ability to study. For each student i, it depends on

her baseline test score ai, family characteristics xi, and damages her home incurred

from the earthquake di:

ci = θ0 + θ1ai + θ2xi + θ3di. (4)

The cost type ci is assumed to be decreasing in the baseline test score ai and in-

creasing in the damages di, assumptions that are supported in the data (see Table 5

and Appendix Figure A4). Each student’s cost type is private information, but the

distribution of cost types in the reference group, G(·), is common knowledge. There

are no distributional assumptions on G(·), ensuring wide model applicability.

The cost of effort is determined by a strictly increasing and strictly convex function

of effort: q(ei; ci). Higher cost types ci incur larger costs for every level of effort ei,

i.e., ∂q(ei,ci)
∂ci

> 0 for all ei. Moreover, at higher cost types the marginal cost of effort

is (weakly) higher: ∂2q(ei;ci)
∂ci∂ei

≥ 0. Effort increases GPA according to the production

function:

y(ei) = (a0 + a1(µd))ei + u0 + u1(µd), with a0 + a1(µd) > 0, (5)

where µd is the mean of damages among peers. The functions a1(µd) and u1(µd),

weakly increasing in µd, capture mitigating, compensatory actions taken by schools

in response to mean damages in the classroom.38 Mitigation is allowed to affect either

the level of achievement (through u1), or the productivity of effort (through a1), or

both; the model is therefore agnostic about which channel drives mitigation efforts.

The utility function for student i can be decomposed into a utility that depends

only on own GPA yi in absolute terms and on effort cost qi = q(ei, ci), ui = V (yi, qi),

and a utility that depends on GPA rank in the classroom. Function V does not

have an i subscript because it is the same for all students. The utility from GPA

in absolute terms net of effort cost is non-negative, strictly increasing and linear in

GPA, strictly decreasing and linear in qi, and it admits an interaction between utility

from GPA and from effort cost such that at higher costs, the marginal utility from

GPA is (weakly) lower (V12 ≤ 0).39 No functional form assumptions are made on q(·)
37This aspect of the model could be recast in terms of students being heterogeneous in terms of

how productive their effort is.
38Alternatively, one could assume that the mitigating action in response to µd directly affects the

average cost type in the reference group, thus indirectly affecting yi in equilibrium. The model’s
implications would stand.

39All results are valid under an alternative set of assumptions for the utility V and cost function
q. These are: strictly quasi-concave utility from GPA, strictly decreasing and linear utility from cost

of effort (V2 < 0, V22 = 0) with a linear cost function ( ∂2q
∂2ei

= 0) and additive separability between
utility from GPA and cost of effort (V12 = 0).
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or on the interaction between yi and qi; the results are valid under a broad class of

preferences. For example, students with lower effort cost type ci may (or may not)

have higher marginal utilities from GPA.

A student’s GPA rank in the classroom is given by the cumulative distribution

function (c.d.f.) of GPA computed at her own GPA, FY (yi). This is the fraction of

students with GPA lower than one’s own. Because GPA is an increasing deterministic

function of effort, GPA rank equates effort rank: FY (y(ei)) = FE(ei), where FE(·) is
the c.d.f. of effort. The utility from rank, S

(
FY (y(ei))

)
, equals FE(ei) + ϕ, with

ϕ > 0. Overall utility U(yi, qi; ci) is the product of utility from GPA and GPA rank:

V (yi, qi; ci) (FE(ei) + ϕ). Each student chooses effort to maximize overall utility.

In a symmetric Nash equilibrium in pure strategies, every student follows the

same strategy e(ci) that is such that, given this common strategy, no student i can

increase her expected utility by deviating unilaterally. Focusing on such equilibria,

and initially assuming that the equilibrium strategy e(ci) is strictly decreasing and

differentiable with inverse function c(ei), GPA rank in equilibrium can be rewritten

as 1 − G
(
c(ei)

)
, and i’s utility as V

(
y(ei), q(ei, ci)

)(
1 − G

(
c(ei)

))
.40 The first-order

condition then is:

V1

mg. GPA increase︷ ︸︸ ︷
(a0 + a1(µd))︸ ︷︷ ︸

mg. ut. from increased GPA

+
V (yi, qi)

1−G
(
c(ei)

)
+ ϕ

mg. GPA rank increase︷ ︸︸ ︷
g
(
c(ei)

)(
− c′(ei)

)
︸ ︷︷ ︸

mg. ut. from increased GPA rank

= −V2
∂q

∂ei︸ ︷︷ ︸
mg. cost

. (6)

The model is an application of the status game in Hopkins and Kornienko (2004).41

Proposition A1 in Appendix C.2 establishes equilibrium existence and uniqueness and

that the equilibrium strategy is indeed strictly decreasing, confirming equation (6) as

the appropriate first-order condition.

5.2 Model predictions and their empirical counterparts

Impacts of mean damages on GPA. The first set of model implications regards

the impacts on GPA of increasing mean damages in the classroom while preserving

40Strict monotonicity and differentiability of equilibrium e(ci) are initially assumed, and subse-
quently proven (see the proof of Proposition A1 in Appendix C.2). GPA rank can be written as
1 − G(c(ei)) in equilibrium because the probability that a student i of type ci with effort choice
ei = e(ci) chooses a higher effort, obtaining a higher GPA, than another arbitrarily chosen student
j is FE(ei) = Pr

(
ei > e(cj)

)
= Pr

(
e−1(ei) < cj

)
= Pr

(
c(ei) < cj

)
= 1−G

(
c(ei)

)
where G(·) is the

c.d.f. of ci and c(·) = e−1(·). The function c maps ei into the type ci that chooses effort ei under
the equilibrium strategy, it exists by strict monotonicity and, therefore, invertibility of e(·).

41For related games of status models, see also Hoppe, Moldovanu, and Sela (2009) and Moldovanu,
Sela, and Shi (2007).

32



damage dispersion. I consider an identical increase in di for all classmates. Consider

two classrooms A and B with identical distributions of ai and xi (i.e., identical peer

compositions), but with different damage distributions D(·): DB(d) = DA(d− k) ∀d,
where k is a positive constant. That is, the damage distribution in classroom B is

shifted to the right by k.

Proposition 1. Let EA[·] and EB[·] denote classroom-specific expectations. At the

Nash Equilibrium in each classroom:

(i) If ∂2q
∂ei∂ci

= 0, then EB[yi] ≥ EA[yi], holding with equality only if da1
dµd

= 0 and
du1

dµd
= 0, i.e., only in the absence of compensatory action.

(ii) If ∂2q
∂ei∂ci

> 0 and da1
dµd

> 0, then ∃γ > 0 such that if ∂2q
∂ei∂ci

≤ γ, EB[ei] ≥ EA[ei],

so that EB[yi] > EA[yi]. If
∂2q

∂ei∂ci
> γ, then EB[ei] < EA[ei], and EB[yi] ≥ EA[yi]

or EB[yi] < EA[yi] depending on the magnitude of da1
dµd

and du1

dµd
, i.e. depending

on whether school action compensates for decreased effort.

(iii) If I ∂2q
∂ei∂ci

> 0 and da1
dµd

= 0, EB[ei] < EA[ei], and EB[yi] ≥ EA[yi] or EB[yi] <

EA[yi] depending on the magnitude of du1

dµd
, i.e. depending on whether school

action through u1 compensates for decreased effort.

Proof: see Appendix C.2.

Proposition 1 states that the impacts on GPA of increasing mean damages in the

classroom through a dispersion-preserving shift in the damage distribution is either

null or negative if schools do not respond with compensatory action ( da1
dµd

= 0, du1

dµd
= 0).

But if schools respond (through da1
dµd

> 0 or du1

dµd
> 0 or both), then the impact on

GPA will be positive, provided each student’s marginal effort cost increases with own

damage sufficiently slowly such that effort does not decrease (0 ≤ ∂2q
∂ei∂ci

< γ), or

provided the compensatory action over-compensates for any decrease in effort.

This result rationalizes the empirical findings that achievement and GPA increased

with mean damage, suggesting schools took compensatory actions (column 1 of Table

2 and column 5 of Table 5), and that mean damages had insignificant, potentially

negative impacts once the effects of schools’ compensatory actions are removed using

school-by-cohort fixed effects (column 2 of Table 2 and column 6 of Table 5).

Impacts of dispersion in damages on GPA. The second set of model implica-

tions regards the impacts on GPA of increasing damage dispersion in the classroom

while preserving mean damages. I consider an increase in dispersion in the unimodal

likelihood ratio (ULR) sense. Consider two classrooms A and B with identical dis-

tributions of ai and xi (i.e., identical peer compositions), but with different damage

distributions D(·): DA ≻ULR DB, that is, the ratio of the densities L(di) =
dA(di)
dB(di)

is

strictly increasing for di < d̃ and strictly decreasing for di > d̃ for some d̃ ∈ [d, d̄)
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and if µA
d = µB

d . In particular, if B has the same mean but higher variance than A,

then DA ≻ULR DB. As the distributions of ai and xi are identical in classrooms A

and B, and effort cost type is a weighted sum of ai, xi, and di (equation (4)), when

DA ≻ULR DB, the effort cost type distributions satisfy the ULR order GA ≻ GB, with

cutoff point c̃ ∈ [c, c̄). Figure 10 visualizes the effort cost type distributions of two

classrooms where the distributions of ai and xi are identical (blue density functions in

the two top panels), and the damage distribution in classroom B is a mean-preserving

spread of that in classroom A. The resulting effort cost type distribution in classroom

B is a mean-preserving spread of that in classroom A (bottom panel).

(a) Classroom A, low damage variance (b) Classroom B, high damage variance

(c) Classrooms A and B: Post-Earthquake ef-
fort cost type distributions

Figure 10: Effect of different damage shock distributions on the effort cost type distributions of two
initially identical classrooms. Notes: The pre-earthquake effort cost type distribution is represented
by a normal distribution X ∼ N(0, 0.15), drawn in blue. It captures the portion of effort cost
type influenced only by student ability and individual characteristics. After the earthquake, the
damage distribution in classroom A is described by DA ∼ N(1, 0.21) and in classroom B by DB ∼
N(1, 0.38). The post-earthquake effort cost type is the summation of component X (influenced by
student characteristics and ability) and the damage. Specifically, for classroom A it is given by
Xpost,A = X +DA and for classroom B by Xpost,B = X +DB , whose distributions are drawn in red
and green.

Proposition 2. (Adapted from Proposition 4 in Hopkins and Kornienko (2004)).

Let yA(ci) and yB(ci) denote the GPA each effort cost type ci obtains at the Nash

Equilibrium choices of effort in classrooms A and B, and let c− and c+ denote the

extremal points of the ratio (1 − GA(ci))/(1 − GB(ci)) over the interval [c, c̄], where

c < c− < c+ ≤ c̄. Then:
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(i) yA(ci) < yB(ci) for all ci ∈ [c+, c̄]; i.e., the damage dispersion increase raises

the GPA of high-cost-type students.

(ii) yA(ci) > yB(ci) for all ci ∈ [c̃, ccross), where ccross ∈ (c̃, c+) is the point where yA

and yB cross; i.e., the damage dispersion increase lowers the GPA of medium-

cost-type students.

(iii) yA(ci) > yB(ci) for all ci ∈ [c, c̃) or yA(ci) < yB(ci) for all ci ∈ [c, ccross2), where

ccross2 ∈ [c, c−) is the point where yA and yB cross, i.e., the damage dispersion

increase may lower or increase the GPA of low-cost-type students.

Proof: see Appendix C.2.

The intuition is that when students have rank concerns, the cost type density at

one’s own type determines how easy it is to improve one’s rank. If there are more

peers with a similar effort cost type to one’s own, more students can be surpassed

for a unitary increase in effort, causing a higher marginal utility of effort. We expect

heterogeneous effects because increasing the type dispersion affects the type density

differently at different points, increasing it at the tails and lowering it in the middle

of the distribution, as can be seen in Panel (c) of Figure 10.

High- and low-cost-type students face an incentive to increase effort, and medium-

cost-type students to decrease it, because of how the type density changes at their

type level when the type dispersion increases. The model predicts that high- and

middle-cost-type students behave according to these incentives. Low-cost-type stu-

dents, however, also face the opposite incentive to decrease effort due to the lower

competition from above (from the middle-cost types), which allows them to save on

effort cost while not sacrificing rank. The model is agnostic as to which incentive

prevails for low-cost-type students.

Lemma 1. Proposition 2 can be recast in terms lagged test score instead of effort cost

type. Given equation (4), if xi = xj and di = dj for i ̸= j, then ci > cj ⇐⇒ ai < aj.

Proposition 2 and Lemma 1 rationalize the empirical findings that, keeping a

student’s own characteristics and damage constant, achievement and GPA decreased

for high-ability students and increased for low-ability students as an effect of increased

damage dispersion (Tables 4 and A12, and Figures 8, A2, 9, and A3).

Impacts on GPA rank. Changing the classroom distribution of damages changes

that of effort cost types. What are the implications on GPA rank, when students draw

utility from rank? Consider two classrooms A and B with identical distributions of

ai and xi (i.e., identical peer compositions), but different distributions of damages di.

The resulting cumulative distribution functions of effort cost types, GA and GB, are

assumed to be twice continuously differentiable, so that Proposition A1 applies.
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Proposition 3. Let yA(ci) and yB(ci) denote the GPA each cost type ci obtains at

the Nash Equilibrium choices of effort in classrooms A and B. Let F J
Y (·) denote the

c.d.f. of GPA in classroom J ∈ {A,B}, and FT (·) the c.d.f. of baseline test score

ai in classrooms A and B. Then, F J
Y (yi)|x,d = FT (ai)|x,d ∀J, ai; i.e., at given values

of xi and di, rank in GPA conditional on the baseline test score is identical across

classrooms, for all baseline test scores.

Proof: see Appendix C.2.

Proposition 3 states that, keeping fixed characteristics xi and damage di, the

mapping between a student’s baseline test score and her classroom GPA rank stays

constant, regardless of the distribution of damages in the classroom. As we change

the damage distribution, students with higher baseline test scores — ceteris paribus

— remain those with higher GPA rank.

This result rationalizes the empirical finding that changing the mean or the stan-

dard deviation of damages in the classroom, controlling for students’ characteristics

and individual damages, does not affect GPA rank at any point of the baseline test

scores distribution (bottom panels of Figures 9 and A3), even when it affects GPA.

5.3 Summary of results

The model of rank concerns introduced in this section does not only intuitively ex-

plain the lack of shifts to GPA rank despite shifts to GPA, but it also rationalizes the

heterogeneous effects of damage dispersion among students with different initial per-

formance. These seemingly unrelated findings can be explained through one simple

modification to standard models of social interactions in schools: the introduction of

a desire to compete for grades.

Since competition for grades is likely common, the theory provides insights on

the nature of social interactions in schools that apply beyond the quasi-experimental

empirical context used to formulate it.

6 Conclusions

Across education contexts spanning several countries and education levels, peer ability

has been shown to influence academic achievement (Sacerdote (2011)). Understanding

the mechanisms behind peer influence could shed light on how school environments

shape early differences in achievement across students, which are known to persist

over time, with major lifelong consequences (Cunha, Heckman, Lochner, and Masterov

(2006); Heckman and Mosso (2014)). But empirical challenges have hindered progress

towards this goal (Blume, Brock, Durlauf, and Ioannides (2011)). This article exploits
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a new empirical context and rich data on how students respond to disruptions to their

environment to shed light on the mechanisms through which students’ ability to study

influences their peers’ learning.

Exploiting the context of one of the most violent earthquakes ever recorded, the

study finds evidence that disruptions to a student’s environment can lower their re-

ported ability to study and engage with course content, with negative consequences

for their achievement that persist for at least 22 months. Notably, such disruptions

can spill over to their classmates.42 Exploiting detailed data on the shock to each stu-

dent’s home environment, the article examines how student outcomes depend on the

distribution of shocks within the classroom. Following the approach in Blume, Brock,

Durlauf, and Jayaraman (2015), it micro-founds observed spillovers through a model

of student interactions, deriving comparative statics that rationalize the empirical

findings. I show that the empirical evidence is consistent with a mode of interaction

that has not received much attention in the peer effects literature before: competi-

tion for classroom rank. Unlike a desire to conform, the most common assumption

in models of peer interactions, a desire to compete implies that moments beyond the

mean of peer ability matters, which is an empirical fact across several settings.43

The results offer new insights for policy. Peer assignment policies, such as tracking

students by ability, are one of the most commonly studied policies in the schooling

context (e.g. Duflo, Dupas, and Kremer (2011); Garlick (2018)). My results suggest

that their impacts could interact with whether performance rank is intrinsically or

extrinsically rewarded. For example, ability tracking may improve the achievement of

all students, even those in the lower-tracks, in settings in which students intrinsically

care about their performance rank, by increasing the number of nearby competitors.

In other settings, they could yield across-the-board achievement gains if they are

combined with rewards such as grades or college admissions based on within-track

performance rank.

Much is still unknown about the interaction between rank-based rewards and class-

room allocation rules. Measuring intrinsic rank concerns in schools could become a

way to inform the design of grouping policies. Future research could also compare

the achievement gains from optimally designing rank rewards and group allocations

to the potential labor market losses from lower prosociality due to enhanced compe-

tition (Chen and Hu (2022); Kosse, Rajan, and Tincani (2023); Kosse and Tincani

42There is evidence that environmental risks can spill over to classmates also in the context of
lead exposure (Gazze, Persico, and Spirovska (2023)).

43The desire-to-conform assumption underlies empirical identification strategies that contrast
within- and across-group variances in outcomes to identify excess variance across groups that cannot
be explained by individual and group heterogeneity and/or selection (Graham (2008) and Glaeser,
Sacerdote, and Scheinkman (1996)). Whenever a desire to compete is the true interaction mode,
such methods may fail to detect peer effects when they are present, a false negative result.
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(2020)). Answering these open questions could significantly advance our understand-

ing of social interactions in school, and expand our toolkit of cost-effective policy

interventions.
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ciarini, Katia M Canenguez, Paul Bergmann, Alexa Riobueno-Naylor, Alyssa M

Farley, Ariela Simonsohn et al. 2022. “Earthquake exposure, adverse childhood ex-

periences, and psychosocial functioning in Chilean children: A longitudinal study.”

Journal of Traumatic Stress .

40



Elsner, Benjamin and Ingo E Isphording. 2017. “A big fish in a small pond: Ability

rank and human capital investment.” Journal of Labor Economics 35 (3):787–828.

Fruehwirth, Jane Cooley. 2013. “Identifying peer achievement spillovers: Implications

for desegregation and the achievement gap.” Quantitative Economics 4 (1):85–124.

———. 2014. “Can achievement peer effect estimates inform policy? a view from

inside the black box.” Review of Economics and Statistics 96 (3):514–523.

Garlick, Robert. 2018. “Academic peer effects with different group assignment policies:

Residential tracking versus random assignment.” American Economic Journal:

Applied Economics 10 (3):345–369.

Gazze, Ludovica, Claudia L Persico, and Sandra Spirovska. 2023. “The long-run

spillover effects of pollution: How exposure to lead affects everyone in the class-

room.” forthcoming, Journal of Labor Economics .

Giannopoulou, Ioanna, Marios Strouthos, Patrick Smith, Anastasia Dikaiakou, Vasi-

liki Galanopoulou, and William Yule. 2006. “Post-traumatic stress reactions of

children and adolescents exposed to the Athens 1999 earthquake.” European Psy-

chiatry 21 (3):160–166.

Glaeser, Edward L, Bruce Sacerdote, and José A Scheinkman. 1996. “Crime and
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Appendix

A Measurements

A.1 Predicting Seismic Vulnerability of a Household’s Home

This section describes the model used to predict seismic vulnerability as a function

of household characteristics.

For each household in the census data (restricted to households with at least one

school-aged child), I link the vulnerability class distribution obtained from the latent-

class analysis to the household characteristics that are available both in the census

and in the education data. These are: the age of the household head, the average

years of education of mothers and fathers, the region of residence. I then estimate

regularized linear regression models (lasso) using census data restricted to households

with at least one school-aged child. The outcome variables are pji , the probability that

household i lives in a home of seismic vulnerability j ∈ {LV,MV,HV }, obtained from

the latent-class analysis. The independent variables are parental education and age

with exponents one, two and three, and region of residence. All independent variables

appear uninteracted and interacted with each other (from pair-wise interactions to

the interaction of all variables).

I apply the estimated predictive regression model to the education dataset to

obtain a predicted likelihood of belonging to each vulnerability class for each student

in my sample: p̂ji = pj(xi), j = LV,MV,HV .44

A.2 Survey Measures of Perceived Cost of Study Effort and

Course Engagement

Students from both cohorts were asked to fill out a questionnaire when they were in

eighth grade, the grade in which outcomes were measured. The pre-earthquake cohort

filled it out in 2009 and the post-earthquake cohort in 2011. The questionnaire asked

about the ability to engage with the course and the perceived cost of study effort.

The structure of the questions was as follows: “Thinking of your experience in your

school, how much do you agree with the following statements?”, followed by a list of

statements. Between 2009 and 2011 the number of options in the Likert-scale options

changed. In 2009 the possible answers were “I agree very much”, “I agree”, “I do not

agree nor disagree”, “I disagree”, “I disagree very much”. In 2011 the middle option,

“I do not agree nor disagree”, was eliminated.

44Since the outcome variable is a probability, I assign a 0 to negative predictions and a 1 to those
above 1.
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From the raw data, I build measures of perceived effort cost and engagement with

course content that are comparable across cohorts. For each statement I build two

dummy variables: one equal to 1 if a student answers “I agree very much”, and 0 if

she gives a different answer, and another equal to 1 if a student answers “I disagree

very much”, and 0 if she gives a different answer. Perceived effort cost is a categorical

variable recording whether a student reported agreeing very much, disagreeing very

much, or neither agreeing very much or disagreeing very much with the statement “It

costs me to concentrate and pay attention in class”, standardized to have mean 0 and

unit variance. Engagement with course content is the score based on the first principal

component of a principal component analysis on the six dummy variables obtained

from the students’ level of agreement with the statements listed at the bottom of

Table A1. I standardize the score to have mean 0 and unit variance.

The statements with which students recorded their level of agreement are the

following:

Construct Survey Items

Perceived cost of effort It costs me to concentrate and pay attention in
class.

Course engagement I do the homework even when it is difficult.
My notebooks are generally incomplete.
During class I take notes of all that our teachers
teach us.

Table A1: Constructs and Corresponding Survey Items

Note: Source: English translation of SIMCE questionnaire administered to all 8th grade
students.
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B Additional Tables and Figures

Table A2: Correlates of damages and of seismic vulnerability of students’ homes,
without using school-by-cohort fixed effects.

(1) (2) (3) (4)

Damage Prob H Prob M Prob L

Baseline test score 0.022∗∗∗ -0.002∗∗∗ -0.000 0.002∗∗∗

(0.002) (0.000) (0.000) (0.000)

Female student 0.004 0.001∗∗∗ -0.003∗∗∗ 0.002∗∗∗

(0.004) (0.000) (0.000) (0.000)

Student resides in same town as school’s -0.006 -0.003∗∗∗ 0.014∗∗∗ -0.012∗∗∗

(0.005) (0.000) (0.001) (0.000)

Age of parent-respondent -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)

Parental education (years) -0.029∗∗∗ -0.037∗∗∗ 0.003∗∗∗ 0.033∗∗∗

(0.001) (0.000) (0.000) (0.000)

Public school 0.055∗∗∗ 0.005∗∗∗ -0.004∗∗∗ -0.001∗∗

(0.004) (0.000) (0.000) (0.000)

Rural school -0.029∗∗∗ 0.010∗∗∗ -0.030∗∗∗ 0.021∗∗∗

(0.006) (0.000) (0.001) (0.000)

POST -0.038∗∗∗ 0.000 0.000 -0.000

(0.004) (0.000) (0.000) (0.000)

Observations 156718 157107 157107 157107

R2 0.447 0.971 0.688 0.813

School-by-cohort fixed effects No No No No

Notes: Results from OLS regressions estimated on the sample of students in earthquake-affected regions

and residing more than 0.5 km from the coast. Damage is measured by the standardized damage ratio.

Seismic vulnerability is measured by the predicted probabilities that a student lives in a home of High

(column 2), Medium (column 3) or Low (column 4) seismic vulnerability class. The class probabilities

are predicted using the LASSO model in Appendix A.1. The baseline test score is the average between

the Mathematics and language SIMCE test scores in the fourth grade, standardized in the population of

test takers. All regressions include dummies for the region of residence. POST is a dummy equal to 1 if

the student belongs to the post-earthquake cohort, 0 otherwise. *** p<0.01, ** p<0.05, * p<0.10.
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Table A3: Correlates of damages and of seismic vulnerability of students’ homes,
using school-by-cohort fixed effects.

(1) (2) (3) (4)

Damage Prob H Prob M Prob L

Baseline test score -0.002∗∗ -0.002∗∗∗ 0.002∗∗∗ -0.001∗∗∗

(0.001) (0.000) (0.000) (0.000)

Female student 0.001 0.001∗∗∗ -0.002∗∗∗ 0.001∗∗∗

(0.001) (0.000) (0.000) (0.000)

Student resides in same town as school’s 0.011∗∗∗ -0.000 0.001 -0.001

(0.002) (0.000) (0.001) (0.000)

Age of parent-respondent -0.001∗∗∗ -0.002∗∗∗ -0.001∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)

Parental education (years) -0.029∗∗∗ -0.036∗∗∗ 0.004∗∗∗ 0.032∗∗∗

(0.000) (0.000) (0.000) (0.000)

Observations 156718 157107 157107 157107

R2 0.157 0.883 0.073 0.708

School-by-cohort fixed effects Yes Yes Yes Yes

Notes: Results from OLS regressions estimated on the sample of students in earthquake-affected regions

and residing more than 0.5 km from the coast. Damage is measured by the standardized damage ratio.

Seismic vulnerability is measured by the predicted probabilities that a student lives in a home of High

(column 2), Medium (column 3) or Low (column 4) seismic vulnerability class. The class probabilities

are predicted using the LASSO model in Appendix A.1. The baseline test score is the average between

the Mathematics and language SIMCE test scores in the fourth grade, standardized in the population

of test takers. All regressions include dummies for the region of residence. *** p<0.01, ** p<0.05, *

p<0.10.
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Freq. Percent

Walls

Reinforced concrete, stone 85,152 9.21

Brick 371,457 40.16

Structural panels, prefabricated 72,285 7.81

Wood, lined partition 312,517 33.79

Eternit 41,283 4.46

Adobe, soggy mud 40,291 4.36

Makeshift materials 2,032 0.22

Roof

Roof tiles (clay, metal, cement) 80,385 8.69

Shingle (wood, asphalt) 23,101 2.50

Concrete slab 10,056 1.09

Zinc 380,640 41.15

Slate 421,946 45.61

Fiberglass, femocolor 612 0.07

Clickstone 6,172 0.67

Mud straw 73 0.01

Makeshift materials 2,032 0.22

Floor

Hardwood floor 30,183 3.26

Ceramic tiles 189,075 20.44

Wooden decking 334,824 36.20

Wall to wall carpet 48,905 5.29

Cement tiles 42,202 4.56

Plastics (flexit, linoleum, etc.) 196,327 21.22

Radier 78,813 8.52

Earthen 4,688 0.51

Table A4: Distribution of building materials in the population of households with at least one school-
aged child, N=925,017. Chilean census, 2002.
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Table A5: Impacts of earthquake damages on standardized eighth-grade
test score, all treatment variables measured in standard deviations

(1) (2)

Effect of damage to own home -0.033∗∗ -0.036∗∗∗

(0.013) (0.014)

Effect of average damage among classmates 0.049∗∗∗ -0.000
(0.018) (0.122)

Effect of standard deviation of damage among classmates -0.014 -0.005
(0.012) (0.014)

Observations 154900 154900
R2 0.581 0.505
School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regressions (2) and
(2’). The outcome variable is the average between Mathematics and Language SIMCE scores,
standardized to have mean 0 and variance 1. The treatment variables are measured in standard
deviations. Regressions include student and classroom characteristics. Student characteristics:
fourth-grade test score, gender, whether the student lives in the school town, parental educa-
tion, age of household head, dummy for region of residence. Classroom characteristics: public
school dummy, rural school dummy, shaking intensity in school’s town interacted with public
and cohort dummies, cohort and public dummies interacted, class size, classroom fractions of
females and of local residents; classroom average and standard deviation of lagged test scores
and of parental education. The regression with school-by-cohort fixed effects omits school-level
controls and the cohort dummy. Damages’ mean and standard deviation are leave-one-out mo-
ments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.

Table A6: Impacts of earthquake damages on standardized eighth-grade test scores in Spanish and
Mathematics

(1) (2) (3) (4)

Language Language Mathematics Mathematics

Effect of damage to own home -0.042∗∗∗ -0.041∗∗∗ -0.018 -0.026∗

(0.014) (0.016) (0.014) (0.015)

Effect of average damage among classmates 0.060∗∗∗ 0.086 0.034 -0.069

(0.019) (0.119) (0.021) (0.156)

Effect of standard deviation of damage among classmates -0.061 -0.048 -0.033 -0.011

(0.041) (0.061) (0.048) (0.061)

Observations 155664 155664 156149 156149

R2 0.485 0.418 0.510 0.411

School-by-cohort fixed effects No Yes No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 0.5 km from the coast. Parameters δ

and δ̃ obtained from OLS estimation of regressions (2) and (2’). The outcome variables are Language (columns 1-2) and Mathematics

(columns 3-4) SIMCE scores, standardized to have mean 0 and variance 1. Regressions include student and classroom characteristics.

Student characteristics: fourth-grade test score, gender, whether the student lives in the school town, parental education, age of

household head, dummy for region of residence. Classroom characteristics: public school dummy, rural school dummy, shaking

intensity in school’s town interacted with public and cohort dummies, cohort and public dummies interacted, class size, classroom

fractions of females and of local residents; classroom average and standard deviation of lagged test scores and of parental education.

The regressions with school-by-cohort fixed effects omit school-level controls and the cohort dummy. Damages’ mean and standard

deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A7: Impacts of earthquake damages on standardized eighth-grade test score, alternative specifications

(1) (2) (3) (4) (5) (6)

Effect of damage to own home -0.095∗∗∗ -0.057∗∗∗ -0.046∗∗∗ -0.039∗∗∗ -0.043∗∗∗ -0.039∗∗∗

(0.024) (0.017) (0.015) (0.014) (0.015) (0.014)

Effect of average damage among classmates 0.102∗∗∗ -0.207 0.058∗∗∗ -0.035 0.074∗∗∗ -0.035
(0.032) (0.213) (0.020) (0.141) (0.021) (0.141)

Effect of standard deviation of damage among classmates 0.008 0.007 -0.036 -0.013 -0.034 -0.013
(0.072) (0.083) (0.046) (0.057) (0.046) (0.057)

Observations 176629 176629 154902 154902 154902 154902
R2 0.107 0.020 0.570 0.504 0.571 0.504
School-by-cohort fixed effects No Yes No Yes No Yes
Individual characteristics No No Yes Yes Yes Yes
School building damage No No No No Yes Yes
School and classroom characteristics No No No No No No

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 0.5 km from the coast. Parameters δ and δ̃ obtained
from OLS estimation of regressions (2) and (2’). The outcome variable is the average between Mathematics and Language SIMCE scores, standardized to
have mean 0 and variance 1. All regressions include controls for the student characteristics used to predict home quality (age of household head, parental
education, region of residence). The first two columns include no other control variables. Columns 3 and 4 add all other student characteristics (fourth-
grade test score, gender, whether the student lives in the school’s town). Columns 5 and 6 control for damage to the school building (obtained by adding
shaking intensity in the school’s town interacted with the public school and cohort dummies, and the cohort and public school dummies interacted). The
regressions with school-by-cohort fixed effects omits school-level controls and the cohort dummy. Damages’ mean and standard deviation are leave-one-out
moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Table A8: Impacts of earthquake damages on standardized eighth-grade
test score, accounting for spatial correlation in the residuals

(1) (2)

Effect of damage to own home -0.033∗∗∗ -0.036∗∗∗

(0.010) (0.010)

Effect of average damage among classmates 0.052∗∗∗ -0.000

(0.019) (0.121)

Effect of standard deviation of damage among classmates -0.049 -0.020

(0.046) (0.053)

Observations 154900 154900

R2 0.581 0.505

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more

than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regres-

sions (2) and (2’). The outcome variable is the average between Mathematics and Language

SIMCE scores. Regressions include student and classroom characteristics. Student character-

istics: fourth-grade test score, gender, whether the student lives in the school town, parental

education, age of household head, dummy for region of residence. Classroom characteristics:

public school dummy, rural school dummy, shaking intensity in school’s town interacted with

public and cohort dummies, cohort and public dummies interacted, class size, classroom frac-

tions of females and of local residents; classroom average and standard deviation of lagged

test scores and of parental education. The regression with school-by-cohort fixed effects omits

school-level controls and the cohort dummy. Damages’ mean and standard deviation are leave-

one-out moments. Standard errors clustered at the school-municipality-by-cohort level. ***

p<0.01, ** p<0.05, * p<0.10.
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Table A9: Impacts of earthquake damages on standardized eighth-grade test score, accounting for spatial
correlation in the residuals using the Conley method

(1) (2) (3) (4) (5) (6)

Effect of damage to own home -0.030∗∗ -0.030∗∗ -0.030∗ -0.030∗∗ -0.030∗∗ -0.030∗∗∗

(0.013) (0.015) (0.016) (0.013) (0.012) (0.009)

Effect of average damage among classmates 0.048∗∗ 0.048∗∗ 0.048∗∗ 0.048∗∗ 0.048∗∗ 0.048∗∗∗

(0.019) (0.018) (0.017) (0.018) (0.017) (0.008)

Effect of standard deviation of damage among classmates -0.051 -0.051 -0.051 -0.051 -0.051 -0.051

(0.047) (0.044) (0.049) (0.046) (0.039) (0.038)

School-by-cohort fixed effects No No No No No No

Threshold distance N/A 10 km 25 km 50 km 100 km 587 km

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 0.5 km from the coast. Parameters δ obtained from

OLS estimation of regression (2). The first column reports the original standard errors clustered at the school-by-cohort level and corresponding

significance levels. Columns (2) to (6) report standard errors and significance levels calculated according to the method in Conley (1999), under

different distance thresholds. 587 km represents the distance between the asperity and the farthest town with positive shaking intensity. Parameter

estimates slightly differ from those in Table 2 because regional fixed effects are omitted for computational reasons. *** p<0.01, ** p<0.05, *

p<0.10.

Table A10: Impacts of earthquake damages on standardized eighth-grade test score under different geographical
sample restrictions

(1) (2) (3) (4) (5) (6)

Effect of damage to own home -0.039∗∗∗ -0.038∗∗ -0.033∗∗ -0.036∗∗ -0.022∗∗ -0.025∗∗

(0.014) (0.016) (0.014) (0.015) (0.010) (0.012)

Effect of average damage among classmates 0.058∗∗ 0.059 0.051∗∗ 0.045 0.041∗∗∗ -0.001

(0.023) (0.139) (0.022) (0.138) (0.016) (0.116)

Effect of standard deviation of damage among classmates -0.044 -0.040 -0.046 -0.036 -0.037 -0.035

(0.048) (0.053) (0.047) (0.052) (0.038) (0.046)

Observations 150540 150540 153094 153094 190271 190271

R2 0.581 0.504 0.581 0.504 0.582 0.504

School-by-cohort fixed effects No Yes No Yes No Yes

Notes: Students enrolled in schools in regions affected by the earthquake. Columns 1-2 restrict the sample to towns more than 5km from the coast,

columns 3-4 to towns more than 1km from the coast, columns 5-6 are based on all towns, including coastal ones. Parameters δ and δ̃ obtained from

OLS estimation of regressions (2) and (2’). The outcome variable is the average between Mathematics and Language SIMCE scores. Regressions

include student and classroom characteristics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school

town, parental education, age of household head, dummy for region of residence. Classroom characteristics: public school dummy, rural school

dummy, shaking intensity in school’s town interacted with public and cohort dummies, cohort and public dummies interacted, class size, classroom

fractions of females and of local residents; classroom average and standard deviation of lagged test scores and of parental education. The regression

with school-by-cohort fixed effects omits school-level controls and the cohort dummy. Damages’ mean and standard deviation are leave-one-out

moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A11: Heterogeneous impacts of earthquake damages on standard-
ized eighth-grade test score, all treatment variables measured in standard
deviations

(1) (2)

Effect of damage to own home -0.033∗∗ -0.039∗∗∗

(0.013) (0.014)

Interacted with baseline test score -0.008 -0.009

(0.017) (0.016)

Effect of average damage among classmates 0.048∗∗∗ -0.013

(0.018) (0.122)

Interacted with baseline test score 0.026 0.019

(0.019) (0.018)

Effect of standard deviation of damage among classmates -0.011 -0.005

(0.012) (0.014)

Interacted with baseline test score -0.026∗∗∗ -0.023∗∗∗

(0.010) (0.008)

Observations 154900 154900

R2 0.581 0.505

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than

0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regressions (3)

and (3’). The outcome variable is the average between Mathematics and Language SIMCE

scores. The treatment variables are measured in standard deviations. Regressions include

student and classroom characteristics. Student characteristics: fourth-grade test score, gender,

whether the student lives in the school town, parental education, age of household head, dummy

for region of residence. Classroom characteristics: public school dummy, rural school dummy,

shaking intensity in school’s town interacted with public and cohort dummies, cohort and public

dummies interacted, class size, classroom fractions of females and of local residents; classroom

average and standard deviation of lagged test scores and of parental education. The regression

with school-by-cohort fixed effects omits school-level controls and the cohort dummy. Damages’

mean and standard deviation are leave-one-out moments. Standard errors clustered at the

school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Table A12: Heterogeneous impacts of earthquake damages on standardized eighth-grade test scores
by deciles of baseline test scores

(1) (2)

Score Score

Effect of damage to own home for decile 1 ability -0.025 -0.039

(0.040) (0.041)

Additional effect for decile 2 ability -0.002 0.012

(0.051) (0.053)

Additional effect for decile 3 ability -0.052 -0.059

(0.056) (0.054)

Additional effect for decile 4 ability -0.031 -0.007

(0.051) (0.050)

Additional effect for decile 5 ability 0.011 0.061

(0.058) (0.057)

Continued on next page
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Additional effect for decile 6 ability 0.021 0.034

(0.063) (0.058)

Additional effect for decile 7 ability 0.007 -0.006

(0.062) (0.058)

Additional effect for decile 8 ability -0.019 -0.023

(0.059) (0.057)

Additional effect for decile 9 ability -0.018 -0.023

(0.054) (0.054)

Additional effect for decile 10 ability -0.054 -0.022

(0.063) (0.059)

Effect of average damage among classmates for decile 1 ability 0.009 0.040

(0.046) (0.141)

Additional effect for decile 2 ability 0.029 0.003

(0.059) (0.061)

Additional effect for decile 3 ability 0.081 0.086

(0.060) (0.061)

Additional effect for decile 4 ability 0.079 0.043

(0.057) (0.056)

Additional effect for decile 5 ability 0.011 -0.027

(0.066) (0.064)

Additional effect for decile 6 ability 0.024 0.001

(0.073) (0.066)

Additional effect for decile 7 ability 0.020 0.030

(0.071) (0.068)

Additional effect for decile 8 ability 0.064 0.053

(0.067) (0.066)

Additional effect for decile 9 ability 0.056 0.042

(0.061) (0.062)

Additional effect for decile 10 ability 0.149∗∗ 0.062

(0.072) (0.069)

Effect of standard deviation of damages among classmates for decile 1 ability 0.158∗∗ 0.134∗

(0.066) (0.077)

Additional effect for decile 2 ability −0.206∗∗ -0.136

(0.095) (0.098)

Additional effect for decile 3 ability −0.151∗∗ −0.170∗∗

(0.077) (0.086)

Additional effect for decile 4 ability −0.276∗∗∗ −0.261∗∗∗

(0.085) (0.089)

Additional effect for decile 5 ability −0.172∗∗ −0.218∗∗

Continued on next page
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(0.087) (0.087)

Additional effect for decile 6 ability −0.208∗∗ −0.203∗∗

(0.094) (0.087)

Additional effect for decile 7 ability -0.140 −0.140∗

(0.093) (0.081)

Additional effect for decile 8 ability −0.209∗∗ −0.207∗∗

(0.088) (0.084)

Additional effect for decile 9 ability −0.243∗∗∗ −0.183∗∗

(0.094) (0.090)

Additional effect for decile 10 ability −0.438∗∗∗ −0.295∗∗∗

(0.095) (0.100)

Observations 150540 150540

R2 0.590 0.514

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 0.5 km from the coast. Parameters

δ and δ̃ obtained from OLS estimation of regressions (3) and (3’), where a is replaced by dummy variables identifying a student’s baseline

ability category. Students are categorized by deciles of their baseline test score (SIMCE in fourth grade). Regressions include student

and classroom characteristics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school town,

parental education, age of household head, dummy for region of residence. Classroom characteristics: class size, classroom fractions

of females and of local residents; classroom average and standard deviation of lagged test scores and of parental education. The

regressions with school-by-cohort fixed effects omit school-level controls and the cohort dummy. Damages’ mean and standard deviation

are leave-one-out moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A13: Heterogeneous impacts of earthquake damages on standard-
ized eighth-grade test score by student characteristics

(1) (2)

Effect of damage to own home 0.002 0.002

(0.028) (0.029)

Interacted with baseline test score -0.008 -0.011

(0.022) (0.022)

Interacted with parental education -0.016 -0.007

(0.016) (0.015)

Interacted with female dummy -0.025 -0.036

(0.030) (0.029)

Interacted with income -0.003 -0.005

(0.011) (0.011)

Effect of average damage among classmates 0.020 -0.037

(0.031) (0.142)

Interacted with baseline test score 0.017 0.016

(0.025) (0.024)

Interacted with parental education 0.043∗∗ 0.020

(0.018) (0.017)

Interacted with female dummy 0.030 0.029

(0.033) (0.033)

Interacted with income 0.003 0.008

(0.013) (0.012)

Effect of standard deviation of damage among classmates -0.020 0.007

(0.048) (0.060)

Interacted with baseline test score -0.081∗∗ -0.071∗∗

(0.038) (0.033)

Interacted with parental education -0.039 -0.020

(0.029) (0.028)

Interacted with female dummy -0.076 0.005

(0.060) (0.044)

Interacted with income 0.010 -0.016

(0.022) (0.026)

Observations 119909 119909

R2 0.582 0.506

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more

than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regres-

sions (3) and (3’). The outcome variable is the average between Mathematics and Language

SIMCE scores. The treatment variables are measured in standard deviations. Lagged test

score, parental education and lagged household income are standardized to have mean 0 and

unit variance. Regressions include student and classroom characteristics controls. Student

characteristics: fourth-grade test score, gender, whether the student lives in the school town,

parental education, age of household head, dummy for region of residence, household income

during fourth grade. Classroom characteristics: public school dummy, rural school dummy,

shaking intensity in school’s town interacted with public and cohort dummies, cohort and

public dummies interacted, class size, classroom fractions of females and of local residents;

classroom average and standard deviation of lagged test scores and of parental education.

The regression with school-by-cohort fixed effects omits school-level controls and the cohort

dummy. Damages’ mean and standard deviation are leave-one-out moments. Standard errors

clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A14: Heterogeneous impacts of earthquake damages on standardized eighth-grade test score, alternative
specifications

(1) (2) (3) (4) (5) (6)

Effect of damage to own home -0.048∗∗∗ -0.041∗∗∗ -0.046∗∗∗ -0.041∗∗∗ -0.044∗∗∗ -0.041∗∗∗

(0.016) (0.014) (0.016) (0.014) (0.015) (0.014)

Interacted with baseline test score -0.008 -0.008 -0.008 -0.008 -0.008 -0.008
(0.018) (0.016) (0.018) (0.016) (0.018) (0.016)

Effect of average damage among classmates 0.059∗∗∗ -0.046 0.057∗∗∗ -0.047 0.073∗∗∗ -0.047
(0.020) (0.140) (0.020) (0.140) (0.021) (0.140)

Interacted with baseline test score 0.028 0.019 0.027 0.019 0.028 0.019
(0.020) (0.018) (0.020) (0.018) (0.020) (0.018)

Effect of standard deviation of damage among classmates -0.026 -0.011 -0.027 -0.011 -0.024 -0.011
(0.046) (0.056) (0.045) (0.056) (0.045) (0.056)

Interacted with baseline test score -0.096∗∗∗ -0.079∗∗∗ -0.095∗∗∗ -0.078∗∗∗ -0.098∗∗∗ -0.078∗∗∗

(0.034) (0.029) (0.034) (0.029) (0.034) (0.029)

Observations 154902 154902 154902 154902 154902 154902
R2 0.570 0.504 0.570 0.504 0.571 0.504
School-by-cohort fixed effects No Yes No Yes No Yes
Individual characteristics No No Yes Yes Yes Yes
School building damage No No No No Yes Yes
School and classroom characteristics No No No No No No

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 0.5 km from the coast. Parameters δ and δ̃ obtained
from OLS estimation of regressions (3) and (3’). The outcome variable is the average between Mathematics and Language SIMCE scores, standardized
to have mean 0 and variance 1. All regressions include controls for the student characteristics used to predict home quality (age of household head,
parental education, region of residence). The first two columns include no other control variables. Columns 3 and 4 add all other student characteristics
(fourth-grade test score, gender, whether the student lives in the school’s town). Columns 5 and 6 control for damage to the school building (obtained
by adding shaking intensity in the school’s town, uninteracted and interacted with the public school and cohort dummies, and the cohort and public
school dummies interacted). The regressions with school-by-cohort fixed effects omits school-level controls and the cohort dummy. Damages’ mean and
standard deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Figure A1: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on February 2,
2012, nearly two years after the earthquake. Translation: “Reconstruction is like God. Everyone
knows it exists. But nobody sees it.”
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Figure A2: Marginal effects on standardized eighth-grade test scores by baseline test score. Notes:
Marginal effects of own damage, leave-one-out average damage among classmates, and leave-one-out
standard deviation of damage among classmates. Effects obtained from estimating the regression
model in equation (3’) (with school-by-cohort fixed effects). 90% confidence intervals reported.

Figure A3: Marginal effects on GPA and within-classroom GPA rank by baseline test score. Notes:
GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA). Marginal effects
of the leave-one-out average and standard deviation of damage among classmates. Effects obtained
from estimating the regression model in equation (3’) (with school-by-cohort fixed effects). 90%
confidence intervals reported.

14



Figure A4: Relationship between reported effort cost and baseline test score. Notes: Local polyno-
mial regression estimated on the sample of students in earthquake regions and in the cohort affected
by the earthquake. 95% confidence intervals reported.
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C Theoretical Appendix

C.1 Earthquake Shocks and Peers’ Cost of Effort

Suppose that students’ costs of study effort (or, conversely, abilities to study) are

determined by their baseline test scores, ai, demographic characteristics and family

backgrounds, xi, and how badly their homes were damaged by the earthquake, di.

For ease of notation, let us group ai and xi into vector wi:

ci = θ0 + θ1wi + θ2di ∀i.

The average effort cost among classmates is given by:

E[c] = θ0 + θ1E[w] + θ2E[d],

where the averages are taken with respect to classroom distributions. When θ2 >

0, increasing the average damages E[d] while keeping classroom composition E[w]

constant increases the average effort cost.

Letting w[j] indicate element j of vector w, and θ1j its coefficient, the variance of

the cost of effort among classmates is given by:

V ar[c] =
m∑
j=1

θ21jV ar[w[j]]+θ
2
2V ar[d]+

m∑
j=1

m∑
j′ :j′>j

θ1jθ1j′Cov(w[j], w[j′ ])+
m∑
j=1

θ1jθ2Cov(w[j], d),

where the variances and covariances are taken with respect to classroom distributions.

When θ2 > 0, increasing the variance in damages V ar[d], while keeping the other

variances and the covariances constant, increases the effort cost variance. As can

be seen in Tables A15 and A16, the findings stand when adding the variances and

covariances as controls, suggesting that effort cost dispersion could be a mediator.
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Table A15: Impacts of earthquake damages on standardized eighth-grade
test score, controlling for variance and covariance terms

(1) (2)

Effect of damage to own home -0.031∗∗ -0.037∗∗∗

(0.013) (0.014)

Effect of average damage among classmates 0.052∗∗∗ -0.011

(0.019) (0.124)

Effect of standard deviation of damage among classmates -0.048 -0.027

(0.042) (0.053)

Observations 154889 154889

R2 0.582 0.505

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more

than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regressions

(2) and (2’). The outcome variable is the average between Mathematics and Language SIMCE

scores, standardized to have mean 0 and variance 1. Regressions include student and classroom

characteristics. Student characteristics: fourth-grade test score, gender, whether the student

lives in the school town, parental education, age of household head, dummy for region of resi-

dence. Classroom characteristics: public school dummy, rural school dummy, shaking intensity

in school’s town interacted with public and cohort dummies, cohort and public dummies inter-

acted, class size, classroom fractions of females and of local residents; classroom average and

standard deviation of lagged test scores and of parental education, classroom variance of gender

and local residency, all pairwise covariances between the following variables: damage, gender,

parental education, local residency, lagged test score. The regression with school-by-cohort

fixed effects omits school-level controls and the cohort dummy. Damages’ mean and standard

deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort

level. *** p<0.01, ** p<0.05, * p<0.10.

17



Table A16: Heterogeneous impacts of earthquake damages on standard-
ized eighth-grade test score, controlling for variance and covariance terms

(1) (2)

Effect of damage to own home -0.031∗∗ -0.039∗∗∗

(0.013) (0.014)

Interacted with baseline test score -0.011 -0.009

(0.017) (0.016)

Effect of average damage among classmates 0.050∗∗∗ -0.025

(0.019) (0.124)

Interacted with baseline test score 0.029 0.020

(0.019) (0.019)

Effect of standard deviation of damage among classmates -0.041 -0.026

(0.042) (0.053)

Interacted with baseline test score -0.094∗∗∗ -0.081∗∗∗

(0.035) (0.029)

Observations 154889 154889

R2 0.583 0.505

School-by-cohort fixed effects No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more

than 0.5 km from the coast. Parameters δ and δ̃ obtained from OLS estimation of regres-

sions (3) and (3’). The outcome variable is the average between Mathematics and Language

SIMCE scores. Regressions include student and classroom characteristics. Student character-

istics: fourth-grade test score, gender, whether the student lives in the school town, parental

education, age of household head, dummy for region of residence. Classroom characteristics:

public school dummy, rural school dummy, shaking intensity in school’s town interacted with

public and cohort dummies, cohort and public dummies interacted, class size, classroom frac-

tions of females and of local residents; classroom average and standard deviation of lagged test

scores and of parental education, classroom variance of gender and local residency, all pair-

wise covariances between the following variables: damage, gender, parental education, local

residency, lagged test score. The regression with school-by-cohort fixed effects omits school-

level controls and the cohort dummy. Damages’ mean and standard deviation are leave-one-out

moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *

p<0.10.

C.2 Proofs

Rearranging equation (6) and substituting c′(ei) = 1
e′(ci)

, the following first-order

differential equation characterizes the equilibrium strategies:

e′(ci) =

(
g(ci)

1−G(ci) + ϕ

)(
V (y(e(ci)), q(e(ci), ci))

(a0 + a1(µd))V1 + V2
∂q
∂ei

)
(7)

=
g(ci)

1−G(ci) + ϕ
ψ(e(ci), ci),

where ψ(e(ci), ci) =
V (y(e(ci)),q(e(ci),ci))

(a0+a1(µd))V1+V2
∂q
∂ei

.

Proposition A1. (Adapted from Proposition 1 in Hopkins and Kornienko (2004)).

The unique solution to the differential equation (7) with the boundary condition e(c̄) =

18



enr(c̄), where enr solves the first-order condition absent rank concerns

V1(a0 + a1(µd))|ei=enr = −V2
∂q

∂ei
|ei=enr ,

is a unique symmetric Nash Equilibrium of the game of status. Equilibrium effort e(ci)

and equilibrium GPA y(ci) are both continuous and strictly decreasing in student’s type

ci.

Proof of Proposition A1. First, as in the proof of Proposition 1 in Hopkins and Ko-

rnienko (2004), it is easy to show that the boundary condition is optimal for the

student with the highest cost, c̄. Such student chooses the effort that maximizes util-

ity V in the absence of rank concerns. In equilibrium, her utility from rank is zero,

therefore, she maximizes V , because V × F + ϕ× V = V × 0 + ϕ× V = ϕV .

Next, I adapt the proof in Hopkins and Kornienko (2004) to show that if the

strategy e∗(ci) is a best response to other students’ effort choices, then it is de-

creasing (while Hopkins and Kornienko (2004) deal with increasing functions). If

a student i of type ci exerts effort ei = e∗(ci) and this is a best response to the

efforts of the other students as summarized by the effort distribution FE(·), then it

must be that ei ≥ enr(ci), where enr(ci) solves the first-order condition in the ab-

sence of rank concerns, i.e., V1(a0 + a1(µd))|ei=enr = −V2 ∂q
∂ei

|ei=enr . This is because if

ei < enr(ci), then FE(ei) + ϕ < FE(enr) + ϕ, because FE is strictly increasing, and

V (y(ei), q(ei; ci)) < V (y(enr(ci)), q(enr(ci); ci)), because V1 > 0, V2 < 0, and q1 > 0.

Therefore, V (y(ei), q(ei; ci)) (FE(ei) + ϕ) < V (y(enr), q(enr; ci)) (FE(enr) + ϕ), i.e.,

any level of effort below the no-rank-concerns level is strictly dominated by the no-

rank-concerns level. Suppose that equality holds, so ei = enr(ci). Then e∗(ci) is de-

creasing because enr(ci) is decreasing. This follows from the assumptions that V 11 =

0, V 22 = 0, V12 ≤ 0, and from the assumptions that q1 > 0, q2 > 0, q11 > 0, and

q12 ≥ 0. To see why, let FOC(ei, ci) = V1(a0 + a1(µd)) + V2q1 and notice that by the

Implicit Function Theorem:

denr
dci

= −∂FOC/∂ci
∂FOC/∂ei

.

The numerator is:

∂FOC

∂ci
= (a0 + a1(µd))V12

∂q

∂ci
+ V22

∂q

∂ei

∂q

∂ci
+ V2

∂2q

∂ei∂ci
≤ 0.

The denominator is:

∂FOC

∂e
= (a0+a1(µd))

2V11+(a0+a1(µd))V12
∂q

∂ei
+

(
(a0 + a1(µd))V21 + V22

∂q

∂ei

)
∂q

∂ei
+V2

∂2q

∂2ei
≤ 0.
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As a result, e∗(·) is decreasing in ci when it is equal to optimally chosen effort in the

absence of rank concerns, because denr

dci
≤ 0.

If equality does not hold, we want to show that if ei is a best-response and ei >

enr(ci), then it is still the case that ei is decreasing in ci. First, I show that for any

other choice ẽ ∈ (enr(ci), ei),

∂V

∂ci
(y(ei), q(ei, ci))(FE(ei) + ϕ) <

∂V

∂ci
(y(ẽ), q(ẽ, ci))(FE(ẽ) + ϕ). (8)

Rewrite the left-hand side as:

∂V

∂ci
(y(ei), q(ei, ci))(FE(ẽ+ ϕ) +

∂V

∂ci
(y(ei), q(ei, ci))(FE(ei)− FE(ẽ)).

The first term is smaller or equal to the right-hand side of equation (8), because ∂V
∂ci

is decreasing in ei, as V21 ≤ 0, V22 = 0, ∂q
∂ci

> 0, V2 < 0, and ∂2q
∂ci∂ei

≥ 0. To see why,

notice that ∂2V
∂ci∂ei

=
(
V21(a0 + a(µd) + V22

∂q
∂ei

)
∂q
∂ci

+ V2
∂q

∂ci∂ei
≤ 0. The second term is

strictly negative, because first, ∂V
∂ci

is strictly negative because V2 < 0 and ∂q
∂ci

> 0, and

second, FE(ei) − FE(ẽ) > 0. To see why the latter is true, notice that for ei > enr,

V (y(ei), q(ei, ci)) is decreasing in ei. Therefore, if ei is a best-response, it must be

the case that FE(ei) > FE(ẽ), otherwise a student could lower effort and obtain a

higher utility, while not lowering her status. This establishes the inequality in (8), so

that at ei, the overall marginal utility with respect to ci, (
∂
∂ci

(V (yi, qi)(FE(ei) + ϕ))),

is strictly decreasing in ei. This implies that an increase in cost type ci leads to a

decrease in the marginal return to ei, therefore, the optimal choice of effort ei must

decrease.

To show that if an effort function is an equilibrium strategy, then it must be

continuous, we can follow the proof in Hopkins and Kornienko (2004) with a minor

adaptation to account for the fact that the equilibrium strategy in this paper is

a decreasing rather than increasing function. Specifically, suppose the equilibrium

strategy was not continuous. That is, suppose that that there was a jump downwards

in the equilibrium effort function e∗(ci) at ẽ, so that limci→c̃ e
∗(ci) = ẽ < e∗(c̃). Then,

there would exist an ϵ > 0 small enough, such that the student of type c̃ − ϵ can

reduce her effort to c̃, which is below e∗(c̃−ϵ), and obtain a discrete increase in utility

because of the lower effort, while her rank would decrease by less, by continuity of

the rank function S (·) at c̃. Therefore, there exists a student with an incentive to

deviate, and such discontinuous e∗(ci) function cannot be an equilibrium strategy.45

45That the equilibrium strategy is strictly decreasing and differentiable follows from Hopkins and
Kornienko (2004) after replacing zi with ci, xi with ei, and x(zi) with e(ci) (with the only difference
that e(·) is decreasing and x(·) is increasing), and setting α > 0.
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Finally, if e∗(ci) is continuous and decreasing then it must be that y∗(ci) = y(e∗(ci))

is continuous and decreasing, because y(·) is a continuous function of ei and
dy
dei

> 0

∀ei as per equation (5).

Uniqueness of the solution to the differential equation in (7), and therefore unique-

ness of the equilibrium, follows from the fundamental theorem of differential equations.

The boundary condition pins down the unique solution.

Proof of Proposition 1. Let eA(ci) and eB(ci) denote the equilibrium effort choices in

classrooms A and B. Proposition A1 established that eA(ci) and eB(ci) are strictly

decreasing functions of ci. Moreover, for the highest value of ci in each classroom, de-

noted by c̄J for J = A,B, these effort choices satisfy the following first-order condition

for maximization in the absence of rank concerns:

V1(a0 + a1(µ
J
d )) = −V2

∂q

∂ei
for J = A,B. (9)

Given this, we can focus on the optimal effort choice for the student with the highest

ci in each classroom. This is because if eB(c̄B) > eA(c̄A), then EB[ei] > EA[ei].

Similarly, if eB(c̄B) = eA(c̄A), then EB[ei] = EA[ei], and if eB(c̄B) < eA(c̄A), then

EB[ei] < EA[ei]. Recall that y(ei) = (a0 + a1(µd))ei + u0 + u1(µd), with
da1
dµd

≥ 0 and
du1

dµd
≥ 0 representing the multiplicative and additive compensatory actions by schools.

The damage distribution shift implies that µB
d > µA

d . Then:

• If ∂2q
∂ei∂ci

= 0 and da1
dµd

= 0, then the right-hand side (RHS) and left-hand side

(LHS) of equation (9) are identical in classrooms A and B, resulting in eB(c̄B) =

eA(c̄A). If
du1

dµd
= 0, this results in EB[yi] = EA[yi], while if du1

dµd
> 0, this results

in EB[yi] > EA[yi].

When there is no change to the marginal cost or marginal benefit of effort,

optimal effort does not change. In the absence of any compensatory action,

this results in no change in GPA. If instead schools introduce an additive com-

pensatory action (through u1), this results in an increase in GPA even without

increased effort.

• If ∂2q
∂ei∂ci

= 0 and da1
dµd

> 0, then the LHS of equation (9) is larger in classroom

B than in classroom A. As q is an increasing convex function of ei, it must be

that eB(c̄B) > eA(c̄A), resulting in EB[yi] > EA[yi].

When compensatory action increases the marginal return to effort and there is

no change to its marginal cost, students exert more effort, resulting in higher

GPA both because of increased effort and of a larger coefficient on effort in the

achievement production function.

21



• If ∂2q
∂ei∂ci

> 0 and da1
dµd

> 0, then the LHS of equation (9) is larger in classroom B

than in classroom A. As c̄B > c̄A because damages are larger for all students in

classroom B, the RHS is larger in classroom B than in classroom A.

For small enough ∂2q
∂ei∂ci

, i.e. ∂2q
∂ei∂ci

≤ γ with γ a positive constant, we have

eB(c̄B) ≥ eA(c̄A), resulting in EB[yi] > EA[yi] (holding with strict inequality

because the increased coefficient on effort in the GPA production function in

classroom B causes larger GPA even in the case in which effort is equal across

classrooms).

For large enough ∂2q
∂ei∂ci

, i.e. ∂2q
∂ei∂ci

> γ, eB(c̄B) < eA(c̄A). This can results in

EB[yi] ≥ EA[yi] if the compensatory action (through a1, u1 or both) (over)compensates

the reduction in effort, or in EB[yi] < EA[yi] if it does not.

When both the marginal cost and benefit of effort increase, the sign of the

impact on effort depends on the relative magnitudes of such increases. When

the increase in the marginal benefit due to the compensatory action is larger

in magnitude than the increase in the marginal cost due to the larger damages,

GPA increases in classrooms more affected by the earthquake, because of the

increased effort and of the compensatory action. When the increase in the

marginal benefit is lower than that in the marginal cost, GPA may increase or

decrease depending on whether the compensatory action (over)compensates for

the decreased effort.

• If ∂2q
∂ei∂ci

> 0 and da1
dµd

= 0, the LHS of equation (9) is identical across class-

rooms, while the RHS is larger in classroom B, resulting in eB(c̄B) < eA(c̄A).

This results in either EB[yi] ≥ EA[yi] if the compensatory action through u1

(over)compensates the reduction in effort, or in EB[yi] < EA[yi] if it does not.

When the marginal cost of effort increases (due to the larger damages) and its

marginal benefit stays constant (due to lack of compensatory action through

a1), effort decreases. GPA may increase or decreased depending on whether the

additive compensatory action (u1) overcompensate for decreased effort.

Proof of Proposition 2. The results follow from Proposition A1 and Proposition 4 in

Hopkins and Kornienko (2004) for the case α > 0 (where α there is the equivalent of ϕ

in this paper), noting that ei in this paper corresponds to xi in theirs, ci corresponds

to zi, e
∗(ci) corresponds to x

∗(zi). As per Proposition A1, e∗(ci) is strictly decreasing,

while x∗(zi) in Hopkins and Kornienko (2004) is strictly increasing, which implies

that rank G(x−1(xi)) in their paper’s proof must be replaced by rank 1 − G(c(ei) =

1−G(e−1(ei)) here, and the results follow.
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Proof of Proposition 3. At the Nash Equilibrium in classroom J ∈ {A,B}, keeping
di and xi fixed, GPA y(·) is strictly increasing in ai, and therefore invertible. This

follows from the fact that yi is strictly decreasing in ci, and ci is strictly decreasing in

ai. Therefore, the probability that a student i with baseline test score ai and GPA yi

obtains a higher GPA than another student j, chosen at random among those with

xj = xi = x and dj = di = d, is F J
Y (yi)|x,d = Pr

(
yi > y(aj)

)
|x,d = Pr

(
y−1(yi) >

aj
)
|x,d = Pr

(
a(yi) > aj

)
|x,d = FT (ai)|x,d where FT (·)|x,d is the c.d.f. of ai conditional

on x, d and a(·) = y−1(·).
Therefore, conditional on xi, di, the GPA rank of a student with baseline test score

ai is constant across classrooms ∀ai.
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