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Abstract

I examine how disruptions to students’ environments propagate to their
classmates to understand the mechanisms behind peer interactions in the class-
room. I combine administrative and survey data from Chile with detailed mea-
sures of housing damages from the 2010 earthquake, one of the most violent
ever recorded. Damages to a student’s own home reduced achievement and
raised self-reported cost of study effort. Average damages among classmates
induced schools to reallocate resources towards student support and increased
achievement. In contrast, dispersion in classmates’ damages had heterogeneous
achievement effects across the prior performance distribution, which schools
did not appear to mitigate, pointing to peer interactions. Motivated by evi-
dence suggesting students value classroom rank, I show that a game-of-status
model of competition for grades rationalizes the findings. The results suggest
that, beyond production complementarities and a desire to conform, a desire to
compete could shape peer effects on learning.

1 Introduction

Childhood and early adulthood are fundamental years for cognitive development
(Cunha, Heckman, Lochner, and Masterov (2006)). School peers can affect cognitive
achievement during these crucial years!, but the mechanisms are not fully understood,

limiting our ability to design policies that can be effective across contexts.
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This paper studies why classroom peers can shape the academic achievement of
students. It introduces a new dataset that links students’ academic outcomes, self-
reported cost of study effort, teacher curriculum coverage, and schools’ resource alloca-
tion to newly constructed measures of disruptions to students’ environment stemming
from one of the most violent earthquakes ever recorded. The dataset allows me to
study how study disruptions spill over to classmates. Identification relies on variation
in peer disruptions rather than in peer characteristics, avoiding confounding effects
associated with the latter.? I draw on the empirical evidence to propose a new theory
of peer influence in cognitive development. While formulated within the context of an
environmental shock, the theory offers a framework to understand why peers matters
for learning in many contexts.

The empirical context is the 2010 Maule mega-earthquake, the seventh strongest
ever instrumentally recorded (USGS, 2025). I combine administrative and survey
data with information on damage propagation among over 150,000 students. I start
by building a measure of each student’s home’s vulnerability to the earthquake using
information on housing quality. From the last pre-earthquake census I obtain infor-
mation on the construction materials of the homes of the nearly one million Chilean
households with at least one school-aged child. I employ an unsupervised learning
algorithm to stochastically assign their homes to seismic resistance classes. Armed
with this housing quality measure, I develop a model that can accurately predict hous-
ing quality from a household’s characteristics, and apply it to administrative data on
Chilean students to predict the quality of their homes. Drawing upon the structural
engineering literature, I then combine this newly developed measure of housing quality
with geocoded information on ground-shaking intensity in each student’s hometown
to construct a measure of home damages for each student.® This variable measures
the shock to each student’s environment.

I link the damage measure to administrative and survey data from the Chilean
Ministry of Education. Data on students include standardized test scores and GPA
at two points in time (in fourth and eighth grade), family background, type of school
attended, and survey information on self-reported cost of study effort and ability to

engage with course content. Data on teachers include the fraction of the curriculum

2Examples of studies using naturally occurring exogenous variation in peer characteristics to
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they were able to cover. For the 42% of schools participating in the preferential
school subsidy program (SEP, Subvencion Escolar Preferencial), data include detailed
reports on SEP resource spending. All observations can be assigned to classrooms and
schools through unique identifiers.

Using this newly constructed dataset, I first document new facts about socioeco-
nomic segregation among Chilean children. Poorer students were more likely to live
in the rural localities experiencing more ground shaking, and conditional on local-
ity, their homes were built according to worse construction standards. As a result,
compared with students whose parents have more than 14 years of education (who
likely attended some college), those whose parents have at most 14 incurred twice
the amount of home damages (USD 1,552 vs. USD 759, or 47% vs. 23% of annual
household income).

I then estimate the causal impacts on students’ outcomes of damages to their
own homes and to the homes of their classmates, focusing on the mean and stan-
dard deviation of damages among classmates. The identification strategy relies on a
difference-in-differences framework leveraging the different correlation between seis-
mic vulnerability and outcomes across two cohorts of students, one whose outcomes
were measured in 2009, before the earthquake struck, and one whose outcomes were
measured in 2011, after the earthquake struck. This strategy eliminates confound-
ing effects that could arise if the measures of earthquake vulnerability correlated
with unobserved outcome determinants. The identifying assumption is that the re-
lationship between outcomes and earthquake vulnerability would be the same across
cohorts absent the earthquake. I provide several pieces of evidence supporting this
assumption, showing no evidence that students reallocated to classrooms and schools
in response to the earthquake in the estimation sample (which excludes by design
forced re-locations), showing no impacts on placebo outcomes pre-determined at the
time of the earthquake, and showing that the seismic vulnerability of peers’ homes
does not correlate differently with outcomes across cohorts in regions that were never
affected by the earthquake.

Using this strategy, I find that the damage incurred by a student’s own home had
a negative and non-negligible effect on achievement 22 months post-earthquake. A 1
standard deviation increase in damages lowered test scores by 0.03 standard devia-
tions, and GPA by 0.02 standard deviations, albeit the GPA impacts are statistically
insignificant. Using survey data, I provide evidence that damages at the students’
own homes increased students’ reported cost of study effort, suggesting it could have
mediated the detrimental impacts on achievement.

Regarding the spillover effect of damages to peers’ homes keeping fixed a student’s

own exposure to the earthquake, I find that increasing the average damages suffered by



classroom peers increases own test scores, and the effects are not significantly different
across students with different initial performance. This appears to be the result of
schools overcompensating any potential negative impacts. Data on school spending
show that schools responded to the average level of damages suffered by their students
by reallocating resources from recruitment costs toward activities directly linked to
student support and learning recovery, such as educational and psychological support.

In contrast, increases in the within-classroom standard deviation of damages low-
ered the achievement of students with high initial performance and increased the
achievement of those with low initial performance. Neither the data on curriculum
coverage nor the data on school spending provide statistically significant evidence
of schools reacting to how dispersed the damages were, such as by focusing existing
resources towards activities targeted at students with lower initial performance. Ad-
ditionally, emergency funds were granted to schools depending on the overall damage
severity, not its dispersion (Gobierno de Chile (2010), Appendix D).

The results so far suggest that study disruptions had spillover effects on classroom
peers, and that schools mediated the effects of average damages but possibly not
of damage dispersion, suggesting a potential role for peer-to-peer interactions. To
better understand the damage-dispersion spillovers, I analyze impacts on GPA rank,
to examine if the heterogeneous effects on GPA triggered changes to students’” GPA
rankings in the classroom. Surprisingly, I find this did not occur. Students with higher
initial performance experienced drops in GPA in classrooms with more dispersed
damages, without an accompanying drop in their GPA rank. A possible reason for
this is that students care about their GPA rank. Faced with a changed cost of study
effort among their peers, students adjusted their effort and learning (a peer effect),
but not at the expense of their classroom standing in terms of an achievement measure
observable to classmates. Rank concerns, therefore, could be a mode of peer-to-peer
interactions.

Drawing on this insight and on the empirical findings, I formulate a new theory
of interactions in the classroom. I formalize the simple intuition that students care
about their classroom standing through a game-of-status model of simultaneous effort
choices in the classroom. In the model, students are characterized by an effort-cost
type, which is affected by prior test scores, socioeconomic characteristics, and by the
damages to their home. They produce GPA by exerting costly effort, and derive
utility from GPA and GPA rank. To account for the evidence on schools’ reactions,
mitigating actions by schools in response to average damages are allowed to enter the
achievement production technology. I show that the model, which admits a unique
symmetric Bayesian Nash equilibrium, can rationalize the empirical findings. Specif-

ically, a school’s mitigating efforts lead to positive effects of average damages. The



competition motive behind students’ effort choices causes the damage dispersion to
have heterogeneous impacts on GPA, and null effects on GPA rank, along the prior
test score distribution, conditional on a student’s own damage and socioeconomic
characteristics. By changing the density of types differently across the effort—cost
type distribution, damage dispersion affects incentives differently for different stu-
dents, both by changing how many nearby types can be overtaken with a marginal
increase in effort, and by shifting equilibrium effort responses throughout the distri-
bution. These forces generate heterogeneous effects on the returns to effort and, in
turn, on GPA, that are consistent with the patterns found in the data.*

The central theoretical insight can be applied more broadly outside the realm
of environmental shocks: when competitive motives drive study effort, changing the
dispersion of peers’ cost-of-effort types, be it through shocks to the cost of effort or
through compositional changes from classroom assignment policies, affects learning,
and does so differently for different students depending on how the change affects the
number of nearby competitors and the effort of all competitors. This has important
and so far mostly unexplored implications for policy, as I discuss in this article’s
concluding section.

Methodologically, this study relates to the small literature that examines peer in-
teractions relying on random shocks to students that keep group composition constant
(see the survey in Bramoullé, Djebbari, and Fortin (2020)). One of the closest studies
is Fruehwirth (2013), who exploits the introduction of a student accountability policy
in North Carolina targeted at low-achievers. The policy serves as a shock to the effort
of some but not all students in the classroom; the fraction of affected peers is used
to estimate the impact of peers’ achievement on own achievement within a linear-in-
means framework.? The estimates are interpreted as best-response functions through
the lens of a model of effort choices in a strategic environment where students desire to
conform to each other. In contrast, this paper considers a continuous shock, the extent
of damages that each student’s home incurred. Rather than identifying best-response

functions, an ‘endogenous peer effect’ in the terminology of Manski (1993), this paper

4A small strand of the literature on college admissions has developed tournament models of stu-
dent effort under rank incentives (Bodoh-Creed and Hickman (2024); Grau (2018); Tincani, Kosse,
and Miglino (2025)). These papers study the effects of changing the rank incentives, holding peer
characteristics fixed, rather than peer effects given rank concerns. The most relevant is Tincani,
Kosse, and Miglino (2025): after showing experimentally that rank incentives affect study effort in
Chilean high schools, the authors develop and structurally estimate a tournament model of simulta-
neous effort choices, in which college seats are assigned according to within-school GPA rank.

5Berlinski, Busso, and Giannola (2023) have applied a similar strategy to data from a literacy
remediation program in Colombia, and Dieye, Djebbari, and Barrera-Osorio (2014) to data from
a randomized experiment on a scholarship program in Colombia. See also Fruehwirth (2014) for
an in-depth analysis of the identification of the effect of contemporaneous peer outcomes on own
outcomes when outcomes are partly determined by unobserved factors.



examines the reduced-form impact of changing the distribution of the shocks within
the classroom, an ‘exogenous peer effect’ in this terminology. Through the lens of a
model where students desire to compete with each other, it interprets the estimates
as comparative statics on equilibrium outcomes in the classroom.® The impacts of
the mean and of the dispersion of this continuous shock among peers are shown to be
helpful to inform a new theory of peer influence.”

Within the vast literature on peer effects in education, relatively few studies have
developed theories of peer influence. Existing theories commonly assume that students
have a desire to conform to their peers, or that there are complementarities between
peers in the achievement production technology (e.g. Brock and Durlauf (2001a,
2006); Calvé-Armengol, Patacchini, and Zenou (2009); Fruehwirth (2013); Conley,
Mehta, Stinebrickner, and Stinebrickner (2024)). Both assumptions rationalize the
workhorse linear-in-means model of peer effects with continuous outcomes (Blume,
Brock, Durlauf, and Jayaraman (2015)). In contrast, I present a new theory that
rationalizes why moments beyond the mean may matter, in a parsimonious way. It
offers a simple insight: when students derive utility from rank, changing the cost
of study effort of peers affects own effort, because it changes the ability of peers to
compete. Empirically, this generates a peer effect where moments beyond the mean
matter, without the need to introduce extensions to the technology or preferences to
capture the influence of higher-order moments. Such a mechanism has been largely
ignored despite its intuitive appeal.®

The idea that students may care about their rank is consistent with a growing body
of evidence showing that competitive preferences can emerge early in life (Sutter and
Glétzle-Riitzler (2015); Page, Sarkar, and Silva-Goncalves (2017)) and that classroom
rank can yield both immediate and longer-term benefits. A large literature on rank
effects has examined how exogenous changes in a student’s achievement rank within
a reference group affect student outcomes. A higher rank has been shown to improve
self-concept, happiness, and teacher perceptions of ability, and to raise later educa-
tional attainment and earnings (e.g. Zeidner and Schleyer (1999); Marsh et al. (2007);

6Unlike Fruehwirth (2013), I do not estimate the ‘endogenous peer effect’, because the theoretical
model does not yield a closed-form expression for the best-response function. Instead, the model
characterizes the equilibrium effort function within each classroom, which traces effort as a function
of a student’s effort-cost type, and derives comparative statics on this equilibrium effort function
under different within-classroom distributions for the effort-cost types. When damages to a student’s
home affect the student’s effort-cost type, the model provides testable implications on the shape of
the spillovers from earthquake-induced disruptions.

"De Giorgi and Pellizzari (2013) also test theories of peer influence. They use evidence on the
effects of changing peer composition, which is deliberately kept constant here.

8In line with the theory first introduced in this paper (as detailed in e.g. Tincani (2017)),
Rosenzweig and Xu (2024) recently provided evidence supporting this mode of interaction within
the context of Southeast Asian refugee students in the US.



Elsner and Isphording (2017, 2018); Murphy and Weinhardt (2020); Denning, Mur-
phy, and Weinhardt (2023); Ladant et al. (2024); Carneiro et al. (2025)). Students,
therefore, may value their relative standing, even when it is not formally rewarded.
Building on this insight, this paper studies instead the implications of rank concerns,
i.e., of students caring about their rank, for how peers influence each other’s learning.

This paper also relates to the empirical literature using natural disasters to iden-
tify peer effects in education, such as Cipollone and Rosolia (2007), Sacerdote (2008),
and Imberman, Kugler, and Sacerdote (2012). In contrast to these studies, it does
not use forced relocations of students for identification, focusing instead on variation
in the intensity of disruptions.? I interpret these disruptions as shocks to a primi-
tive of the students’ skill-accumulation problem that shape their effort choices. This
interpretation, consistent with the skill-formation framework where human capital
reflects optimally chosen investments (Todd and Wolpin (2003); Cunha and Heckman
(2008); Cunha, Heckman, and Schennach (2010)), allows me to move beyond mea-
suring earthquake spillovers to shed light on how social interactions influence those
investment decisions. Finally, the paper relates to the empirical literature on ability
peer effects studying the impacts of moments beyond the mean (Lyle (2009); Booij,
Leuven, and Oosterbeek (2017); Ding and Lehrer (2007); Vigdor and Nechyba (2007);
Hoxby and Weingarth (2005)) and of partitioning the support of ability, which varies
first and higher-order moments simultaneously (Carrell, Sacerdote, and West (2013);
Duflo, Dupas, and Kremer (2011)). These studies tend to find that moments beyond
the mean matter for learning.

The article is structured as follows. Section 2 details the data, damage measure,
and describes damage propagation among students, documenting new facts about so-
cioeconomic inequalities. Section 3 delves into the empirical analysis of damage effects
on achievement, and assesses the identifying assumption and robustness. Section 4
presents evidence on mediating factors using administrative and survey data. Section
5 introduces the theory of peer influence based on rank concerns, rationalizing the
evidence. Section 6 concludes, discussing policy implications and suggesting future

research avenues.

9This distinguishes this paper also from the experimental and quasi-experimental literature that
use variation in assignment to peer groups, such as dorms (Sacerdote (2001); Zimmerman (2003);
Stinebrickner and Stinebrickner (2006); Kremer and Levy (2008); Garlick (2018)) or classrooms
(Duflo, Dupas, and Kremer (2011); Whitmore (2005); Kang (2007)).



2 Data and Measurements

This section describes the data sources and measurements and performs a descriptive

data analysis.

2.1 Data

I construct a dataset on two cohorts of students combining information from the
SIMCE dataset (Sistema de Medicion de la Calidad de la Educacion) and enrollment
and grade registries (Rendimiento). I refer to the two cohorts as pre- and post-
earthquake cohorts, depending on whether their outcomes were measured before or
after the earthquake. The 8" grade outcome for the pre-earthquake cohort is observed
in 2009, before the 2010 earthquake, the 8 grade outcome for the post-earthquake
cohort is observed in 2011, 20 to 22 months after the 2010 earthquake (Figure 1).
The sample includes students in public and private subsidized schools.!® T obtained
from the Ministry of Education the list of schools that closed as a consequence of
the earthquake, and used registry data to identify the schools where the evacuated
students relocated to. I dropped from the sample both sets of schools, from both
cohorts, to ensure the absence of earthquake-induced relocations in my sample.!! Such
relocations could directly affect the outcomes of evacuated students and indirectly
those of incumbent students in receiving schools through changes in peer composition.
Such effects could confound the effects of interest in this paper. I dropped observations
with missing classroom identifiers,'? and classrooms with five or fewer students.'® The
full constructed dataset consists of 353,914 students in 13, 267 classrooms across 4, 798
schools. The main estimation sample is restricted to students living in regions affected
by the earthquake; students living in non-affected regions are used only for testing the
identifying assumption. As explained in the next section, to mitigate measurement
error in the damage measure the main analyses exclude around 15% of observations,
corresponding to schools located in coastal towns. Table 1 reports the sizes of the
pre- and post-earthquake cohorts under each restriction.

For both cohorts I observe administrative records on 8" grade and 4 grade
Mathematics and Language standardized test scores and school grades, gender, town

of residence and unique student, classroom and school identifiers. I complement these

10T exclude students from the elite private unsubsidized schools. They represent approximately
7% of the student population and they come from the most well-off families in the country.

1T dropped 36,941 observations from the post-earthquake cohort and 38,784 from the pre-
earthquake cohort, corresponding to 16% of the sample.

2These are 17,969 observations in the post-earthquake cohort and 21,194 observations in the
pre-earthquake cohort. The school and student identifiers are never missing.

BThese correspond to 2,484 student-level observations, or 0.7 percent of the sample.
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Figure 1: Data time-line.

data with linked survey data on students’ perceptions, on the household socioeconomic
background, and on teachers’ instruction. Administrative school-level information
includes rurality and public or private status. I complement this information with
teacher surveys on curriculum coverage and, for a subset of schools, with detailed
reports on school expenditures. Finally, I match students to classrooms, teachers and

schools through unique pseudo-identifiers.

2.2 Measuring damages to homes

Earthquake. On February 27 2010, at 3.34 am local time, Chile was struck by
a magnitude 8.8 earthquake, the seventh-largest ever instrumentally recorded and
technically referred to as a mega-earthquake (Astroza, Ruiz, and Astroza (2012),
USGS (2025)). Figure 2 shows its position in the global earthquake distribution
since 1900. Shaking was felt strongly throughout 500 km along the country, covering
six regions that together make up approximately 80% of the country’s population.
Damage was widespread, with costs estimated at 18 percent of GDP (WHO (2010)).
The Government implemented a national plan to rebuild or repair housing units for
low- and middle-income families. The mega-earthquake had continued impact on
people’s lives during the period covered by my sample. The post-earthquake cohort,
whose outcomes were collected when they were in the 8" grade in 2011, was about to
start the 7 grade when the earthquake struck. By the time the 2011 outcome data
were collected, 20-22 months had passed since the earthquake struck. Yet, only 24
percent of home reconstructions and repairs had been completed (Comerio (2013)),

leading to frustration in the population (Appendix Figure Al).

Measuring earthquake damage to a student’s home. The damage to a stu-
dent’s home depends on the level of ground shaking and on the construction materials.
I proceed in three steps. First, I construct a measure of the shaking that each stu-
dent’s home was subject to. Second, I build a measure of the seismic vulnerability of
each student’s home, which depends on the construction materials. Third, I combine

these two measures to calculate home damages. I now describe each step.
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Figure 2: Source: Global Earthquake Catalog maintained by the United States Geological Survey
(USGS (2023)).

Step one: ground shaking. For students who reside in earthquake-afflicted re-
gions, I build a measure of distance between each student’s town of residence and
the asperity centroid as Ay = v/R? + h2, where R is the distance between the town’s
center and the point on the earth’s surface vertically above the asperity centroid,
whose coordinates are (34.8°S, 72.6°W), and h = 20km is the depth of the latter. I
then apply the intensity attenuation formula derived by Astroza, Ruiz, and Astroza
(2012) for the 2010 Chilean earthquake that gives for each distance Ay a level of
severity of ground shaking, I, measured on the Medvedev-Sponheuer-Karnik (MSK)
scale: T =19.781 — 5.92710g;,(A4) + 0.00089A 4 (R* = 0.9894).1

Step two: seismic vulnerability. A building’s seismic vulnerability depends on
its construction materials. The construction materials of students’ homes are not
included in the education dataset, but they are included in census data. Therefore, I
use census data to develop a model that can accurately predict the seismic vulnerabil-
ity of a household’s home from a set of observable household characteristics that are
available in the education dataset, and I apply this model to the education dataset
to build a measure of the seismic vulnerability of the homes of the students in my
sample. The procedure comprises three steps. In the first, using census data I build a
measure of seismic vulnerability of a building based on its construction materials. In

the second, using census data I develop the prediction model and assess its ability to

4 A 4 is non-negative because it measures a distance, and it is never equal to zero because no
town was directly above the asperity, which was in the ocean. The reported R? refers to the reported
regression with MSK-Intensity as outcome variable.
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correctly predict housing quality from household characteristics. Finally, I apply the
prediction model to the students in my sample (the education data). I now describe
the first two steps in more detail (the third step is trivial).

The first step consists in building a measure of seismic vulnerability of a home
from information on its building materials as per census data. I obtained the 2002
census data, the last one before the earthquake struck, from the Chilean National
Institute for Statistics. I restricted the data to the nearly one million households with
at least one school-aged child, and extracted information on the construction materials
of their homes: for the exterior walls, roof and floor. Table A2 in the Appendix shows
the distribution of building materials in this population.

I then mapped the vector of building materials into a predicted seismic vulnera-
bility class (Griinthal (1998), Table 1). To do so, I estimated a logistic latent-class-
analysis (LCA) model that assigns to each home the predicted probabilities of be-
longing to each of three classes, an unsupervised learning algorithm. Post-estimation,
I predicted the distribution of building materials by class. As an unsupervised al-
gorithm, LCA does not label the classes, a step requiring human input. I attached
a label to each class (low, medium or high seismic vulnerability) depending on the
similarity between the predominant construction materials within each class gener-
ated by the LCA model and the predominant construction materials used in Chile
within each seismic vulnerability class (Massone et al., 2010). In this step of the data
construction, I obtained feedback from a leading expert on the seismic vulnerabil-
ity of Chilean buildings.!®!6 Figure 3 shows the predicted class proportions in the
population of households with at least one school-aged child in the census and the
within-class distributions of construction materials.

The second step consists in building a model that can accurately predict the seis-
mic vulnerability of a household’s home based on household characteristics, in the
population of families with school-aged children. The dependent variable is seismic
vulnerability as obtained from the LCA model, that is, a vector containing the proba-
bilities that a home belongs to the low-, medium- or high-vulnerability class. For the

independent variables, I restrict attention to the characteristics that are available in

15T thank Professor Sergio Ruiz of the Geology Department at the University of Chile for his
expert feedback on this step of the data construction, confirming that the distribution of building
materials within the classes generated by the algorithm correspond to that found within the seismic
vulnerability classes in Chile.

16 Astroza, Ruiz, and Astroza (2012) identify four seismic vulnerability classes in Chile, but two
of them (confined masonry and confined masonry designed according to the NCh2123 Chilean Code)
are indistinguishable from each other using census information. Therefore, I group them into one
class. These two types of constructions have the best earthquake resistance profiles (see Table 2
in Astroza, Ruiz, and Astroza (2012)), so they are assigned to the low vulnerability class. But in
calculating damages, I acknowledge that this class contains two different kinds of constructions: I
assume that half of these homes are built according to the NCh2123 Chilean Code, and half are not.

11
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Figure 3: Results of the latent-class-analysis model estimated on census data: distribution of seismic
vulnerability classes and of building materials within each class (N=929,647). Notes: The percentages
next to each class label represent the proportion of homes in that class in the population of households
with at least one school-aged child in the 2002 census.

both the census and the education data. These are: the age of the household head,
the average years of education of mothers and fathers, and the region of residence, to
capture any differences in construction standards across regions.!”

Predicting seismic vulnerability from household characteristics is remarkably easy
in Chile, as I find striking socioeconomic stratification in housing quality among
Chilean families with school-aged children. As shown in Figure 4, students from
high socioeconomic status (SES) households are those most likely to live in homes
with low seismic vulnerability, students from middle SES households in homes with
medium seismic vulnerability, and students from low SES households in homes with
high seismic vulnerability. Such socioeconomic segregation is not built into the seismic
vulnerability measure, which is constructed only from construction materials. There-
fore, the fact that the distribution of seismic vulnerability varies as expected with
SES informally validates the procedure I developed to construct seismic vulnerability.

To my knowledge, this is the first direct evidence that housing quality, in terms of

17T assume that the parent who fills out the education questionnaire is the household head.
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earthquake resistance, is highly segregated along socioeconomic lines among Chilean

students.
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Figure 4: Evidence of socioeconomic segregation in housing quality among Chilean families with
school-aged children. This graph plots the probability that the home of a school-aged child belongs
to each of three seismic vulnerability classes (low-, medium- and high-vulnerability) by the education
of the parents. Sources: census 2002 data, restricted to households with at least one school-aged
child (N = 929,647). Class probabilities stem from latent-class-analysis using census information on
the construction materials of the families’ homes.

I build the prediction model by estimating a regression on census data. The
model can be used to predict the seismic vulnerability of the homes of students in
the education dataset because it uses household characteristics available in both the
census and the education dataset. Appendix A.1 describes the model. For each
household, the model predicts the probabilities that the home belongs to each of the
three seismic vulnerability classes. Figure 5 shows that its fit is excellent: the housing
quality predicted using the estimated model traces very closely the actual housing
quality built from information on building materials. The fit worsens slightly only
among very old or very highly educated parents, who are very few in the education
dataset. This gives me confidence that the model can accurately predict seismic
vulnerability for nearly all students in the education dataset. The estimation of the
prediction model uses data on the entire Chilean population of families with school-

aged children, therefore, it is free of finite-population sampling variability.

Step three: combining ground shaking and seismic vulnerability to build a
measure of damages. For each student in the sample I now have measures of the
intensity of ground shaking and of the seismic vulnerability of her home. I combine
these two pieces of information to build a measure of expected damage, defined as the
fraction of the home that needs to be rebuilt. The procedure is as follows.

For each vulnerability class and ground shaking level, Astroza, Ruiz, and Astroza

(2012) provide the distribution of damage grades, which are divided into six cate-
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Figure 5: Goodness of fit of predicted seismic-vulnerability-class probability by parental education
and by age of household head. Notes: census 2002, families with school-aged children (N = 929,647).

gories, ranging from no damage (DG = 0) to complete collapse: (DG = 5). Following
Bommer et al. (2002), T assign to each category DG, a numerical damage measure
d(DG) € [0, 1], called “damage ratio,” which measures damages as a fraction of com-
plete collapse, where d = 1 represents complete collapse. If the vulnerability class was
observed, we could obtain the expected damage ratio of household ¢ given its vulner-
ability class ve; and ground shaking intensity level I; as E[d;|ve;, I[] = 320 _ d(DG =
m)p"(ve;, I;), where p™(ve;, I;) is the probability that a house of vulnerability class
ve; subject to ground shaking I; suffers a damage grade DG = m, which carries a level
of damage ratio equal to d(DG = m). But the vulnerability class is not observed.
Instead, for each student in the data I observe a vector of predicted probabilities that
her house belongs to one of each vulnerability class. Therefore, for each household
with characteristics x; I use the predicted likelihood that it belongs to each vulner-
ability class j = 1,2,3 (p’(z;) in Appendix A.1) to build a measure of the expected

damage ratio:

3

d; = Eldz;, L] =Y (x;)- | > d(DG = m)p™(ve = j, ;) (1)

Jj=1
I standardize this measure in the sample so that it has mean zero and unit variance.

This is the measure of home damage used throughout the analysis.

Tsunami. The damage ratio is not designed to measure damage stemming from
the accompanying tsunami that afflicted coastal towns. In coastal areas it may suffer

from larger measurement error, which would lead to attenuation bias. To avoid this,
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I restrict the sample to non-coastal towns, defined as those located more than 1
km from the coast, verifying the robustness of the results to different geographical
restrictions. This sample restriction excludes approximately 15% of the observations

from the analysis.

2.3 Descriptive analysis

I document new facts about the propagation of damages from the 2010 Maule earth-
quake among students.

Among students of the post-earthquake cohort who live in earthquake regions
(i.e., the students affected by the earthquake), the fraction of the home that collapsed
ranged from 0% to 59%, and on average was 1.7% (Panel A, Table A3). The distribu-
tion was right-skewed, with most students (~ 95%) suffering damage ratios below 7%.
Average reconstruction costs amounted to USD 1,439, with a standard deviation of
USD 3, 540. To express damages relative to households’ resources, I also compute the
ratio of damage to annual household income. The average of this ratio is 0.43, and its
standard deviation is 1.55.'® Lower earning households incurred disproportionately
higher damages; a 1% increase in earnings is associated with USD 76 fewer damages.

We have already seen that students from lower SES live in homes with larger seis-
mic vulnerability (Figure 4). Figure 6 shows that also the level of home damage, which
depends on both seismic vulnerability and ground shaking, decreased with students’
SES, as measured by parental education. On average, the homes of students whose
parents have at least some college education incurred 793 fewer USD of damages,
or half the amount, than those of students whose parents do not have any college
education. The Figure also shows that at all levels of parental education, students in
public schools suffered more home damage than those in private schools, and those in
rural schools more than those in urban schools. The evidence therefore suggests that
the homes of the more disadvantaged students (i.e., those with less educated parents,
those in public schools, those in rural schools) suffered the largest earthquake dam-
ages. Appendix Table A4 shows how all student and school characteristics correlate
with home damages and building quality.

Why did homes of disadvantaged students incur greater damage? Figure 7 visu-

ally displays this disparity across two panels, each featuring a map of how damage

8These back of the envelope calculations use the 2010 USD to CLP exchange rate, and depend
on the assumed cost of reconstructing a completely collapsed home. I assume the cost is equal to the
average market price of a 50m? home in Chile in 2010, which was USD 84,175 (see https://www.
globalpropertyguide.com/Latin-America/Chile/square-meter-prices). If a home suffered an
unstandardized damage ratio of %, then the damage in dollars is measured as % - 84, 175. In the
main analyses, I use the standardized damage ratio d;, defined in equation (1), as the measure of
damages, because its value does not depend on assumptions on home reconstruction costs.
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Figure 6: Relationship between home damage and parental education by school characteristics.
Notes: sample of students in earthquake-affected regions in the post-earthquake cohort and residing
more than 1 km from the coast. The figures present local polynomial regression estimates with 95%
confidence intervals. Home damage is measured by the standardized damage ratio d;, defined in
equation (1). The top and bottom 1% of observations in terms of parental education were trimmed.

propagated geographically. The left panel is based on lower-SES students — those
without college-educated parents — while the right is based on higher-SES students
— those with college educated parents. The circle size indicates the proportion of the
respective SES populations living in a particular town. The color intensity indicates
the average damage severity for students in that town and SES group, with darker
colors indicating worse damage.

The maps reveal that lower-SES students were more likely to live in the (mostly
rural) areas most affected by the earthquake than higher-SES students. But even
conditional on residing in the same town, the homes of lower-SES students were
more damaged, because of lower-quality housing. Damage propagation, therefore, was
unequal across socioeconomic lines in Chile because of differences in residential choice
and housing quality. While such socioeconomic inequality may appear unsurprising,
this is one of the first studies to document it.

There is variation in how students in the same classroom were affected by the
earthquake: 98% of students from the post-earthquake cohort going to school in
affected non-coastal areas were enrolled in classrooms where not all students suffered
equal damages. This fraction is nearly the same across public and private schools
(98.0% vs. 97.5%), and slightly larger among urban (97.9%) than rural (95.9%)
schools. As shown in Panel Aii of Table A3, students were exposed to substantial

dispersion in earthquake damages. The average within-classroom standard deviation
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Figure 7: Map of Chile showing propagation of damage from the 2010 Maule earthquake among
students by socioeconomic demographics. Notes: The left panel shows damage propagation among
students whose parents do not have college education, the right panel among students whose parents
have college education. Each circle represents a town. Its size represents the percentage of the sample
of non-college-educated parents (left panel) or of college-educated parents (right panel) living in that
town. The shade reflects the average level of damages to the homes of the students without (left
panel) or with (right panel) college-educated parents in that town, measured in USD. For reference,
the average annual wage in the entire sample is USD 8,378. College education is defined as having
more than 14 years of education, as most vocational higher-education degrees require at most 14
years of education.

of the non-standardized damage ratio (the fraction of the home that collapsed) is 0.6%,
which corresponds to USD 531 at 2010 reconstruction costs. As an alternative scale,
I also compute the damage-to-family-income ratio for each student and the standard
deviation of this ratio within each classroom. On average, the standard deviation of
this ratio is 41%, meaning that in a typical classroom, home damages differed across
students by about 41% of households’ own annual income. In some classrooms the
standard deviation in damages reached staggering levels, such as 6.1% at the 99"
percentile, or USD 5,132, over seven months’ worth of income. Therefore, while

students attending the same classroom tended to live in nearby towns and belong to
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similar socioeconomic classes, there was variation within classrooms in how students
were affected by the earthquake, driven by differences in ground shaking and housing
quality. This provides rich within-classroom variation in individual-level shocks.

Variation in damages did not only arise within classrooms, but also across class-
rooms within the same schools and across schools. Intra-class correlation estimates
reveal that 91.0% of the total variance in home damages was explained by differences
between schools, with the remaining variation occurring within schools. There was
also variation in the classroom-level dispersion in damages: 87.4% of its total variance
occurred across schools, with the remaining variation occurring within schools. By
contrast, virtually all the variation in the classroom-level mean in damages was across
schools (99.8%).

Finally, Table 1 presents descriptive statistics of the pre- and post-earthquake
cohorts of students, both country-wide and for the main estimation sample, which
display similar characteristics. The descriptive statistics for individual and classroom-

level damage-based variables in both cohorts are reported in Appendix Table A3.

Table 1: Summary statistics of student and school characteristics

PRE-EARTHQUAKE COHORT POST-EARTHQUAKE COHORT

Mean St.dev. N Mean St.dev. N
(1) (2) (3) (4) (5) (6)

A. ALL STUDENTS
Baseline test score .161 91 155958 .143 .907 150791
Parental education (years)  10.9 3.11 175511 11 3.06 167565
Female student .504 .5 180244 .504 ) 173864
Rural school 113 317 180244 .106 .307 173864
Public school 478 .5 180244 .466 .499 173864
Earthquake-affected region  .754 431 180244 739 439 173864
B. EXCLUDING COASTAL TOWNS
Baseline test score .162 .914 135101 .146 .909 129588
Parental education (years)  10.8 3.11 152351 10.9 3.07 143993
Female student .504 .5 156393 .504 .5 149485
Rural school 118 .322 156393 .109 312 149485
Public school .464 499 156393 451 498 149485
Earthquake-affected region .83 375 156393 .818 .386 149485
C. EXCLUDING COASTAL TOWNS AND IN EARTHQUAKE REGIONS (MAIN ESTIMATION SAMPLE)
Baseline test score .193 913 89910 .162 .908 90973
Parental education (years) 11 3.02 89910 11.1 3 90973
Female student .524 .499 89910 .526 1499 90973
Rural school 112 .316 89910 .108 31 90973
Public school 428 .495 89910 421 .494 90973
Earthquake-affected region 1 0 89910 1 0 90973

Notes: Baseline test scores are the average of Mathematics and language SIMCE test scores in fourth grade,
standardized in the population of test takers. A town is defined as coastal if it lies within 1 km of the coast. The
main estimation sample described in Panel C corresponds to the sample used to estimate the regression in column
(1) of Table 2.
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3 Empirical Analysis of Earthquake Effects

3.1 Main findings

Damages to students’ homes varied based on the quality of their homes and the
distance of their hometown from the earthquake’s asperity. This suggests that we can
estimate the causal impact of earthquake damages on student outcomes by using data
from a cohort of students with measurable pre-existing vulnerability to the earthquake
but whose outcomes were measured before the earthquake struck. A difference-in-
differences estimator exploits the differential correlation between vulnerability and
outcomes across cohorts to tease out causal impacts.'?

Equation (2) presents the regression model I estimate. I consider two achievement
outcomes: GPA, which depends on teachers’ grades and is in principle observable to
classroom peers, and standardized test scores, which are graded centrally and are not
directly observed by peers. I use the damage ratios defined in equation (1) to measure
pre-existing earthquake vulnerability, which reflects actual home damages only for the
cohort exposed to the earthquake. The vector D,. of vulnerability variables comprises
the damage ratio of student ¢ and the (leave-one-out) mean and standard deviation
of damage ratios in ¢’s classroom c¢. The dummy variable post; takes on value 1 if a
student belongs to the post-earthquake cohort, the one exposed to the earthquake, and
0 otherwise. The vector z; of student characteristics includes a lagged achievement
measure (the standardized test score in grade 4). The vector w5 of characteristics of
classroom c in school s includes the school building’s vulnerability.? The Table notes

contain the full list of regressors.

Yics = + a1 Weg + Qg - T + B, : Dic +P05ti : [7 + 5/ . ch:| + €ics- (2>

For the pre-earthquake cohort, the parameter 5 captures the spurious relationship
between vector D,. and outcomes: the location and quality of a student’s and her
classmates’ homes could correlate with unobserved outcome determinants. If such
spurious relationship is constant across cohorts, an assumption I assess in section 3.2,
the 0 parameters reveal the effects of earthquake damages on achievement, keeping

school building damages fixed. This is the parameter vector of interest.

19Tn this section, “vulnerability” refers to overall vulnerability, measured in damage ratios, which
considers both construction quality and distance from the asperity.

20T do not observe the construction materials of the school building, but I observe the shaking
intensity in the school’s town. To allow for different shaking-resistance levels depending on construc-
tion materials, I include as regressors the shaking in the school’s town, the shaking interacted with
whether the school is public or private (to account for building quality differences across public and
private schools), the shaking interacted with the cohort dummy, the shaking interacted with both
the public school and cohort dummies, and the cohort and public school dummies interacted.
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Table 2 presents the results. The outcome in column (1) is the average between
the Mathematics and Language SIMCE standardized test scores in eighth grade. Ap-
pendix Table A5 shows that considering the two subjects separately yields similar
patterns, with somewhat stronger effects on Language at the point estimates. The
outcome in column (2) is the GPA in eighth grade, standardized. A one standard de-
viation increase in a student’s damage ratio, corresponding to increasing the collapsed
portion of the home by 4.4 percentage points (around USD 3,600 in damages), lowers
test scores by 0.03 standard deviations (std) and GPA by 0.02 std, albeit insignifi-
cantly for GPA. To put the magnitude into perspective, this impact is a fifth of that
of a one-standard-deviation improvement in teacher value added (Chetty, Friedman,
and Rockoff (2014)).2!

Table 2: Impacts of earthquake damages on standardized eighth-grade test
score and GPA

Test score  GPA (std)

(1) (2)
Effect of damage to own home -0.028*** -0.016
(0.011) (0.014)
Effect of average damage among classmates 0.049*** 0.043*
(0.017) (0.023)
Effect of standard deviation of damage among classmates -0.084** -0.086*
(0.039) (0.049)
Observations 180883 183380
R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameter § obtained from OLS estimation of regression (2). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. The treatment effects, including of the classroom-level damages,
are measured in standard deviations of the student-level damage distribution; Table A8 shows es-
timates where each treatment effect is measured in standard deviations of the treatment variable
itself. Regressions include student and classroom characteristics. Student characteristics: fourth-
grade test score, gender, whether the student lives in the school town, parental education, age of
household head, dummy for region of residence. Classroom characteristics: public school dummy,
rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school
dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort
and public dummies interacted, class size, classroom fractions of females and of local residents;
classroom average and standard deviation of fourth-grade test scores and of parental education;
all pairwise within-classroom covariances between: damage, gender, parental educational, local
residency, lagged test score. Damages’ mean and standard deviation are leave-one-out moments.
Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

The average damages to the homes of classmates have positive effects on own test
scores and GPA. An increase in mean peer damages of one standard deviation of the
damage distribution (i.e., a 4.4 percentage point increase in the portion of the home
that collapsed) increased test scores by 0.05 standard deviations, and GPA by 0.04
standard deviations. This suggests that schools counteracted any potential adverse
learning conditions caused by average damages. Overcompensation in response to

the earthquake was documented also in post-earthquake crime prevention in Chilean

2ITeachers are one of the most important school inputs into the production of achievement, but
school inputs are generally not as impactful as home interventions (e.g. Heckman, Liu, Lu, and Zhou
(2022), Heckman (2006)).
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municipalities (Hombrados (2020)). Classroom-level damage dispersion had negative
effects on test scores and GPA, of similar magnitudes. An increase in the within-
classroom standard deviation of damages of one standard deviation of the damage
distribution (i.e., a 4.4 percentage point increase in the portion of the home that
collapsed) lowered test scores and GPA by around 0.085 standard deviations. These
results suggest that schools did not entirely compensate detrimental effects on student
learning due to damage dispersion within classrooms.

To summarize, damages affected the learning of the student living in the dam-
aged home. The detrimental impacts occurred at a critical time in the educational
path of students (the year before transferring to secondary education) and were dis-
proportionately borne by students of lower socioeconomic status due to their greater
exposure (Figures 4 and 7). While schools could not mitigate the impact of such
individual-level shocks, they appear to have successfully mitigated the effect of the
average level of damage in the classrooms. By contrast, dispersion in damages across

classmates had negative effects on learning outcomes, on average.

3.2 Identifying assumption

The identifying assumption underlying the estimator is that the relationship between
achievement and the earthquake vulnerability variables would be the same in the pre-
and post-earthquake cohorts in the absence of the earthquake. A concern is that
the estimates may capture changes in this relationship across cohorts, rather than
true damage impacts. For example, the estimate of the impact of mean damages in
the classroom would be biased if the government introduced a policy between 2009
and 2011, the period between the outcomes for the two cohorts were measured, that
changed the student composition across schools, such as changes to the vouchers for
disadvantaged students to attend private schools.?? If such a policy were introduced,
it could alter how a school’s mean damage measure, based on the socioeconomic
composition, correlates with its unobserved quality across cohorts. This would violate
the identifying assumption. To address such concerns, all specifications include a set
of controls for socioeconomic composition. By the same logic, they include controls

3 Identification, therefore, relies on variation across

for individual characteristics.?
students and classrooms in earthquake exposure, keeping fixed student characteristics

and classroom characteristics such as socioeconomic status.

22Chile has a voucher policy in place, but it did not undergo any changes at this time (Neilson
(2025)).

23 Appendix Table A6 shows that effect estimates are slightly larger but broadly similar in specifi-
cations without such individual and group controls, retaining only the three individual characteristics
used to build the damage measure.
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As the earthquake occurred a few days before the start of grade 7 and outcomes
are measured in grade 8, a second concern is that the estimates may capture the
effect of a reallocation of students across classrooms and/or schools between grades
7 and 8, occurring in response to earthquake damages, that the strategy above and
the exclusion from the sample of forced relocations immediately after the earthquake
(Section 2.1) fail to account for. To examine this, I tracked the movement of students
across schools and classrooms between the 7" and 8" grades, for both cohorts.

Table A7 reports the descriptive analysis. Switches between the 7" and 8" grades
are not common: only 11% of students in the whole sample changed either school
or classroom between these grades. This is aligned with what we would expect:
students typically move school one grade later, during the transition from primary
to secondary school. The vast majority of switches concern school changes: 8.5%
of students changed school, while conditional on staying in the same school, only
2.8% changed classroom. Focusing on students and schools in earthquake regions and
residing more than 1 km from the coast, the main sample of analysis, I find similar
frequencies of all types of switches, as can be seen in the right panel of Table A7.

Next, I analyze whether students could have moved between the 7" and 8% grade
in response to the earthquake. In the main analysis sample (earthquake regions,
non-coastal towns), the fraction of overall switches, school switches, and classroom-
within-school switches is identical in the pre- and post-earthquake cohorts, as shown
in Panel A of Table 3. This suggests that changes to schools or classroom enrollments
between these grades were not a margin of response to the earthquake.

To complement the before-after analysis, I implemented a difference-in-differences
analysis that examines whether the change in switches across cohorts differed between
the regions afflicted and those not afflicted by the earthquake. This additional analysis
delivers precise zero effects as well, as can be seen in Panel B of Table 3, where
only the coefficient in column (3) is significant (p < 0.10), but it is small and the
effect becomes a precise zero once controls are included in column (4). The evidence,
therefore, suggests that the few reallocations observed in the post-earthquake cohort
and in regions affected by the earthquake were not induced by the earthquake itself,
but rather fell within the typical reallocations we observe in normal years around the
country.

Next, I examine the effects of the earthquake-damage measures used in the main
analysis on lagged outcome measures, as a pre-trend test and as a way to further
assess compositional impacts. This test shows precise zero effects of the damage to
a student’s own home, of the average damages in the classroom, and of the standard

deviation of damages in the classroom on lagged (fourth-grade) test scores and GPA,
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Table 3: Classroom and school changes between grades 7 and 8: cohort and
earthquake-region differences

Any Any School ~ School  Classroom  Classroom

(1) (2) () (4) ©) (6)

Panel A. Before-after analysis

Post 0.002 0.047 0.002 0.005 -0.001 0.046
(0.005)  (0.051)  (0.003)  (0.036) (0.004) (0.037)
Observations 244435 182907 244435 182907 223677 169715
R? 0.000 0.022 0.000 0.026 0.000 0.008
Controls No Yes No Yes No Yes

Panel B. Difference-in-differences analysis

Effect of earthquake  -0.006 -0.004 -0.011* -0.006 0.005 0.002
(0.010)  (0.009)  (0.006)  (0.005) (0.009) (0.008)
Observations 296791 222658 296791 222658 271474 206481
R? 0.000 0.024 0.000 0.027 0.000 0.009
Controls No Yes No Yes No Yes

Notes: Panel A is based on the sample students enrolled in schools in regions affected by the earthquake
and residing more than 1 km from the coast. It reports the estimate of the coefficient of the dummy
identifying the post-earthquake cohort in a regression where the outcome variable is a dummy equal to
one if a student switched school or classroom (columns 1-2), school (columns 3-4), or classrooms within
their school (columns 5-6) between grades 7 and 8. Panel B is based on the sample of students in any
region of Chile, residing more than 1 km from the coast. It reports the estimate of the coefficient
on the interaction between the dummy identifying the post-earthquake cohort and that identifying
earthquake-affected regions in a regression in which the outcome variable is a dummy equal to one
if a student switched school or classroom (columns 1-2), school (columns 3-4), or classrooms within
their school (columns 5-6) between grades 7 and 8, and including as regressors also the dummies
identifying the post-earthquake cohort and earthquake-affected regions uninteracted. In both panels,
odd-numbered columns do not include any controls. Even-numbered columns include the standard set
of controls, except those based on the damage measure in Panel B because it is undefined in regions not
affected by the earthquake. Standard errors are clustered at the school-by-cohort level. *** p<0.01,
** p<0.05, * p<0.10.

as shown in Table 4. These results give us further confidence that the findings are

not driven by confounding effects due to changes in observed student composition.

Table 4: Validity of the identifying assumption: Impacts of earthquake damages on
lagged GPA and test scores

Lagged test score  Lagged GPA (std)
1) (2)

Effect of damage to own home -0.005 0.011
(0.013) (0.017)
Effect of average damage among classmates 0.005 0.005
(0.013) (0.026)
Effect of standard deviation of damage among classmates 0.005 -0.039
(0.009) (0.046)
Observations 183380 179868
R2 0.283 0.104

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast.
Parameter § obtained from OLS estimation of regression (2). The outcome variable in column (1) is the average
between the lagged (i.e., grade four) Mathematics and Language SIMCE scores, standardized to have mean 0 and
variance 1. The outcome variable in column (2) is the lagged (i.e., grade four) GPA, also standardized. Regressions
include student and classroom characteristics. Student characteristics: gender, whether the student lives in the
school town, parental education, age of household head, dummy for region of residence. Classroom characteristics:
public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public
dummies interacted, class size, classroom fractions of females and of local residents; classroom average and standard
deviation of fourth-grade test scores and of parental education; all pairwise within-classroom covariances between:
damage, gender, parental education, local residency, lagged test score. Damages’ mean and standard deviation
are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.

Bias could still arise if unmeasured components of socioeconomic composition or
of individual characteristics correlate with earthquake vulnerability variables differ-

ently across cohorts. To address this concern, I assess the validity of the identifying
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assumption using data from regions of Chile not affected by the earthquake. As Table
1 showed, around a quarter of students in the sample lived in regions so far from the
asperity that no damage to buildings occurred.

The ideal test would be to re-estimate equation (2) on the sample of students liv-
ing in non-affected regions. Failing to reject the null hypotheses that 6 = 0 provides
evidence in favor of the identifying assumption: we would not be able to reject the
notion that, in the absence of an earthquake, the measures of earthquake vulnerability
used in the analysis (own vulnerability, and mean and standard deviation of vulner-
ability among classmates) correlate with outcomes identically across cohorts (under
the assumption that the evolution of such correlation across cohorts in the regions
unaffected by the earthquake equals that in the regions affected).!

I cannot run the ideal test because damage ratios are equal to zero by construction
in regions where the ground did not shake (p™(vc = j, I; = 0) in equation (1) is zero
for all j,m). As a result, I focus on variation in students’ home quality, which can be
constructed for any student nationwide. When holding the town of residence constant,
this metric becomes a proxy for earthquake vulnerability. This is because within a
town, differences in damage ratios are determined solely by differences in housing
quality.

Therefore, I use the sample of classrooms where every student resides in the same
town (the school’s town), and include dummy variables for students’ town of residence,
uninteracted and interacted with the cohort dummy. I then re-estimate regression (2),
using earthquake vulnerability measures based on housing quality in vector D;.. For
each student, we have a vector of probabilities indicating the likelihood their home falls
into one of three seismic vulnerability classes. From this vector I construct an index.
A value of 1 indicates that a student certainly lives in a high-vulnerability home, a

25 1 standardize this

value of 0 that she certainly lives in a low-vulnerability home.
index across the entire sample, so that a one-unit increase corresponds to an increase
in earthquake vulnerability by one standard deviation. I also generate the leave-one-
out classroom mean and standard deviation of this vulnerability index.

Table 5 shows the results. As a plausibility check on the measure of earthquake
vulnerability only based on housing quality, the first two columns are based on the
sample of students from earthquake-affected regions. The patterns align with the

main findings presented in Table 2, suggesting that the measure of damages based on

24More formally, letting yo denote the potential outcome in the absence of the earthquake, and
E =1 for regions affected by the earthquake and E = 0 for regions not affected, the identifying
assumption is Vp Elyo|post, E = 1|—V pE[yo|pre, E = 1] = VpE|yo|post, E = 01—V pE[yo|pre, E =
0], VD, where Vp denotes the gradient with respect to the components of D, the vector collecting
own seismic vulnerability and the classroom mean and standard deviation of seismic vulnerabilities.
Z5The index is 1-pV + 0.5 - pMV 40 pLV.

24



housing quality and keeping location fixed is a good proxy for the measure based on

damage ratios used in the main analysis.?%

Table 5: Validity of the identifying assumption: Impacts of seismic vulnerability in non-earthquake regions

Test score  GPA (std)  Test score  GPA (std)

(1) (2) () (4)
Effect of own home vulnerability -0.043*** -0.050*** -0.019 -0.061**
(0.011) (0.015) (0.022) (0.031)
Effect of average home vulnerability among classmates 0.107** 0.158** -0.132 0.063
(0.051) (0.068) (0.096) (0.122)
Effect of standard deviation of home vulnerability among classmates 0.440*** 0.311* -0.170 0.133
(0.123) (0.162) (0.213) (0.276)
Observations 54659 55525 31498 32188
R? 0.600 0.293 0.602 0.288
Earthquake region Yes Yes No No

Notes: Sample of classrooms where all students reside in the school’s town. Columns (1) and (2) restrict the sample to earthquake-affected
regions and municipalities at least 1 km from the coast, columns (3) and (4) to earthquake-unaffected regions. Home vulnerability is measured
as an index ranging from 0 (for sure living in low-vulnerability home) to 1 (for sure living in high-vulnerability home), standardized to have
mean zero and variance one in the entire sample. The average and standard deviation of home vulnerability among classmates are leave-one-
out moments of this standardized index. Parameter § obtained from OLS estimation of regression (2). The outcome variables are the average
between Mathematics and Language SIMCE eighth-grade test scores standardized to have mean 0 and variance 1 in columns (1) and (3), and
GPA in eight grade also standardized in columns (2) and (4). Regressions include student and classroom characteristics, and student’s town
of residence dummies (uninteracted and interacted with the cohort dummy). Student characteristics: fourth-grade test score, gender, whether
the student lives in the school town, parental education, age of household head, dummy for region of residence. Classroom characteristics:
public school dummy, rural school dummy, in earthquake regions shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class
size, classroom fractions of females; classroom average and standard deviation of lagged test scores and of parental education; all pairwise
within-classroom covariances between: home vulnerability, gender, parental educational, local residency, lagged test score. Standard errors
clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Columns (3) and (4) assess the validity of the identifying assumption, present-
ing estimates of § from equation (2) using data from regions not affected by the
earthquake. In almost all cases, we cannot reject the hypotheses that 6 = 0 at any
conventional significance level, with the exception of a significant effect of own home
vulnerability on GPA, but this does not hold for test scores, where the effect of own
home vulnerability is smaller and statistically undetectable. This suggests that any
potential spurious correlation between pre-existing vulnerability to the earthquake
and achievement — attributable to correlations between housing quality and un-
observed achievement determinants — is constant across cohorts. Importantly, the
evidence is consistent with a lack of spurious correlation for the treatment variables of
central interest in this study, that is, the classroom-level earthquake damages. This
gives us further confidence in interpreting the findings on the spillover effects from

peer damages as causal.

26The main difference is the significant positive impact of the standard deviation. This can
be explained by the fact that damage dispersion has heterogeneous effects by baseline test scores
(positive for low-performing and negative for high-performing students, as per section 3.3), and the
sample underlying Table 5 is selected (those attending schools that do not attract students from
other towns tend to be lower-performing students).
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3.3 Heterogeneity by baseline test scores

The impacts of damages to students’ homes can vary depending on the students’
prior achievement. To explore this, I estimate model (3), where prior achievement a;

is measured through a standardized test in fourth grade:
yics:a0+a1'wcs+&2'xi+51 'Dic
+ 5; - Dj. - a; + post; - [71 + 9 - a; + 5'1 - D, + 5/2 . D,, - ai] ¥ e, (3)

and where, like before, x; includes prior achievement.?” The parameters of interest
are d1, which captures the effects of D;. for a student with mean preparation (i.e.,
a; = 0), and s, the coefficient on the interaction term. These inform us about the
variation in the effects across students with different prior achievement. I chose a
centrally graded standardized test as the measure of baseline achievement, as such
tests are less prone to teacher bias in grading (Carlana (2019)) and therefore could
be considered more objective than baseline GPA.

The results are presented in Table 6 and Figure 8. The detrimental impacts of
damages to a student’s own home did not significantly vary with a student’s baseline
achievement, as seen in the second row of Table 6. Similarly, the effects of the average
damage among classmates varied insignificantly with baseline achievement, as seen in
the fourth row. Average damage had insignificantly stronger positive impacts on the
test scores of higher-baseline-achievement students (first column), for whom the im-
pacts on test scores of mean damages were positive and statistically significant, as seen
in the top-left panel of Figure 8. This suggests that any remedial measures undertaken
by schools may have benefited the test scores of higher-baseline-achievement students
more, although differences between students are imprecisely estimated. There is no
heterogeneity on the impacts of average damages on GPA.

While the dispersion in damages in the classroom showed negative effects on av-
erage (Table 2), the effects varied substantially and significantly across students (last
row of Table 6). A rise in such dispersion raised the achievement of students with
lower baseline achievement and lowered that of students with higher baseline achieve-
ment, as can be seen in the second column of Figure 8. These results hold regardless
of the outcome measure, eight grade test score or GPA. For some students, the dis-
persion in damages had a similar or even larger effect than that of the damages at

their own home.2®

27 As in the previous model, prior achievement enters the specification additively, so z; includes
a;; equation (3) displays explicitly only the interaction terms involving a;.

28Magnitude comparisons rely on the unit of measurement. In Table 6, all treatment variables are
expressed in standard deviations of the overall damage distribution. The table reports the impacts
of increasing each treatment variable by the same amount in absolute terms, that is, increasing the
portion of the home that collapsed by around 4.4 percentage points, or increasing the reconstruction
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Table 6: Heterogeneous impacts of earthquake damages on standardized
eighth-grade test score and GPA by baseline test scores

(1) (2)
Test score  GPA (std)
Effect of damage to own home -0.030*** -0.019
(0.011) (0.015)
Interacted with baseline test score 0.004 0.023
(0.012) (0.015)
Effect of average damage among classmates 0.049*** 0.045*
(0.017) (0.024)
Interacted with baseline test score 0.021 -0.005
(0.015) (0.019)
Effect of standard deviation of damage among classmates -0.068* -0.077
(0.039) (0.049)
Interacted with baseline test score -0.108*** -0.073**
(0.030) (0.032)
Observations 180883 183380
R? 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameters § obtained from OLS estimation of regression (3). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. Regressions include student and classroom characteristics. Stu-
dent characteristics: fourth-grade test score, gender, whether the student lives in the school town,
parental education, age of household head, dummy for region of residence. Classroom characteris-
tics: public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted,
interacted with public school dummy, interacted with cohort dummy, and interacted with cohort
and public dummies), cohort and public dummies interacted, class size, classroom fractions of fe-
males and of local residents; classroom average and standard deviation of fourth-grade test scores
and of parental education; all pairwise within-classroom covariances between: damage, gender,
parental education, local residency, lagged test score. Damages’ mean and standard deviation are
leave-one-out moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, **
p<0.05, * p<0.10.

These findings hold regardless of the specification, interaction terms, and baseline
achievement measure used. Relaxing the linearity assumption using an interaction
with deciles of the baseline test score distribution results in less precise estimates
but confirms the patterns (Table A10).? Including interactions with other student
socioeconomic characteristics does not change the findings (Table A1l). Replacing
the fourth grade test score with fourth grade GPA to measure baseline achievement
yields broadly similar results (Appendix Figure A2).

In summary, the negative effects of damages to a student’s own home were sim-

ilar across the baseline achievement distribution. The positive effects of classroom

costs by around USD 3,600. In Tables A8 and A9, each treatment variable is instead standardized by
its own distribution. The conclusion that some students suffered similar or larger impacts from the
damage dispersion in the classroom than from the damage to their own home holds in both cases.
29Tn principle, more flexible non-parametric approaches could be used to model the bias arising
from unobserved correlates within the difference-in-differences framework, as demonstrated in the
seminal conditional difference-in-differences method developed in Heckman, Ichimura, Smith, and
Todd (1998). In the context of social effects, this could be achieved by relaxing parametric restrictions
of control function approaches (see Brock and Durlauf (2001b, 2006), who, by bringing the insights
from Heckman (1979) and Heckman and Robb (1986) into the study of social effects, demonstrated
that control functions can aide in their identification.). The treatment effects could be modelled as
non-parametric functions of student characteristics to examine heterogeneity more flexibly. However,
such non-parametric methods deliver impractically large estimator variances in this empirical setting.
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Figure 8: Marginal effects on standardized eighth-grade test score and GPA by baseline test score.
Notes: Marginal effects of leave-one-out average damage among classmates and leave-one-out stan-
dard deviation of damage among classmates. Effects obtained from estimating the regression model
in equation (3). 80% and 90% confidence intervals reported.

mean damages were insignificantly stronger for the test scores of higher-performing
students. Relatively substantial earthquake impacts arose from damage dispersion in
classrooms, especially lowering the achievement of students with high prior achieve-

ment.

3.4 Robustness

The analyses restricted the sample to non-coastal towns to mitigate potential atten-
uation bias from damages from the tsunami, which are not adequately accounted for
by damage ratios. A town is defined as coastal if it is within a 1 km strip of the
coast. I repeated the analyses defining coastal proximity as within 0.5 and 1.5 km
of the coast. I also repeated the analyses in the unrestricted sample that includes
coastal towns. As shown in Appendix Table A12, the results are robust to different
definitions of coastal proximity. The conclusions stand even considering the entire
sample, but, as expected, whenever damages enter linearly, estimates are attenuated
towards zero in this case.

The analyses allowed for correlation in the error terms of an unknown form between
students in the same school and cohort. But error terms of students in different
schools that are geographically close may correlate, as shaking is similar in nearby

schools. 1 employ two methods to account for this. First, I cluster the standard
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errors at the school-town-by-cohort rather than the school-by-cohort level. Second,
I use Conley’s method (Conley (1999)) to compute the standard errors, allowing for
a more flexible spatial correlation in the residuals. The method assumes that the
spatial dependence between two students residing in different towns is a decreasing
function of the distance between the towns, and that beyond a pre-specified distance
cutoff, there is no dependence. I present results for different cutoff distances (10 km,
25 km, 50 km, 250 km). As shown in Appendix Tables A13 and A14, the standard
errors are similar across methods and distance thresholds, suggesting that clustering
at the school-by-cohort level accurately captures the spatial correlation in the data-

generating process.

4 Mechanisms

4.1 Classroom- and School-level Factors
4.1.1 School-level responses

The impacts estimated from equations (2) and (3) could be mediated by schools’
response to the earthquake. For example, in line with governmental earthquake re-
construction plans (Appendix D), schools suffering more extensive average damages
in their classrooms might have received more emergency funds. The impacts esti-
mated with these models capture the net effect of the disruptions and any remedial
actions by schools. To account for school responses, I introduce a modified model
that includes school-by-cohort fixed effects. Below I report the specifications with
and without interactions with baseline achievement. Like before, vector x; includes

baseline achievement a;:
Yics = dO + dl * Wes + dZ * T + B, : Dic +p05ti : S, : Dic + nsp + Vies (2’)

~ ~ ~ ~/
Yies = Qo + Q1 * Wes + Q2 - T + B - Die

+ B+ Dy - a; + post; - [% ca; + 0y - Dic + 0y - Die - az-] + Np + Vies- (3)

The models in equations (2’) and (3’) draw on comparisons across classrooms within
the same school and cohort. The fixed effects remove average unobserved school-level
changes between the pre- and post-earthquake cohorts; the 5 parameters capture
the portion of the damage effects that arises from within-school, across-classroom
differences in damages, net of any school-wide responses.

Consistent with the limited variability in mean classroom damages within schools

noted in Section 2.3, the effects of mean damages are imprecisely estimated and un-
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informative (Appendix Table A15 and Figure 9). Estimates from equation (2’) show
that the average impacts of peer damage dispersion become smaller in magnitude and
statistically undetectable once school-by-cohort fixed effects are included (Appendix
Table A15). The point estimates, therefore, are inconsistent with schools mitigating
the impacts of damage dispersion, because mitigation would have resulted in stronger
negative impacts with the inclusion of the fixed effects, not weaker. Additionally, the
impacts with and without the inclusion of fixed effects are statistically indistinguish-
able: the p-values for equality are 0.413 for test scores and 0.372 for GPA. Therefore,
the data provide no statistically significant evidence that schools responded to disper-
sion in damages, and the point estimates are inconsistent with mitigation in response
to dispersion.

Figure 9 presents the results from the estimation of equation (3’). The heteroge-
neous effects pattern remains robust to the inclusion of the fixed effects, as seen by
comparing these results to Figure 8: a rise in damage dispersion raised the achievement
of lower-baseline-test-score students and lowered that of higher-baseline-test-score stu-
dents, irrespective of the inclusion of the fixed effects. The fixed-effects specification
cannot rule out the possibility that schools (or teachers) responded in ways that var-
ied within schools, across classrooms or students, and does not allow us to distinguish
such potential responses from other mechanisms operating at the peer level. To shed
light on this, the next sections examine mechanisms at the school and classroom level

that could generate heterogeneous effects across students.

4.1.2 Classroom instruction

The impacts on test scores and GPA were similar (Table 2 and Figure 8), indicating
that the earthquake did not alter the way knowledge translated into grades. Teachers,
therefore, do not appear to have adjusted their grading standards in response to the
distribution of earthquake damages among students.®* However, teachers may have
responded by adjusting their instruction.

To examine the impacts on classroom instruction, I use teacher survey data on
the fraction of the curriculum covered in class. On average, Language teachers cover
64.3% of the curriculum, and Mathematics teachers 61.9%. Table 7 shows that the
distribution of damages among students in the classroom did not affect these figures.

The point estimates of the impacts of the classroom average and standard deviation

30 Across all specifications, the estimated effects of the standard deviation of damages on GPA
mirror those on standardized test scores, suggesting teachers did not adjust their grading standards
in response to the dispersion of damages. A slight divergence emerges only for the effects of the
mean of damages in one robustness specification (Figure A2). The theoretical model will allow for
school-level responses with respect to average damages (without imposing them), so these patterns
are not inconsistent with the theoretical framework I will propose.
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Figure 9: Marginal effects on standardized eighth-grade test score and GPA by baseline test score,
estimated using school-by-cohort fixed effects. Notes: Marginal effects of leave-one-out average
damage among classmates and leave-one-out standard deviation of damage among classmates. Effects
obtained from estimating the regression model in equation (3’). 80% and 90% confidence intervals
reported.

of damages are close to zero, and these null effects are precisely estimated. The ef-
fects of mean damage have 95% confidence intervals of [—0.014,0.011] for Language
and [—0.022,0.009] for Mathematics; the effects of the standard deviation of dam-
ages have confidence intervals of [—0.015,0.043] for Language and [—0.030, 0.041] for
Mathematics, indicating that we cannot statistically reject only small changes to cur-
riculum coverage.

The lack of instructional pace adaptation suggests that the mitigating efforts taken
by schools in response to the average level of damages among their students did not
take the form of teachers slowing down. Moreover, this evidence does not support the
notion that in classrooms with higher damage dispersion, teachers reduced the instruc-
tional pace to focus on the lower-performing students, which could have explained the
positive impact of damage dispersion on the achievement of lower-prior-achievement

students and detrimental impact on that of higher-prior-achievement students.

4.1.3 Reallocation of school resources

The positive impacts of mean damages on achievement suggest schools overcom-
pensated earthquake impacts by allocating resources towards activities supporting

learning. Additionally, schools may have adjusted in ways that differentially affected
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Table 7: Impacts of earthquake damages on the percentage of the curriculum
covered in class

(1 2)

Language Mathematics

Effect of average damage among classmates -0.001 -0.006
(0.006) (0.008)
Effect of standard deviation of damage among classmates 0.014 0.006
(0.015) (0.018)
Observations 2291 2335
R? 0.025 0.037

Notes: Schools in regions affected by the earthquake, located more than 1 km from the coast. Pa-
rameters 6 obtained from OLS estimation of regressions (3), where the unit of observation is the
classroom. The outcome variables were collected through surveys administered to Language and
Spanish teachers. They are the percentages of the Language (column 1) and Mathematics (column
2) curricula they covered. Regressions include school and classroom characteristics: public school
dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), co-
hort and public dummies interacted, class size, classroom fractions of females and of local residents;
classroom average and standard deviation of fourth-grade test scores and of parental education; all
pairwise within-classroom covariances between: damage, gender, parental education, local residency,
lagged test score. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.

students, for example, by reallocating resources towards activities supporting lower-
achieving students. Such adjustments could have mediated the heterogeneous effects
of damage dispersion. To examine this mechanism, I analyze how the earthquake
affected school expenditures.

I use school expenditure data reported under Chile’s Subvencion FEscolar Prefer-
encial (SEP) law, which provides additional funds to schools serving economically
vulnerable students. Participating schools must report to the Ministry of Education
how these resources are used. I link these reports for 2009 (pre-earthquake) and 2010
(post-earthquake, as the earthquake occurred just before the start of the 2010 school

t.31 Three caveats apply. First, SEP resources represent

year) to the main datase
only part of total school funding. Second, expenditure data are available only for
SEP-participating schools. Third, the data exclude any additional emergency funds
granted after the earthquake. Nonetheless, the analysis offers insights into how schools
may have reallocated resources in response to the shock.

Appendix Table A16 reports summary statistics for all schools in the main esti-
mation sample and for those with non-missing expenditure data, representing 42% of
the sample schools. As expected, the latter are more likely to be public and rural and
to serve students with lower grade-4 test scores and parental education. There are no
differences in earthquake shaking in the schools’ towns (last row). Appendix Table
A17 shows no evidence of selective attrition: the treatment variables (the within-
school averages of the classroom-level mean and standard deviation of damages) do

not predict missing expenditure data (column 1). Therefore, estimating regression (2)

31The school year in Chile runs from March to December. I do not have access to expenditure
data for 2011, the year in which the other outcomes in this study are measured post-earthquake.
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on the school-level dataset, with expenditures as outcomes, provides internally valid
estimates of how the damage variables influenced schools’ use of SEP resources.

In the years 2009-2010, SEP funds amounted to around CLP 68.3 billion (~ USD
134 million in 2010) across all SEP-participating schools. As shown in Appendix Table
A18, personnel was the biggest expenditure category (81%), followed by subcontracted
consultancies providing technical and pedagogical support (18%), and expenditures
for unforeseen events and infrastructure projects (less than 1%). Table 8 reports the
main results. First, the standard deviation of classroom damages had no statistically
significant effects on SEP spending. The impacts are imprecisely estimated, and confi-
dence intervals include economically meaningful reallocations, so we cannot conclude
that the response was null. At the same time, the results provide no statistically
strong evidence that schools reallocated resources toward activities aimed at sup-
porting lower-performing students (such as tutoring), which could have explained the
heterogeneous impacts of damage dispersion along the baseline test-score distribution.

Second, schools did adjust their SEP expenditures in response to the average level
of damages among their students, and the estimated effects are statistically signifi-
cant. Panel B (without controls for direct school damage) shows that more affected
schools spent more on external, non-ATE, consulting and less on new hiring and mis-

32 Because average student damages correlate with school-level

cellaneous expenses.
damages, Panel A includes controls for damage to school buildings to isolate the re-
sponse to students’ mean damages. The results suggest that schools reduced new
hiring while increasing spending on external consulting services, likely to avoid teach-
ing disruptions and sustain learning. New hires may have been postponed because of
the earthquake or deliberately avoided to preserve instructional continuity.

To better understand these adjustments, Figure 10 decomposes the “Fee-based
consulting (non-ATE)” and “Other” expenditure categories based on the detailed
descriptions of individual spending items reported by schools. The figure suggests that
resources were redirected toward assistants, educational and psychological support,
and workshops (left panel). In turn, miscellaneous expenses, which were reduced in
more affected schools, primarily included compensation, bonuses, and training (right
panel).

Overall, the evidence suggests that schools responded to the average level of dam-
ages by reallocating resources from recruitment costs toward activities directly linked
to student support and learning recovery. For damage dispersion, there is no statis-
tically strong evidence that schools adjusted their expenditures in ways that would

explain its heterogeneous achievement effects.

32ATE (Asesoria Técnica Educativa) are accredited consultancies that support schools’ improve-
ment plans required under the SEP law.
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Figure 10: Breakdown of “Fee-based consulting (non-ATE)” and “Other” expense categories. The
y-axis reports the total annual expenditure for each subcategory across all SEP schools in the country
in 2010, expressed as a fraction of the total annual expenditure in the broader “Fee-based consulting
(non-ATE)” (left panel) and “Other” (right panel) categories in these schools. Subcategories were
constructed using a text classification of detailed descriptions of individual spending items. Ex-
penditures that could not be specifically categorized due to unclear descriptions are included in the
“Other” subcategory. Within each panel, the “Compensation” subcategory may encompass expenses
related to compensation for personnel listed explicitly in other subcategories, such as assistants, so-
cial workers, and support teachers for consulting expenses (left panel) and administrative and IT
staff for other expenses (right panel). However, due to limited detail in expenditure descriptions,
these compensation costs could not be allocated to more specific subcategories.

4.2 Student-level factors
4.2.1 Perceived cost of effort

Table 9 show impacts on potential student-level mediators, using survey data (sur-
vey items and variable construction are described in Appendix A.2). The first column
presents impacts on students’ perceptions. A one-standard-deviation increase in dam-
age to a student’s home significantly increased their perceived cost of study effort, by
around 0.03 standard deviations, up to 22 months post-event. At the same time,
their ability to engage with the course material diminished, insignificantly, by 0.01
standard deviations (second column). Potential reasons include logistical disruptions
and psychological challenges. The medical literature has reported that earthquake

survivors, especially children, are prone to long-lasting Post Traumatic Stress Disor-
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der (PTSD).3 In the case of the 2010 Maule earthquake, children living in strongly
shaken areas displayed significantly higher PTSD rates compared to similar children
in unaffected areas;** and adverse impacts on psychological functioning were detected
among preschoolers and primary school students.®> The results, therefore, are consis-
tent with the notion that post-earthquake trauma affects human capital accumulation
in schools.?

Keeping fixed a student’s home damage, an increase in the average damage suf-
fered by peers had a negative effect on own effort cost (Table 9 column 1). This
result aligns with the previous findings on achievement impacts and likely reflects
schools’ compensatory actions. Keeping fixed a student’s home damage, an increase
in the damage dispersion in the classroom had a positive effect on own effort cost,
suggesting that learning was more difficult in classrooms with larger damage disper-
sion, consistent with the negative average effect of dispersion on achievement. The
impacts on course engagement of the mean and the standard deviation of damages

are imprecisely estimated; we cannot rule out null effects.

Table 9: Impacts of earthquake damages on student cost of effort and course en-

gagement
(1) 2
Effort cost Course engagement
Effect of damage to own home 0.027* -0.014
(0.016) (0.016)
Effect of average damage among classmates -0.034* 0.009
(0.020) (0.019)
Effect of standard deviation of damage among classmates 0.054* 0.030
(0.029) (0.040)
Observations 183380 159642
R2 0.044 0.020

Notes: Students enrolled in schools in regions affected by the earthquake and resding more than 1 km from the
coast. Parameter § obtained from OLS estimation of regression (3). The outcome variables, perceived cost
of study effort and engagement with the course, are built from items from the survey administered in eighth
grade, using the procedure described in Appendix A.2. Regressions include student and classroom character-
istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school town,
parental education, age of household head, dummy for region of residence. Classroom characteristics: public
school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and
public dummies interacted, class size, classroom fractions of females and of local residents; classroom average
and standard deviation of fourth-grade test scores and of parental education; all pairwise within-classroom
covariances between: damage, gender, parental education, local residency, lagged test score. Damages’ mean
and standard deviation are leave-one-out moments. Standard errors clustered at the school-by-cohort level.
*** p<0.01, ** p<0.05, * p<0.10.

33See, for example, Altindag, Ozen et al. (2005), Lui et al. (2009), Giannopoulou et al. (2006).
Children living closer to earthquake epicenters have been found to experience more severe PTSD
(Groome and Soureti (2004)).

34Zubizarreta, Cerda, and Rosenbaum (2013) measured PTSD using the self-rated Davidson
Trauma Scale, administered 3-4 months post-earthquake, and compared students in similar-quality
homes but with varying exposure to shaking.

35See Dutta et al. (2022), who find impacts up to one year after the earthquake. See also Gomez
and Yoshikawa (2017).

360ther papers have estimated earthquake impacts on student achievement (e.g. Shidiqi, Di Paolo,
and Choi (2023)), but exposure has typically been measured solely through location, abstracting from
housing quality conditional on location, which I find to be an important source of inequality.
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4.2.2 Peer interactions with competitive preferences

Schools may not have responded to the dispersion in damages, suggesting a potential
role for peer interactions. To better understand these spillovers, I examine whether
damage dispersion changed GPA rankings in the classroom. Figure 11 shows that
there were no statistically detectable impacts along the baseline test score distribution,
which stands in stark contrast to the impacts on GPA. Higher-performing students
experienced relatively large drops in GPA, but not in GPA rank. These results are
consistent with the notion that students have competitive preferences: they care about
their rank in terms of GPA, an achievement measure observable to classmates. Faced
with changed study effort costs among their peers, they adjusted their effort and

learning, but not at the expense of classroom ranking.
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Figure 11: Marginal effects of damage dispersion on within-classroom GPA rank by baseline test
score. Notes: GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA).
Marginal effects of the leave-one-out standard deviation of damage among classmates. Effects ob-
tained from estimating the regression model in equation (3). 90% and 80% confidence intervals
reported. Appendix Figure A3 reports the impacts of average damage.

The idea that students who are around thirteen years old, like those in this study,
may care about their rank is consistent with a growing body of evidence. Competi-
tive preferences can emerge early in life and strengthen through adolescence (Sutter
and Glatzle-Riitzler (2015); Page, Sarkar, and Silva-Goncalves (2017)). In schools,
several benefits to a higher rank justify why students may value their rank relative
to peers. A higher within-school rank in elementary school can improve self-concept
(Marsh et al. (2007); Zeidner and Schleyer (1999)), bring immediate benefits such as
improved executive function, higher happiness, and more favorable teacher percep-
tions of ability (Carneiro et al. (2025)), and yield longer-term gains in achievement,

self-esteem, educational attainment, and earnings (Murphy and Weinhardt (2020);
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Denning, Murphy, and Weinhardt (2023); Ladant et al. (2024)). Rank in high school
has positive effects on aspirations, future educational attainment, and later-life health
and social behaviors (Elsner and Isphording (2017, 2018)). These wide-ranging re-
wards, therefore, suggest that rank concerns could arise in school even when rank is
not formally rewarded.

Concerns for rank, in turn, could cause spillovers from peer damages. If disruptions
to peers affect their ability to compete by making their effort more costly, they change
the competition incentives in the classroom, triggering effort responses. Section 5

formalizes this intuition through a theoretical model.

4.3 Summary

At the student level, damages appeared to hinder the accumulation of human capital.
At the classroom level, there is no evidence of instructional adaptation. At the school
level, schools with on average more severely affected students reallocated resources
towards student support and learning recovery, consistent with the higher achieve-
ment observed in those schools. However, neither expenditure nor instructional data,
nor the specifications with school-by-cohort fixed effects, convincingly support the hy-
pothesis that schools responded to how dispersed damages were among their students.
There is no statistically strong evidence that larger damage dispersion led schools to
reallocate resources or teachers to target instruction towards lower-achieving students.
The heterogeneous spillovers from damage dispersion on achievement, therefore, may
arise from peer-to-peer interactions rather than institutional responses. The lack of
shifts to GPA rank despite shifts to learning suggest peers’ concerns for rank may
underpin peer-to-peer interactions, an idea consistent with existing evidence on the

early onset of competitive preferences and on the benefits of a higher rank in school.

5 A potential mechanism: peer interactions

In this section I propose a conceptual framework to interpret the empirical findings.
I follow the approach adopted in Blume, Brock, Durlauf, and Jayaraman (2015) of
micro-founding observed spillover effects through a model of behavior.

In the model, students are heterogeneous with respect to a trait that affects how
easy or difficult it is to exert study effort; utility-maximizing effort decisions depend

on this trait, which I refer to as effort-cost type.?” In line with the literature on

3TUnlike Blume, Brock, Durlauf, and Jayaraman (2015), who assume that students choose achieve-
ment directly, I assume that students choose effort, and that effort affects achievement monotonically
like in Fruehwirth (2013). This assumption allows me to derive model implications in terms of the
observed achievement outcomes. Several studies show empirically that effort increases achievement
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the technology of skill formation, which views knowledge acquisition as a cumulative
process where current investments depend on a lagged stock of skills and lagged in-
puts (e.g., Todd and Wolpin (2003); Cunha and Heckman (2008); Cunha, Heckman,
and Schennach (2010)), the model assumes that the effort-cost type varies across stu-
dents depending on their prior test scores and socioeconomic characteristics (proxying
lagged inputs).®® Additionally, motivated by the evidence that home damages from
the earthquake increased students’ perceived cost of study effort (Table 9), I assume
that damages affect the effort-cost type as well.

Building on this framework for the student’s problem, I present a new theory of
peer influence in which exogenous changes to peers’ effort-cost types affect a student’s
own outcomes through a competition motive. When students care about relative
performance, changes in peers’ effort-cost types change the competition students face,
affecting their effort choices and achievement. Empirically, this manifests as a peer
effect: exogenous variation in the determinants of peers’ effort-cost types, holding
fixed a student’s own type, causally affects a student’s own achievement. In this study,
the exogenous variation stems from earthquake shocks. The model’s insights, however,
are independent of the source of variation in peers’ effort-cost types. In particular,
whenever prior test scores determine students’ effort choices, the model implies that
exogenous changes to peers’ prior test scores can generate spillover effects if students
have rank concerns. The model, therefore, offers a new framework to interpret ability
peer effects, a major focus of the empirical peer effects literature.

I build on the status game model developed by Hopkins and Kornienko (2004),
where individuals choosing costly consumption care about consumption both in abso-
lute and relative terms, and adapt it to the classroom setting, where students choosing
costly effort care about achievement both in absolute and relative terms. While Hop-
kins and Kornienko (2004) study how exogenous changes in the within-group income

distribution affect the equilibrium distribution of consumption, I study how exogenous

(Stinebrickner and Stinebrickner (2004, 2008); De Fraja, Oliveira, and Zanchi (2010)), providing
strong empirical support to this model’s assumption. Good measures of effort are typically unavail-
able in large scale administrative datasets like the ones used in this study, as they require costly data
collections to obtain detailed time diaries; researchers have been able to collect them from smaller
samples (see e.g. Conley, Mehta, Stinebrickner, and Stinebrickner (2024)).

38The dependence of current investments on past investments can be micro-founded in different
ways. In the studies quoted in the text, it is through the impact of past investments on the current
period’s initial skills stock, which is complementary with current investments in the skill production
technology. Recently, Caucutt, Lochner, Mullins, and Park (2025) developed a dynamic life-cycle
model of parental investments into child skills in which investments depend on past investments not
through technological complementarity, but indirectly through the marginal utility of consumption.
In contrast to the literature on the technology of skill formation, my study does not aim to estimate
the parameters of the achievement production function; its focus is instead on comparative statics
from changing the distribution of peers’ effort-cost types. In my model, letting students differ in the
cost or productivity of effort would yield the same testable implications.
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changes in the within-group distribution of effort-cost types affect the equilibrium dis-
tribution of achievement. Additionally, I adapt the model to the earthquake context
by incorporating into the achievement technology schools’ mitigating responses to the
severity of disruptions, and by allowing damage to a student’s home to act as an
additive shock to the student’s effort-cost type. This feature implies that classrooms
with different damage distributions, ceteris paribus, also have different distributions
of effort-cost types, triggering equilibrium responses through the competition motive.

I show that the theory can explain the full set of empirical findings, including

those that school-level factors alone cannot explain, in a simple and intuitive way.

5.1 A theory of peer influence

Within a reference group [ there is a continuum of students, each indexed by 7. Stu-
dents are heterogeneous in terms of effort-cost type ¢;, which is distributed in the
reference group according to a twice continuously differentiable cumulative distribu-
tion function (c.d.f.) G;(-) on [g, ¢, with ¢, > 0. The reference group is where
interpersonal interactions occur, such as the classroom.

Students choose how much costly effort e; to exert, and effort increases GPA ;.
Utility is increasing in own GPA and in the GPA rank in the reference group. While
the empirical analyses used both GPA and a standardized test score as outcome
measures, the theory focuses on GPA as its rank is in principle observable by peers.
Students with a higher effort-cost type ¢; incur a larger cost of exerting study effort
for each effort level. Cost type ¢; captures all student characteristics, environmental,
psychological and socioeconomic, that affect the ease or difficulty with which a student
exerts study effort. For each student 7, it depends on her baseline test score a;, family

characteristics ;, and damages her home incurred from the earthquake d;:3°

C; = 90 + 01(11' + QQCL’i + 93dz (4)

The cost type ¢; is assumed to be decreasing in the baseline test score a; and increasing
in the damages d;, assumptions that are supported in the data (Table 9 and Appendix
Figure A4). Each student’s cost type is private information, but the distribution of
cost types in the reference group, G(+), is common knowledge. Appendix C.3 provides
an extension to the model where ¢; also depends on an idiosyncratic shock, ¢;, that is

unobserved by the econometrician. There are no distributional assumptions on Gj(-).

39Tn this section, I use the notation x; to denote the vector of student characteristics excluding the
fourth-grade standardized test score a;. x; includes parental education, student’s gender, whether
the student resides in the school town, region of residence, public school and rural school attendance.
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The cost of effort is determined by a strictly increasing and strictly convex function

of effort: q(e;;c;). Higher cost types ¢; incur larger costs for every level of effort e;,

9q(ei\ci)
dc;

is (weakly) higher:

> 0 for all e;. Moreover, at higher cost types the marginal cost of effort
%q(es;ci)
dciOe;

ie.,
> 0. Effort increases GPA according to the production

function:

y(ei) = (ao + a3 (udl))ei + ug + uq (,udl), with ag + aq (,udl) > O, (5)

where jig; is the mean of damages among peers in the reference group.?® The functions
ai(pa) and wy(pg) capture mitigating, compensatory actions taken by schools in

41 Mitigation is allowed for but not

response to mean damages in the classroom.
imposed, as the u; and a; functions are allowed to be flat, specifically, it is assumed
that % > 0 and % > 0. Mitigation is allowed to affect either the level of
achievement (through w;), or the productivity of effort (through a;), or both; the
model is agnostic about which channel drives mitigation efforts. Motivated by the
evidence, I do not let mitigation depend on the standard deviation of damages.

The utility function for student ¢ can be decomposed into a utility that depends
only on own GPA y; in absolute terms and on effort cost ¢; = q(e;, ¢;), w; = V(vi, i),
and a utility that depends on GPA rank in the classroom. Function V' does not
have an ¢ subscript because it is the same for all students. The utility from GPA
in absolute terms net of effort cost is non-negative, strictly increasing and linear in
GPA, strictly decreasing and linear in ¢;, and it admits an interaction between utility
from GPA and from effort cost such that at higher costs, the marginal utility from
GPA is (weakly) lower (Vi3 < 0).#? No functional form assumptions are made on ¢(-)
or on the interaction between y; and ¢;; the results are valid under a broad class of
preferences. For example, students with lower effort-cost type ¢; may (or may not)
have higher marginal utilities from GPA.

A student’s GPA rank in the classroom is given by the within-classroom cumulative
distribution function (c.d.f.) of GPA computed at her own GPA, Fy,(y;), where
[, like before, refers to the classroom. This is the fraction of students with GPA

lower than one’s own. Because GPA is an increasing deterministic function of effort,

400ther models of competition between students in the literature make the same assumptions
that students are characterized by a type that affects their cost of producing achievement, and that
achievement depends only indirectly on their type through the investment choice (Bodoh-Creed and
Hickman (2024, 2018); Cotton, Hickman, and Price (2022)).

41 Alternatively, one could assume that the mitigating action in response to pug directly affects
the average cost type in the reference group, thus indirectly affecting y; in equilibrium. The model’s
implications would stand.

42 All results are valid under an alternative set of assumptions for the utility V' and cost function
q. These are: strictly quasi-concave utility from GPA, strictly decreasing and linear utility from cost
of effort (Vo < 0,Vas = 0) with a linear cost function (& = 0) and additive separability between

de2
utility from GPA and cost of effort (V12 = 0).
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GPA rank equates effort rank: Fy;(y(e;)) = Fg(e;), where Fg(:) is the within-
classroom c.d.f. of effort. The utility from rank, S(Fy(y(e;))), equals F(e;) + ¢,
with ¢ > 0. Overall utility U(y;, ¢;) is the product of utility from GPA and GPA
rank: V(y;,q;) (Fri(e;) + ¢). Each student chooses effort to maximize overall utility.

In a symmetric Nash equilibrium in pure strategies, every student follows the
same strategy e;(c;) that is such that, given this common strategy, no student i can
increase her expected utility by deviating unilaterally. Focusing on such equilibria,
and initially assuming that the equilibrium strategy e;(¢;) is strictly decreasing and
differentiable with inverse function ¢;(e;), GPA rank in equilibrium can be rewritten as
1-G, (cl(ei)), and 7’s utility as V(y(ei), q(e;, cz)) (1 -Gy (cl(ei)) +¢) 43 The first-order

condition then is:

mg. GPA increase mg. GPA rank increase

) V(yi, @i g N 9
Vilao + ar(ra)) + (41, 4:) q

g T Gilalen) + g N el = g O
mg. ut. from increased GPA ~ ~—

mg. ut. from increased GPA rank

J/

mg. cost

The model is an application of the status game in Hopkins and Kornienko (2004).4*
Proposition A1 in Appendix C.2 establishes equilibrium existence and uniqueness and
that the equilibrium strategy is indeed strictly decreasing, confirming equation (6) as

the appropriate first-order condition.

5.2 Model predictions and their empirical counterparts

Impacts of mean damages on GPA. The first set of model implications regards
the impacts on GPA of increasing mean damages in the classroom while preserving
damage dispersion. I consider an identical increase in d; for all classmates. Consider
two classrooms A and B with identical distributions of a; and z; (i.e., identical peer
compositions), but with different damage distributions D(-): Dg(d) = Da(d — k) Vd,
where k is a positive constant. That is, the damage distribution in classroom B is
shifted to the right by k.

43Strict monotonicity and differentiability of equilibrium e;(c;) are initially assumed, and subse-
quently proven (see the proof of Proposition Al in Appendix C.2). GPA rank can be written as
1 — Gi(¢i(e;)) in equilibrium because the probability that a student 7 of type ¢; with effort choice
e; = e;(¢;) chooses a higher effort, obtaining a higher GPA, than another arbitrarily chosen student
J in classroom [ is Fgy(e;) = Pr(ei > el(cj)) = Pr(e;l(ei) < cj) = Pr(cl(ei) < cj) =1-G, (cl(ei))
where G(+) is the c.d.f. of ¢; in classroom [ and ¢;(-) = ¢; '(:). The function ¢; maps e; into the
type ¢; that chooses effort e; under the equilibrium strategy, it exists by strict monotonicity and,
therefore, invertibility of e;(-).

#For related games of status models, see also Hoppe, Moldovanu, and Sela (2009) and Moldovanu,
Sela, and Shi (2007).
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Proposition 1. Let E4|-] and E[-] denote classroom-specific expectations. Assume
that equilibrium effort schedules in classrooms A and B do not cross after the uniform

shift in cost types. At the Nash equilibrium in each classroom | = A, B:

(i) If 2 T ac =0 and % = 0, then the model does not deliver a sharp prediction for
the szgn of Eplyi] — Ealyi].
(i) If -2 o, ac =0 and d‘” > 0, then Eply:] > Ealyi].
(iii) If 2 3ca > 0 and d‘“ > 0, then Iy > 0 such that if 88 L < ~, Egle;] > Ealeil,
50 that Eglyi] > EA[yZ] If 2 Fe; ac >, then Eple;] < EA[eZ] and Egly:] > Ealyi

or Egly;] < Ealyi| depending on the magnitudes of d‘“ and j;“ , i.e. on whether

school action compensates for the decrease in effort.
() If 8324 0 and dle = 0, then Egle;] < Ealei], and Eply;] > Ealy] or

du1

Eply)l < Ealyi] depending on the magnitude of § -, t.e. on whether additive

compensatory action through u, compensates the decrease in effort.

Proof: see Appendix C.2.

Proposition 1 states that the impacts on GPA of increasing mean damages in the
classroom through a dispersion-preserving shift in the damage distribution depend on
schools’ compensatory action.

If schools do not implement multiplicative compensatory action (CZ% = 0) and
if the marginal effort cost increases with own type, then the effect on GPA will be
positive or null if additive compensatory action (over)compensates for the decrease in
effort, negative otherwise. If instead the marginal effort cost does not vary with own
type, the model is agnostic.

If schools adopt multiplicative compensatory action (% > (), then the impact on
GPA will be positive provided each student’s marginal effort cost does not vary with
own type. If it does, then the impact on GPA will still be positive provided effort
cost increases with own type sufficiently slowly such that effort does not decrease

<O < 86 80
over-compensates for any decrease in effort, otherwise the impact on GPA will be

< 7), or provided compensatory action (multiplicative, additive, or both)

negative or null (in the case of exact compensation).

This result rationalizes the empirical findings that GPA and test scores increased
with mean damage, keeping classroom composition constant, suggesting schools took
compensatory actions (Table 2), and that mean damages had insignificant, potentially
negative impacts once the effects of schools’ compensatory actions are removed using
school-by-cohort fixed effects (first column of Figure 9), although the confidence bands
for these estimates are large. The result also rationalizes the evidence that schools
reallocated SEP resources towards student support in response to mean damages
(Section 4.1.3).
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Impacts of dispersion in damages on GPA. The second set of model implica-
tions regards the impacts on GPA of increasing damage dispersion in the classroom
while keeping mean damages constant. I consider an increase in dispersion in the uni-
modal likelihood ratio (ULR) sense. Consider two classrooms A and B with identical
distributions of a; and z; (i.e., identical peer compositions), but with different damage
distributions D(-): D4 >=yrLr Dp, that is, the ratio of the densities L(d;) = Z;}gg is
strictly increasing for d; < d and strictly decreasing for d; > d for some d € [d,d)

and piga = pga. In particular, if B has the same mean but higher variance than A,
then Dy =yrr Dp. We restrict attention to changes in the dispersion of d such that
the effort-cost-type distributions satisfy the same ULR order, G4 »=yrr Gg, with
cutoff point ¢ € [¢,¢). Figure 12 visualizes the effort-cost type distributions of two
classrooms where the distributions of a; and z; are identical (blue density functions in
the two top panels), and the damage distribution in classroom B is a mean-preserving
spread of that in classroom A. The resulting effort-cost type distribution in classroom

B is a mean-preserving spread of that in classroom A (bottom panel).

Proposition 2. (Adapted from Proposition 4 in Hopkins and Kornienko (2004)).
Let ya(c;) and yg(c;) denote the GPA each effort-cost type c¢; obtains at the Nash
Equilibrium choices of effort in classrooms A and B, and let ¢~ and ¢* denote the
extremal points of the ratio (1 — Ga(c;))/(1 — Gp(¢;)) over the interval [c,c|, where
c<c <ct<e Then:

(1) ya(ci) < yp(c;) for all ¢; € [cT,¢]; i.e., the damage dispersion increase raises
the GPA of high-cost-type students.

(it) ya(ci) > ygp(ci) for all ¢; € [¢, %), where ¢°%° € (¢,c¢) is the point where ya
and yp cross; i.e., the damage dispersion increase lowers the GPA of medium-
cost-type students.

(iii) ya(ci) > yp(c;) for all ¢; € [¢,¢) or ya(ci) < yg(c;) for all ¢; € [c, T%2), where

Cross2 c [

c ¢,c”) is the point where y4 and yg cross, i.e., the damage dispersion

increase may lower or increase the GPA of low-cost-type students.

Proof: see Appendix C.2.

This proposition states that when students have rank concerns, changing the dis-
persion of damages and, hence, of effort-cost-types has heterogeneous effects across
the cost-type distribution, because it affects differently the incentives to exert effort
of different students depending on their position in the distribution. Such heteroge-
neous effects arise even when the standard deviation of damages does not directly
enter the technology of achievement production, such as through an interaction with
effort. The intuition is that when students have rank concerns, the cost-type density

at one’s own type determines how easy it is to improve one’s rank. If there are more
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Classroom A, low damage variance Classroom B, high damage variance
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Figure 12: Effect of different damage shock distributions on the effort-cost type distributions of two
initially identical classrooms. Notes: The pre-earthquake effort-cost type distribution is represented
by a normal distribution X ~ N(0,0.15), drawn in blue. It captures the portion of effort-cost type
influenced only by student baseline test score and individual characteristics. After the earthquake,
the damage distribution in clagssroom A is described by D4 ~ N(1,0.21) and in classroom B by
Dp ~ N(1,0.38). The post-earthquake effort-cost type is the summation of component X (influenced
by student characteristics and lagged test score) and the damage. Specifically, for classroom A it
is given by Xpost,A = X + D4 and for classroom B by Xpost,8 = X + Dp, whose distributions are
drawn in red and green.

peers with a similar effort-cost type to one’s own, more students can be surpassed for
a marginal increase in effort, causing a higher marginal utility of effort. We expect
heterogeneous effects because increasing the type dispersion affects the type density
differently at different points, increasing it at the tails and lowering it in the middle
of the distribution, as can be seen in Panel (c¢) of Figure 12.

High- and low-cost-type students face an incentive to increase effort, and medium-
cost-type students to decrease it, because of how the type density changes at their
type level when the type dispersion increases. The model predicts that high- and
middle-cost-type students behave according to these incentives. Low-cost-type stu-
dents, however, also face the opposite incentive to decrease effort due to the lower
competition from above (from the middle-cost types), which allows them to save on
effort cost while not sacrificing rank. The model is agnostic as to which incentive

prevails for low-cost-type students.
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Lemma 1. Proposition 2 can be recast in terms lagged test score instead of effort-cost

type. Given equation (4), if x; = x; and d; = d; fori # j, then ¢; > ¢; <= a; < q;.

Proposition 2 and Lemma 1 rationalize the empirical findings that, keeping a
student’s own characteristics and damage constant, achievement and GPA decreased
for high-baseline-test-score students and increased for low-baseline-test-score students
as an effect of increased damage dispersion, holding classroom composition constant
(Table 6 and Figures 8 and 9).%

Impacts on GPA rank. Changing the classroom distribution of damages changes
that of effort-cost types. What are the implications on GPA rank, when students draw
utility from rank? Consider two classrooms A and B with identical distributions of
a; and z; (i.e., identical peer compositions), but different distributions of damages d;.
The resulting cumulative distribution functions of effort-cost types, G4 and Gpg, are

assumed to be twice continuously differentiable, so that Proposition A1l applies.

Proposition 3. Let ya(c;) and yg(c;) denote the GPA each cost type ¢; obtains at
the Nash Equilibrium choices of effort in classrooms A and B. Let Fy(-) denote the
c.d.f. of GPA in classroom J € {A, B}, and Fr(-) the c.d.f. of baseline test score
a; in classrooms A and B. Then, F(yi)|ea = Fr(ai)|sq VJ, ai; i.e., at given values
of x; and d;, rank in GPA conditional on the baseline test score is identical across

classrooms, for all baseline test scores.

Proof: see Appendix C.2.

Proposition 3 states that, keeping fixed characteristics x; and damage d;, the
mapping between a student’s baseline test score and her classroom GPA rank stays
constant, regardless of the distribution of damages in the classroom. As we change
the damage distribution, students with higher baseline test scores — ceteris paribus
— remain those with higher GPA rank.

This result rationalizes the empirical finding that changing the mean or the stan-
dard deviation of damages in the classroom, controlling for students’ characteristics
and individual damages, does not have statistically detectable effects on GPA rank
at any point of the baseline test scores distribution (Figures 11 and A3), even when

it affects GPA.

45 Appendix C.1 provides the regression specification that holds classroom composition constant
and that is such that, under the specification for the effort-cost type in equation (4), shifts in the
classroom mean (Proposition 1) or standard deviation (Proposition 2) of damages translate into
shifts in the classroom mean or standard deviation of effort-cost types. Appendix C.3 shows under
what assumptions this specification remains valid when the effort-cost type is allowed to depend on
an unobserved idiosyncratic shock.
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5.3 Summary of results

Schools” mitigating actions in the achievement production function rationalize the
positive impacts of mean damages on achievement and are consistent with observed
school resource reallocations. To account for the remaining empirical patterns, I model
social interactions among students. The model of rank concerns not only intuitively
explains the lack of shifts to GPA rank despite shifts to GPA, but also rationalizes
the heterogeneous effects of damage dispersion among students with different initial
performance. These seemingly unrelated findings can be explained through one simple
modification to standard models of social interactions in schools: the introduction of
a desire to compete for grades. The theory provides insights into the nature of social
interactions in schools that apply beyond the quasi-experimental empirical context

used to formulate it.

6 Conclusions

Across many education systems, peers have been shown to influence a student’s own
academic achievement (Sacerdote (2011)). Understanding the mechanisms behind
this influence could shed light on how school environments shape early differences
in achievement, which persist over time with major lifelong consequences (Cunha,
Heckman, Lochner, and Masterov (2006); Heckman and Mosso (2014)). But empirical
challenges have hindered progress towards this goal (Blume, Brock, Durlauf, and
lIoannides (2011)). This article exploits a new empirical context with rich data on how
students and schools responded to earthquake-induced study disruptions to examine
how disruptions spill over to peers’ learning and develop a new theory of peer influence
in schools.

Exploiting the context of one of the most violent earthquakes ever recorded and
detailed data on the disruptions to each student’s home environment, the study finds
that disruptions can lower the reported ease of exerting study effort, with negative
consequences for achievement that persist for at least 22 months. Notably, such dis-
ruptions can spill over to classmates, affecting their achievement.*® Schools mediated
some, but likely not all, of these spillover effects, suggesting a possible mediating
role for peer interactions. Following Blume, Brock, Durlauf, and Jayaraman (2015),
I micro-found the observed spillovers through a model of student interactions, that
also allows for school mitigation, and I derive comparative statics that rationalize the

empirical findings. I show that the empirical evidence is consistent with a mode of

46There is evidence that environmental risks can spill over to classmates also in the context of
lead exposure (Gazze, Persico, and Spirovska (2023)).
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interaction that has not received much attention in the peer effects literature before:
competition for classroom rank. A desire to compete implies that moments beyond
the mean of peer characteristics matters, which is an empirical fact across several
settings.®’

The results offer new insights for policy. Peer assignment policies, such as tracking
students by ability, are among the most commonly studied in the schooling context
(e.g. Duflo, Dupas, and Kremer (2011); Garlick (2018)). My results suggest that their
impacts could vary depending on whether performance rank is intrinsically or extrin-
sically rewarded. Ability tracking may improve the achievement of all students, even
those in the lower-tracks, in settings in which students care about their performance
rank, by increasing the number of nearby competitors. There are several reasons why
students may value rank: competitive preferences emerge early on, and a growing
body of evidence shows that class rank offers immediate and long-term benefits. In
many education settings, intrinsic rank concerns are reinforced by explicit rank-based
incentives. Teachers often grade on a curve (Calsamiglia and Loviglio (2019)), and
higher education admissions frequently rely on within-school rankings (Horn, Flo-
res, and Orfield (2003); Grau (2018); Carlana, Miglino, and Tincani (2024); Tincani,
Kosse, and Miglino (2025)). The mechanism identified in this paper, therefore, may
operate broadly.

Much is still unknown about the interaction between rank-based rewards and
classroom allocation rules. Measuring intrinsic rank concerns and extrinsic rank re-
wards in schools could become a way to inform the targeting of grouping policies.
Future research could also compare the achievement gains from optimally designing
rank rewards and group allocations to the potential labor market losses from lower
prosociality due to enhanced competition (Kosse and Tincani (2020); Chen and Hu
(2024); Kosse, Rajan, and Tincani (2025)). Answering these open questions could
significantly advance our understanding of social interactions in school, and expand

our toolkit of cost-effective policy interventions.

47In contrast, a desire-to-conform assumption underlies empirical identification strategies that
contrast within- and across-group variances in outcomes to identify excess variance across groups
that cannot be explained by individual and group heterogeneity and/or selection (Graham (2008) and
Glaeser, Sacerdote, and Scheinkman (1996)). Whenever a desire to compete is the true interaction
mode, such methods may fail to detect peer effects when they are present, a false negative result.
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Appendix

A Measurements

A.1 Predicting Seismic Vulnerability of a Household’s Home

This section describes the model used to predict seismic vulnerability as a function
of household characteristics.

For each household in the census data (restricted to households with at least
one school-aged child), I link the vulnerability class distribution obtained from the
latent-class analysis to the household characteristics that are available both in the
census and in the education data, which I indicate with x; here. These are: the
age of the household head, the average years of education of mothers and fathers,
the region of residence. I then estimate linear regression models using census data
restricted to households with at least one school-aged child. The outcome variables
are pg, the probability that household i lives in a home of seismic vulnerability j €
{LV, MV, HV}, obtained from the latent-class analysis. The independent variables
are parental education and age with exponents one, two and three, and region of
residence. All independent variables appear uninteracted and interacted with each
other (from pair-wise interactions to the interaction of all variables).

I apply the estimated predictive regression model to the education dataset to
obtain a predicted likelihood of belonging to each vulnerability class for each student
in my sample: ﬁf =p/(x;), j = LV,MV,HV *®

A.2 Survey Measures of Perceived Cost of Study Effort and

Course Engagement

Students from both cohorts were asked to fill out a questionnaire when they were in
eighth grade, the grade in which outcomes were measured. The pre-earthquake cohort
filled it out in 2009 and the post-earthquake cohort in 2011. The questionnaire asked
about the ability to engage with the course and the perceived cost of study effort.
The structure of the questions was as follows: “Thinking of your experience in your
school, how much do you agree with the following statements?”, followed by a list of
statements. Between 2009 and 2011 the number of options in the Likert-scale options
changed. In 2009 the possible answers were “I agree very much”, “I agree”, “I do not
agree nor disagree”, “I disagree”, “I disagree very much”. In 2011 the middle option,

“I do not agree nor disagree”, was eliminated.

48Since the outcome variable is a probability, I assign a 0 to negative predictions and a 1 to those
above 1.



From the raw data, I build measures of perceived effort cost and engagement with
course content that are comparable across cohorts. For each statement I build two
dummy variables: one equal to 1 if a student answers “I agree very much”, and 0 if
she gives a different answer, and another equal to 1 if a student answers “I disagree
very much”, and 0 if she gives a different answer. Perceived effort cost is a categorical
variable recording whether a student reported agreeing very much, disagreeing very
much, or neither agreeing very much or disagreeing very much with the statement “It
costs me to concentrate and pay attention in class”, standardized to have mean 0 and
unit variance. Engagement with course content is the score based on the first principal
component of a principal component analysis on the six dummy variables obtained
from the students’ level of agreement with the statements listed at the bottom of
Table Al. I standardize the score to have mean 0 and unit variance.

The statements with which students recorded their level of agreement are the

following:
Construct Survey Items
Perceived cost of effort It costs me to concentrate and pay attention in
class.
Course engagement I do the homework even when it is difficult.

My notebooks are generally incomplete.
During class I take notes of all that our teachers
teach us.

Table Al: Constructs and Corresponding Survey Items. Note: Source: English translation of SIMCE
questionnaire administered to all 8" grade students.



B Additional Tables and Figures

Freq. Percent

Walls

Reinforced concrete, stone 85,152 9.21
Brick 371,457  40.16
Structural panels, prefabricated 72,285 7.81
Wood, lined partition 312,517 33.79
Eternit 41,283 4.46
Adobe, soggy mud 40,291 4.36
Makeshift materials 2,032 0.22
Roof

Roof tiles (clay, metal, cement) 80,385 8.69
Shingle (wood, asphalt) 23,101 2.50
Concrete slab 10,056 1.09
Zinc 380,640  41.15
Slate 421,946  45.61
Fiberglass, femocolor 612 0.07
Clickstone 6,172 0.67
Mud straw 73 0.01
Makeshift materials 2,032 0.22
Floor

Hardwood floor 30,183 3.26
Ceramic tiles 189,075 20.44
Wooden decking 334,824  36.20
Wall to wall carpet 48,905 5.29
Cement tiles 42,202 4.56
Plastics (flexit, linoleum, etc.) 196,327  21.22
Radier 78,813 8.52
Earthen 4,688 0.51

Table A2: Distribution of building materials in the population of households with at least one school-
aged child, N=929,647. Source: Chilean census, 2002.



Table A3: Descriptive statistics of damage measures (student and classroom level).

Mean SD N
Panel A: Post-earthquake cohort
(1) Student-level variables
Damage ratio (share of home collapsed, p.p.) 1.71 4.21 104299
Damage (USD) 1439.35 3539.66 104299
Damage relative to income 43 1.55 73741
(ii) Classroom-level variables
Class mean: damage ratio (p.p.) 1.86 44 4591
Class mean: damage (USD) 1566.68 3706.72 4591
Class mean: damage relative to income .46 1.26 4572
Class SD: damage ratio (p.p.) .63 1.38 4588
Class SD: damage (USD) 530.52 1163.74 4588
Class SD: damage relative to income A1 1.02 4555
Panel B: Pre-earthquake cohort
(i) Student-level variables
Damage ratio (share of home collapsed, p.p.) 1.57 4.04 105129
Damage (USD) 1323.51 3402.3 105129
Damage relative to income .39 1.33 88681
(i1) Classroom-level variables
Class mean: damage ratio (p.p.) 1.78 4.33 4352
Class mean: damage (USD) 1498.55 3644.52 4352
Class mean: damage relative to income .44 1.12 4349
Class SD: damage ratio (p.p.) 5 1.17 4333
Class SD: damage (USD) 417.78  987.43 4333
Class SD: damage relative to income 37 91 4327

Notes: Panel A restricts the sample to students and classrooms in the post-earthquake cohort, in earthquake
regions, and attending non-coastal schools (more than 1 km from the coast). Panel B applies the same geographic
restrictions to the pre-earthquake cohort. For this cohort, the damage variables do not reflect realised destruction
but rather predicted damage, i.e., the level of damage their homes would have suffered had they experienced the
2010 Maule earthquake. Income refers to annual income. It suffers from large attrition because it is collected by
the Ministry of Education through a take-home paper survey that the students must bring back to school. In
computing the classroom mean and standard deviations of damage relative to income, observations with missing
family income are ignored. The damage ratio is the portion of the home that collapsed, expressed in percentage
points. US dollars quantification of damages uses the 2010 USD to CLP exchange rate and depends on the
assumed cost of reconstructing a completely collapsed home. I assume the cost is equal to the average market
price of a 50m? home in Chile in 2010, which was USD 84,175 (see https://www.globalpropertyguide.com/
Latin-America/Chile/square-meter-prices). If a home suffered an unstandardized damage ratio of %, then
the damage in dollars is measured as x%- 84,175.


https://www.globalpropertyguide.com/Latin-America/Chile/square-meter-prices
https://www.globalpropertyguide.com/Latin-America/Chile/square-meter-prices

Table A4: Correlates of damages and of seismic vulnerability of students’ homes

(1) (2 ®3) (4)
Damage Prob H Prob M Prob L

Baseline test score 0.019*** -0.002*** -0.000 0.002***
(0.002) (0.000) (0.000) (0.000)

Female student 0.003 0.001*** -0.003*** 0.002***
(0.003) (0.000) (0.000) (0.000)

Student resides in same town as school’s 0.001 -0.002*** 0.014*** -0.012%**
(0.005) (0.000) (0.001) (0.000)

Age of parent-respondent 0.000 -0.002***  -0.001*** 0.003***
(0.000) (0.000) (0.000) (0.000)

Parental education (years) -0.027***  -0.037***  0.003*** 0.034***
(0.001)  (0.000)  (0.000)  (0.000)

Public school 0.061***  0.006***  -0.004***  -0.002***
(0.004) (0.000) (0.000) (0.000)

Rural school -0.054%**  0.011%**  -0.032***  0.021***
(0.006) (0.000) (0.001) (0.000)

POST -0.031**  -0.000 0.000 -0.000
(0.003) (0.000) (0.000) (0.000)

Observations 183145 183631 183631 183631
R? 0.456 0.963 0.696 0.821

Notes: Results from OLS regressions estimated on the sample of students in earthquake-affected regions
and residing more than 1 km from the coast. Damage is measured by the standardized damage ratio.
Seismic vulnerability is measured by the predicted probabilities that a student lives in a home of High
(column 2), Medium (column 3) or Low (column 4) seismic vulnerability class. The class probabilities
are predicted using the LASSO model in Appendix A.1. The baseline test score is the average between
the Mathematics and language SIMCE test scores in the fourth grade, standardized in the population of
test takers. All regressions include dummies for the region of residence. POST is a dummy equal to 1 if
the student belongs to the post-earthquake cohort, 0 otherwise. *** p<0.01, ** p<0.05, * p<0.10.



Table A5: Impacts of earthquake damages on standardized eighth-grade test
scores in Spanish and Mathematics

(1) 2)

Language Mathematics

Effect of damage to own home -0.029** -0.022*
(0.012) (0.012)
Effect of average damage among classmates 0.051*** 0.037**
(0.018) (0.018)
Effect of standard deviation of damage among classmates  -0.105*** -0.055
(0.040) (0.039)
Observations 181787 182403
R? 0.492 0.517

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km
from the coast. Parameter § obtained from OLS estimation of regression (2). The outcome variables
are Language (column (1)) and Mathematics (column (2)) SIMCE scores, standardized to have mean
0 and variance 1. Regressions include student and classroom characteristics. Student characteristics:
fourth-grade test score, gender, whether the student lives in the school town, parental education, age
of household head, dummy for region of residence. Classroom characteristics: public school dummy,
rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school
dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and
public dummies interacted, class size, classroom fractions of females and of local residents; classroom
average and standard deviation of fourth-grade test scores and of parental education; all pairwise
within-classroom covariances between: damage, gender, parental educational, local residency, lagged
test score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are
clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Table A6: Impacts of earthquake damages on standardized eighth-grade test score and
GPA, robustness to controls

Test score GPA (std)
1 (2 (3) (4)
Effect of damage to own home -0.050**  -0.028*** -0.016 -0.016

(0.021)  (0.011)  (0.014)  (0.014)

Effect of average damage among classmates 0.106***  0.049***  0.048**  0.043*
(0.032)  (0.017)  (0.022) (0.023)

Effect of standard deviation of damage among classmates  -0.195** -0.084** -0.105*  -0.086*
(0.076) (0.039) (0.056)  (0.049)

Observations 206244 180883 209331 183380
R? 0.110 0.589 0.036 0.251
Controls No Yes No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast.
Parameter § obtained from OLS estimation of regression (2). The outcome variables are measured in eighth grade. In
columns (1) and (2) the outcome is the average between Mathematics and Language SIMCE scores, standardized to have
mean 0 and variance 1, in columns (3) and (4) it is the GPA, also standardized. All regressions include controls for the
student characteristics used to predict home quality (age of household head, parental education, region of residence).
Columns (1) and (3) include no other control variables. Columns (2) and (4) include all standard controls. For
students, these are: fourth-grade test score, gender, whether the student lives in the school town, parental education,
age of household head, dummy for region of residence. For classrooms, these are: public school dummy, rural school
dummy, shaking intensity in school’s town (uninteracted, interacted with public school dummy, interacted with cohort
dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class size, classroom
fractions of females and of local residents; classroom average and standard deviation of fourth-grade test scores and
of parental education; all pairwise within-classroom covariances between: damage, gender, parental education, local
residency, lagged test score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are
clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.



Table A7: Descriptive statistics of classroom and school changes between grades 7 and 8

ALL SAMPLE MAIN ESTIMATION SAMPLE
Mean St.dev. N Mean  St.dev. N
v @ ® @ 6 ©
Switched school or classroom 11 .314 343625 A1 313 244435
Switched school .0854 .28 343625 .0849 279 244435

Switched classroom within school .0278 .164 314265 .0272 .163 223677

Notes: The main estimation sample corresponds to the sample of observations in earthquake-affected regions and
in non-coastal towns. A town is defined as coastal if it lies within 1km of the coast. The last row restricts the
sample to students who did not change school between grades 7 and 8.

Table A8: Impacts of earthquake damages on standardized eighth-grade
test score and GPA, all treatment variables measured in standard deviations

Test score  GPA (std)

(1) (2)

Effect of damage to own home -0.028*** -0.016
(0.011) (0.014)
Effect of average damage among classmates 0.044*** 0.039*
(0.016) (0.021)
Effect of standard deviation of damage among classmates -0.023** -0.024*
(0.011) (0.013)
Observations 180883 183380
R? 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameter § obtained from OLS estimation of regression (2). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. The treatment variables are standardized to have mean zero
and variance one in the estimation sample. Regressions include student and classroom character-
istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the
school town, parental education, age of household head, dummy for region of residence. Classroom
characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (un-
interacted, interacted with public school dummy, interacted with cohort dummy, and interacted
with cohort and public dummies), cohort and public dummies interacted, class size, classroom frac-
tions of females and of local residents; classroom average and standard deviation of fourth-grade
test scores and of parental education; all pairwise within-classroom covariances between: damage,
gender, parental educational, local residency, lagged test score. Damages’ mean and standard
deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level.
*** p<0.01, ** p<0.05, * p<0.10.



Table A9: Heterogeneous impacts of earthquake damages on standardized
eighth-grade test score and GPA by baseline test scores, all treatment vari-
ables measured in standard deviations

(1) (2)
Test score  GPA (std)

Effect of damage to own home -0.030*** -0.019
(0.011) (0.015)
Interacted with baseline test score 0.004 0.023
(0.012) (0.015)
Effect of average damage among classmates 0.046*** 0.043*
(0.016) (0.023)
Interacted with baseline test score 0.020 -0.005
(0.014) (0.018)
Effect of standard deviation of damage among classmates -0.019* -0.022
(0.011) (0.014)
Interacted with baseline test score -0.030*** -0.020**
(0.008) (0.009)
Observations 180883 183380
R? 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameters § obtained from OLS estimation of regression (3). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. The treatment variables are standardized to have mean zero
and variance one in the estimation sample. Regressions include student and classroom character-
istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the
school town, parental education, age of household head, dummy for region of residence. Classroom
characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (un-
interacted, interacted with public school dummy, interacted with cohort dummy, and interacted
with cohort and public dummies), cohort and public dummies interacted, class size, classroom
fractions of females and of local residents; classroom average and standard deviation of fourth-
grade test scores and of parental education; all pairwise within-classroom covariances between:
damage, gender, parental education, local residency, lagged test score. Damages’ mean and stan-
dard deviation are leave-one-out moments. Standard errors clustered at the school-by-cohort level.
X p<0.01, ** p<0.05, * p<0.10.

Table A10: Heterogeneous impacts of earthquake damages on standardized eighth-grade test scores
and GPA by deciles of baseline test scores

(1) (2)

Score GPA (std)

Effect of damage to own home for decile 1 baseline score -0.027 -0.053
(0.032) (0.046)

Additional effect for decile 2 baseline score 0.006 -0.013
(0.043) (0.062)

Additional effect for decile 3 baseline score -0.026 0.077
(0.044) (0.067)

Additional effect for decile 4 baseline score -0.042 0.016
(0.046) (0.059)

Additional effect for decile 5 baseline score 0.011 -0.023

Continued on next page




(1 2)

(0.050) (0.069)

Additional effect for decile 6 baseline score 0.071 0.065
(0.050) (0.068)
Additional effect for decile 7 baseline score 0.011 0.126**
(0.046) (0.063)
Additional effect for decile 8 baseline score 0.028 0.052
(0.047) (0.061)
Additional effect for decile 9 baseline score -0.036 0.025

(0.044) (0.064)

Additional effect for decile 10 baseline score -0.018 0.031
(0.051) (0.065)

Effect of average damage among classmates for decile 1 baseline score 0.026 0.063
(0.038) (0.060)

Additional effect for decile 2 baseline score 0.001 -0.006
(0.048) (0.071)

Additional effect for decile 3 baseline score 0.021 -0.042
(0.049) (0.083)

Additional effect for decile 4 baseline score 0.067 -0.004
(0.052) (0.071)

Additional effect for decile 5 baseline score -0.004 0.063
(0.058) (0.079)

Additional effect for decile 6 baseline score -0.032 -0.051
(0.058) (0.080)

Additional effect for decile 7 baseline score 0.004 -0.137*
(0.054) (0.074)

Additional effect for decile 8 baseline score 0.003 -0.018
(0.054) (0.076)

Additional effect for decile 9 baseline score 0.075 0.021
(0.052) (0.076)

Additional effect for decile 10 baseline score 0.093 -0.000
(0.058) (0.076)

Effect of st dev of damages among classmates for decile 1 baseline score 0.054 0.047
(0.063) (0.086)

Additional effect for decile 2 baseline score -0.094 -0.010
(0.090) (0.105)
Additional effect for decile 3 baseline score -0.049 -0.151
(0.067) (0.097)
Additional effect for decile 4 baseline score -0.152%* -0.198*
(0.088) (0.112)
Additional effect for decile 5 baseline score -0.078 -0.178*
(0.082) (0.097)
Additional effect for decile 6 baseline score -0.173%* -0.170
(0.081) (0.106)
Additional effect for decile 7 baseline score -0.090 -0.050
(0.079) (0.109)

Continued on next page




(1 2)

Additional effect for decile 8 baseline score -0.146* -0.140
(0.083) (0.112)
Additional effect for decile 9 baseline score -0.208** -0.197*
(0.083) (0.118)
Additional effect for decile 10 baseline score -0.383*** -0.223**
(0.094) (0.113)
Observations 180883 183380
R? 0.595 0.257

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the
coast. Parameters § obtained from OLS estimation of regressions (3), where a is replaced by dummy variables
identifying a student’s fourth-grade test score (SIMCE) decile. The outcome variables are measured in eighth grade.
In column (1) the outcome is the average between Mathematics and Language SIMCE scores, standardized to have
mean 0 and variance 1, in column (2) it is the GPA, also standardized. Regressions include student and classroom
characteristics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school
town, parental education, age of household head, dummy for region of residence. Classroom characteristics: public
school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school
dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies
interacted, class size, classroom fractions of females and of local residents; classroom average and standard deviation
of fourth-grade test scores and of parental education; all pairwise within-classroom covariances between: damage,
gender, parental educational, local residency, lagged test score. Damages’ mean and standard deviation are leave-one-
out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A11: Heterogeneous impacts of earthquake damages on standard-
ized eighth-grade test score and GPA by student characteristics

(1) 2)

Effect of damage to own home 0.007 0.007
(0.023) (0.033)

Interacted with baseline test score 0.007 0.026
(0.015) (0.019)

Interacted with parental education -0.025* -0.015
(0.014) (0.017)

Interacted with female dummy -0.035 -0.018
(0.025) (0.032)

Interacted with income 0.001 0.010
(0.010) (0.014)

Effect of average damage among classmates 0.031 0.027
(0.027) (0.037)

Interacted with baseline test score 0.008 -0.012
(0.019) (0.022)

Interacted with parental education 0.060*** 0.034*
(0.016) (0.020)

Interacted with female dummy 0.027 0.017
(0.029) (0.039)

Interacted with income -0.004 -0.016
(0.012) (0.017)

Effect of standard deviation of damage among classmates  -0.104** -0.032
(0.051) (0.065)

Interacted with baseline test score -0.083***  -0.070**
(0.029) (0.033)

Interacted with parental education -0.082*** -0.044
(0.027) (0.036)

Interacted with female dummy -0.024 -0.090
(0.050) (0.065)

Interacted with income 0.029 -0.000
(0.023) (0.034)

Observations 140059 142055
R? 0.590 0.252

Notes: Students enrolled in schools in regions affected by the earthquake and residing more
than 1 km from the coast. Parameters § obtained from OLS estimation of a variation of re-
gression (3) that includes further interactions. The outcome variables are measured in eighth
grade. In column (1) the outcome is the average between Mathematics and Language SIMCE
scores, standardized to have mean 0 and variance 1, in column (2) it is the GPA, also stan-
dardized. Lagged test score, parental education and lagged household income are standardized
to have mean 0 and unit variance. Regressions include student and classroom characteristics.
Student characteristics: fourth-grade test score, gender, whether the student lives in the school
town, parental education, age of household head, dummy for region of residence. Classroom
characteristics: public school dummy, rural school dummy, shaking intensity in school’s town
(uninteracted, interacted with public school dummy, interacted with cohort dummy, and in-
teracted with cohort and public dummies), cohort and public dummies interacted, class size,
classroom fractions of females and of local residents; classroom average and standard deviation
of fourth-grade test scores and of parental education; all pairwise within-classroom covariances
between: damage, gender, parental educational, local residency, lagged test score. Damages’
mean and standard deviation are leave-one-out moments. Standard errors are clustered at the
school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A12: Impacts of earthquake damages on standardized eighth-grade test score and GPA under
different geographical sample restrictions

Test score GPA (std)
1) (2) 3) (4) (5) (6) (M (8)

Effect of own damage -0.027**  -0.028***  -0.023** -0.021** -0.014 -0.016 -0.014 -0.010

(0.011) (0.011) (0.011) (0.010) (0.015)  (0.014)  (0.014) (0.013)
Effect of average damage 0.047***  0.049***  0.046*** 0.045%** 0.041* 0.043* 0.041* 0.031

(0.017) (0.017) (0.017) (0.016) (0.023)  (0.023)  (0.022) (0.021)
Effect of st. dev. of damage  -0.083** -0.084** -0.086** -0.092** -0.088*  -0.086*  -0.087* -0.073

(0.039) (0.039) (0.038) (0.037) (0.049)  (0.049)  (0.047) (0.046)
Observations 176405 180883 184897 190259 178839 183380 187446 192880
R? 0.589 0.589 0.588 0.587 0.251 0.251 0.251 0.253
Geographic restriction 1.5 km 1 km 0.5 km All towns 1.5 km 1 km 0.5 km  All towns

Notes: Students enrolled in schools in regions affected by the earthquake. Geographic restriction indicates the minimum distance from the
coast required for a municipality to be included in the sample (e.g., 1 km means only municipalities at least 1 km from the coast; All towns
includes all municipalities, including coastal ones). Parameter § obtained from OLS estimation of regression (2). In columns (1)-(4) the
outcome is the average between Mathematics and Language SIMCE scores, standardized to have mean 0 and variance 1. In columns (5)-(8)
it is the GPA, also standardized. Regressions include student and classroom characteristics. Student characteristics: fourth-grade test score,
gender, whether the student lives in the school town, parental education, age of household head, dummy for region of residence. Classroom
characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school
dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class
size, classroom fractions of females and of local residents; classroom average and standard deviation of fourth-grade test scores and of
parental education; all pairwise within-classroom covariances between: damage, gender, parental educational, local residency, lagged test
score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. ***

p<0.01, ** p<0.05, * p<0.10.
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Table A13: Impacts of earthquake damages on
standardized eighth-grade test score and GPA, ac-
counting for spatial correlation in the residuals

Test score  GPA (std)

(1) (2)

Effect of own damage -0.028*** -0.016
(0.009) (0.015)
Effect of average damage 0.049** 0.043*
(0.019) (0.025)
Effect of st. dev. of damage -0.084** -0.086*
(0.038) (0.050)
Observations 180883 183380
R? 0.589 0.251

Notes: Students enrolled in schools in regions affected by the
earthquake and residing more than 1 km from the coast. Pa-
rameter § obtained from OLS estimation of regression (2). The
outcome variables are measured in eighth grade. In column (1)
the outcome is the average between Mathematics and Language
SIMCE scores, standardized to have mean 0 and variance 1, in
column (2) it is the GPA, also standardized. Regressions include
student and classroom characteristics. Student characteristics:
fourth-grade test score, gender, whether the student lives in the
school town, parental education, age of household head, dummy
for region of residence. Classroom characteristics: public school
dummy, rural school dummy, shaking intensity in school’s town
(uninteracted, interacted with public school dummy, interacted
with cohort dummy, and interacted with cohort and public dum-
mies), cohort and public dummies interacted, class size, class-
room fractions of females and of local residents; classroom av-
erage and standard deviation of fourth-grade test scores and
of parental education; all pairwise within-classroom covariances
between: damage, gender, parental educational, local residency,
lagged test score. Damages’ mean and standard deviation are
leave-one-out moments. Standard errors are clustered at the
school-municipality-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.
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Table A14: Impacts of earthquake damages on standardized eighth-grade test score and GPA accounting
for spatial correlation in the residuals using the Conley method

(1) (2) (3) (4) (5)

A. Test scores

Effect of damage to own home -0.026** -0.026** -0.026** -0.026** -0.026***
(0.011)  (0.013)  (0.012) (0.013) (0.005)

Effect of average damage among classmates 0.047***  0.047***  0.047*** 0.047** 0.047***
(0.012) (0.018) (0.018) (0.022) (0.016)

Effect of standard deviation of damage among classmates  -0.088***  -0.088** -0.088** -0.088** -0.088***
(0.018) (0.035) (0.035) (0.038) (0.012)

B. GPA (std)

Effect of damage to own home -0.009 -0.009 -0.009 -0.009 -0.009*
(0.014)  (0.015)  (0.012) (0.010) (0.006)

Effect of average damage among classmates 0.038** 0.038 0.038 0.038 0.038***
(0.016) (0.024) (0.026) (0.027) (0.013)

Effect of standard deviation of damage among classmates  -0.099***  -0.099**  -0.099***  -0.099***  -0.099***
(0.024) (0.043) (0.035) (0.036) (0.011)

Threshold distance N/A 10 km 25 km 50 km 2504 km

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast. Parameters &
obtained from OLS estimation of regression (2). The first column reports the original standard errors clustered at the school-by-cohort
level and corresponding significance levels. Columns (2) to (5) report standard errors and significance levels calculated according to the
method in Conley (1999), under different distance thresholds. The farthest town with positive shaking intensity lay 587 km from the
asperity; I use maximum spatial cutoffs of 250 km for test scores and 350 km for GPA to avoid numerical instability at larger distances.
The standard errors at the largest cutoff should still be interpreted with caution. Parameter estimates slightly differ from those in Table

2 because regional fixed effects are omitted for computational reasons. *** p<0.01, ** p<0.05, * p<0.10.
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Table A15: Impacts of earthquake damages on
standardized eighth-grade test score and GPA,
with school by cohort fixed effects

Test score  GPA (std)

(1) (2)

Effect of own damage -0.032*** -0.023
(0.012) (0.015)
Effect of average damage 0.067 0.068
(0.116) (0.153)
Effect of st. dev. of damage -0.032 -0.023
(0.055) (0.069)
Observations 180883 183380
R? 0.511 0.257

Notes: Students enrolled in schools in regions affected by the
earthquake and residing more than 1 km from the coast. Pa-
rameter § obtained from OLS estimation of regression (2’). The
outcome variables are measured in eighth grade. In column (1)
the outcome is the average between Mathematics and Language
SIMCE scores, standardized to have mean 0 and variance 1, in
column (2) it is the GPA, also standardized. Regressions in-
clude school by cohort fixed effects and student and classroom
characteristics. Student characteristics: fourth-grade test score,
gender, whether the student lives in the school town, parental
education, age of household head, dummy for region of resi-
dence. Classroom characteristics: class size, classroom frac-
tions of females and of local residents; classroom average and
standard deviation of fourth-grade test scores and of parental
education; all pairwise within-classroom covariances between:
damage, gender, parental education, local residency, lagged test
score. Damages’ mean and standard deviation are leave-one-out
moments. Standard errors are clustered at the school-by-cohort
level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A16: Summary statistics of school characteristics.

ALL SCHOOLS WITH NON-MISSING

SCHOOLS EXPENDITURE DATA

Mean  St.dev. N Mean St.dev. N

L. @ B @6 (6)
Class size 27.3 10.14 6150 23.54  10.06 2586
Public .49 5 6150 7 42 2586
Rural .25 43 6150 44 b 2586
Average simce 0 AT 6148 -.13 41 2586
Average parental education (yrs) 10.35  1.94 6150 9.29 1.54 2586
St. dev. of simce .79 15 6145 .79 .16 2586
St. dev. of parental education 2.55 .55 6150  2.62 .59 2586
Fraction female .49 .16 6150 .49 .16 2586
Fraction local residents .87 .19 6150 .93 12 2586
MSK intensity 5.99 .83 6150 5.99 1.06 2586

Notes: The unit of observation in this table is a school. The sample is restricted to schools in earthquake regions,
located more than 1 km from the coast, and for whom the treatment variables (mean and dispersion of damages)
are not missing. Simce refers to baseline test scores, obtained as the average of Mathematics and language test
scores in fourth grade, standardized in the population of test takers. Average characteristics of the student body
are obtained as within-school averages across classrooms of classroom-level values. For example, average simce
refers to the average across classrooms of within-classroom mean simce scores.

Table A17: Lack of selective attrition

)

Expenditure data missing

Effect of mean damage 0.011
(0.018)
Effect of standard deviation of damage -0.074
(0.061)
Pre-earthquake mean 0.584
R-squared 0.054
Observations 6150

Notes: Schools in regions affected by the earthquake, located more
than 1 km from the coast. Parameters § obtained from OLS esti-
mation of a variation of regression (3) where the unit of observation
is the school. The treatment variables represent across-classroom
averages within a school, that is, the school-level mean of damages
refers to the average of the within-classroom damage means; the
school-level standard deviation of damages refers to the average of
the within-classroom damage standard deviations. The regression is
estimated on the sample of all schools, regardless of whether expen-
diture data were available, and uses as outcome variable a dummy
equal to 1 if data on expenditures is missing, 0 otherwise. Data on
expenditures after the earthquake is available only for the 2010 school
year, therefore, the post-earthquake period in this Table corresponds
to the 2010 school year. Standard errors shown in parentheses. ***
p<0.01, ** p<0.05, * p<0.10.
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Total

Category
Personnel
Sub-category
Hire new staff hours
Extend hours for existing staff
Fee-based services (non-ATE)
Per diems and travel
Other
Total
External ATE services
Sub-category
Courses, workshops, tutoring
Pedagogical and technical support
Administrative and management consulting
Total
Emergency
Sub-category
Overtime
Other
Total
Projects
Sub-category
Infrastructure construction
Infrastructure repair
Equipment
Furniture
Total

21,294,613,941
17,458,823,730
11,413,079,292
84,963,866
5,215,939,814
55,467,420,643

870,958,985
10,342,804,689
1,155,087,457
12,368,851,131

149,447,305
184,822,505
334,269,810

12,052,466
32,610,842
45,882,535

7,975,445
08,521,288

Table A18: Breakdown of expenditures of the additional resources provided under the SEP program,
by category and sub-category. Amounts are in Chilean pesos and represent total spending across
all SEP schools in 2009-2010. External ATE services (Asesoria Técnica Educativa) correspond to
subcontracted consultancies provided by accredited institutions that support schools’ improvement
plans required under the SEP law. Source: Rendidos SEP dataset.
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Figure Al: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on February 2,
2012, nearly two years after the earthquake. Translation: “Reconstruction is like God. Everyone
knows it exists. But nobody sees it.”
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Figure A2: Marginal effects on standardized eighth-grade test score and GPA by baseline (fourth
grade) GPA. Notes: Marginal effects of leave-one-out average damage among classmates and leave-
one-out standard deviation of damage among classmates. Effects obtained from estimating the
regression model in equation (3), replacing the baseline test score with the baseline GPA. 80% and
90% confidence intervals reported.
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Figure A3: Marginal effects of damage mean on within-classroom GPA rank by baseline test score.
Notes: GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA). Marginal
effects of the leave-one-out average of damage among classmates. Effects obtained from estimating
the regression model in equation (3). 90% and 80% confidence intervals reported.
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kernel = epanechnikov, degree = 0, bandwidth = .21, pwidth = .31

Figure A4: Relationship between reported effort cost and baseline test score. Notes: Local polyno-
mial regression estimated on the sample of students in earthquake regions and in the cohort affected
by the earthquake. Top and bottom 1% of baseline test score distribution trimmed. 95% confidence
intervals reported.
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C Theoretical Appendix

C.1 Empirical counterparts of the model’s comparative stat-
ics

Propositions 1 and 2 consider comparative statics that increase the within-classroom

mean and dispersion of damages in a way that increases the within-classroom mean

and dispersion of effort-cost types. This Appendix shows which variation in the

data, leveraged in the regression analyses, provides the empirical counterpart to these

comparative statics.

Proposition 1 varies the within-classroom mean of damages while keeping fixed the
within-classroom distributions of the other determinants of the effort-cost type. Given
the specification for the effort-cost type in equation (4), it follows that, whenever
03 > 0, an increase in the within-classroom mean of damages induces an increase in
the within-classroom mean of the effort-cost type, provided that the within-classroom
means of the other determinants of ¢; are held constant. Grouping (a;, x;) into vector

w; with coefficient vector 6,,, the average effort-cost type among classmates is:
E.[c] = 0y + 0. E.[w] + 05 E,[d], (7)

where the averages are taken with respect to within-classroom distributions. When
05 > 0, increasing the within-classroom mean of damages FE.[d] while keeping class-
room composition E.[w]| constant increases the average effort-cost type. The regres-
sions that estimate the impacts of the within-classroom mean of damages E.[d] include
the vector E.[w] of controls (e.g. average parental education, average fraction of local
residents, etc.); the full list is reported in the Table notes. Thus, these regressions
provide the empirical counterpart to the theoretical comparative statics.

Proposition 2 varies the within-classroom dispersion of damages so as to induce
a change in the within-classroom dispersion of effort-cost types, while keeping fixed
the within-classroom distributions of the other determinants of the effort-cost type.
Letting wy; denote element j of vector w;, and 0,,;] its coefficient, the variance of the

effort-cost type among classmates is:

m m—1 m m
clt] = wlj] cl Wy 3 c wlj]Ywl[y’] c\ W], W5’ w[j]V3 c\W[5]s &)
Var,|c] 02, 1 Var [w;]+03 Var,[d]+2 Ouw110wiin Cove(wry, wijn)+2 05105 Cov(wyj, d)
J=1 J=1 j'>j j=1

(8)
where the variances and covariances are taken with respect to within-classroom distri-

butions. When 63 # 0, increasing the within-classroom variance of damages Var.[d],

while keeping constant the other variances and covariances on the right-hand side
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of equation (8), increases the variance of effort-cost types. The regressions that esti-
mate the impacts of the within-classroom standard deviation of damages include these
terms as controls (e.g. standard deviation of parental education, pairwise covariance
between damage and lagged test score, etc.); the full list is reported in the Table
notes. Thus, they provide the empirical counterpart to the theoretical comparative

statics.

C.2 Proofs

To simplify notation, this appendix drops the [ classroom index, under the under-
standing that all distributions and equilibrium functions are classroom-specific. In
deriving comparative statics that compare classrooms with different distributions of
the effort cost type, I explicitly specify the classroom indices to clearly distinguish
between classrooms.

Rearranging equation (6) and substituting c(e;) = Tlcm the following first-order

differential equation characterizes the equilibrium strategies:

de;) = ( g(ci) ) (V(y(e(ci)),q(e(ci),ci))) ©

1= Gle) +¢) \ (a0 + ar(pa)) Vi + Vo2l

(ci

g9(c)
mﬂ)(e(ci)a ci),

V(y(e(ci)),q(e(ci),ci
where p(e(c), ¢i) = (51(((;2)35(&52

Proposition Al. (Adapted from Proposition 1 in Hopkins and Kornienko (2004)).
The unique solution to the differential equation (9) with the boundary condition e(¢) =
enr(€), where ey, solves the first-order condition absent rank concerns

dq

ei=€nr _‘/2 86 €;=€Enr)
(2

Vi(ao + ai(pa))

is a unique symmetric Nash Equilibrium of the game of status. Equilibrium effort e(c;)
and equilibrium GPA y(c;) are both continuous and strictly decreasing in student’s type

C;.

Proof of Proposition Al. First, as in the proof of Proposition 1 in Hopkins and
Kornienko (2004), it is easy to show that the boundary condition is optimal for the
student with the highest cost, ¢. Such student chooses the effort that maximizes
utility V' in the absence of rank concerns. In equilibrium, her utility from rank is
zero, therefore, she maximizes V', because VX F+ o xV =V x0+4+ ¢ x V = ¢pV.
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Next, I adapt the proof in Hopkins and Kornienko (2004) to show that if the
strategy e*(¢;) is a best response to other students’ effort choices, then it is de-
creasing (while Hopkins and Kornienko (2004) deal with increasing functions). If
a student i of type ¢; exerts effort e; = e*(¢;) and this is a best response to the
efforts of the other students as summarized by the effort distribution Fg(-), then it
must be that e; > e,.(c;), where e,.(c;) solves the first-order condition in the ab-
_‘/*283_;
e; < enr(ci), then Fg(e;) + ¢ < Fg(en) + ¢, because Fg is strictly increasing, and
V(y(ei),qlei, ¢;)) < V(y(enr(ci)), qlen(ci), ¢)), because Vi > 0,V2 < 0, and ¢; > 0.
Therefore, V (y(e;),q(ei,¢;:)) (Fele) +¢) < V (y(enr), q(enr, ) (Fe(en) + @), ie
any level of effort below the no-rank-concerns level is strictly dominated by the no-

sence of rank concerns, i.e., Vi (ag + a1(q)) e;=en.- Lhis is because if

€;=C€nr ~

rank-concerns level. Suppose that equality holds, so e; = e,,.(¢;). Then e*(¢;) is de-
creasing because e,,(¢;) is decreasing. This follows from the assumptions that Vq; =
0, Voo = 0, V1o < 0, and from the assumptions that ¢; > 0,92 > 0,¢11 > 0, and
q12 > 0. To see why, let FOC(e;, ¢;) = Vi(ap + a1(pq)) + Vaqr and notice that by the

Implicit Function Theorem:

de,,  OFOC/0c
de;  OFOC/de;

The numerator is:

OFOC 04 0q 0q 4
_ <
7 (ap + al(ﬂd))Vwa + Var o de; Oc; + VQae i0c; o

The denominator is:

OFOC
Oe

82
iy

de; 0%e; — =0

0
= (a0-a1 (114))* Vir+(ao-+as (1) Via 5 -

0 0
+((ao+a1(ﬂd))vz1+v22 q) a

oe;
As a result, e*(+) is decreasing in ¢; when it is equal to optimally chosen effort in the
absence of rank concerns, because % <0.

If equality does not hold, we want to show that if e;is a best-response and e; >

enr(¢;), then it is still the case that e;is decreasing in ¢;. First, I show that for any

other choice € € (e,-(c;), €;),

oV oV
- (yen)alen ) (Fele) +6) < S-(0(@), e c)(Fe@) +6). (1)
Rewrite the left-hand side as:
oV oV

8cz~ (y(ei)a Q(ei7 CZ))(FE(é + ¢> + 801- (y<€i>7 Q(€i7 Cz))(FE(el) - FE(é))
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ov.
i

is decreasing in e;, as Vo1 < 0,V = 0, 3 q > 0,V, < 0, and 8‘1 - > 0. To see why,

The first term is smaller or equal to the right-hand side of equation (10), because

notice that a‘z aVe (Vgl(ao + a(pq) + V22—> -+ Vgac e < 0 The second term is

t, 8V is strictly negatlve because V5 < 0 and 8‘1 > 0, and

strictly negative, because firs
second, Fr(e;) — Fg(é) > 0. To see why the latter is true, notice that for e > Enr,
V(y(e;), qlei,c;)) is decreasing in e;. Therefore, if e; is a best-response, it must be
the case that Fg(e;) > Fg(€), otherwise a student could lower effort and obtain a
higher utility, while not lowering her status. This establishes the inequality in (10),
so that at e;, the overall marginal utility with respect to ¢;, (ac (V(yi,q:)(Fr(e:)+9))),
is strictly decreasing in e;. This implies that an increase in cost type ¢; leads to a
decrease in the marginal return to e;, therefore, the optimal choice of effort e; must
decrease.

To show that if an effort function is an equilibrium strategy, then it must be
continuous, we can follow the proof in Hopkins and Kornienko (2004) with a minor
adaptation to account for the fact that the equilibrium strategy in this paper is
a decreasing rather than increasing function. Specifically, suppose the equilibrium
strategy was not continuous. That is, suppose that that there was a jump downwards
in the equilibrium effort function e*(¢;) at €, so that lim,, ,ze*(¢;) = € < e*(¢). Then,
there would exist an € > 0 small enough, such that the student of type ¢ — e can
reduce her effort to ¢, which is below e*(¢—¢€), and obtain a discrete increase in utility
because of the lower effort, while her rank would decrease by less, by continuity of
the rank function S(-) at ¢. Therefore, there exists a student with an incentive to
deviate, and such discontinuous e*(¢;) function cannot be an equilibrium strategy.*?

Finally, if e*(¢;) is continuous and decreasing then it must be that y*(¢;) = y(e*(¢;))
is continuous and decreasing, because y(-) is a continuous function of e; and dy >0
Ve, as per equation (5).

Uniqueness of the solution to the differential equation in (9), and therefore unique-
ness of the equilibrium, follows from the fundamental theorem of differential equations.
The boundary condition pins down the unique solution.

O

Proof of Proposition 1. Let e4(c¢;) and eg(c;) denote the equilibrium effort choices
in classrooms A and B. Proposition A1l established that e4(c;) and eg(c;) are strictly
decreasing functions of ¢;. Moreover, for the highest value of ¢; in each classroom, de-

noted by ¢; for J = A, B, these effort choices satisfy the following first-order condition

49That the equilibrium strategy is strictly decreasing and differentiable follows from Hopkins and
Kornienko (2004) after replacing z; with ¢;, x; with e;, and x(z;) with e(¢;) (with the only difference
that e(-) is decreasing and z(-) is increasing), and setting « > 0.
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for maximization in the absence of rank concerns:

9
Vi(ao + ar (1)) :—vga? for J = A, B. (11)

Assuming that the equilibrium effort functions in classrooms A and B do not cross
after the uniform shift in cost types, we can focus on the optimal effort choice for the
student with the highest ¢; in each classroom.?® Under this assumption, the ordering
of equilibrium efforts for the highest-cost type extends to all types in the classroom.
Therefore, if ep(¢p) > ea(Ca), then Eple;] > Eale;]. Similarly, if eg(cp) < ea(Ca),
then Eple;] < Eale;]. Recall that y(e;) = (ag + a1(ua))e: + uo + u1(pq), with 2% >0
and fﬁ > 0 representing the multiplicative and additive compensatory actions by

schools. The damage distribution shift implies that % > pZ'. Then:

o If 632(.;’6_ = 0 and 2% = 0, then the right-hand side (RHS) and left-hand side

(LHS) of equation (11) are identical in classrooms A and B. Hence the equi-

librium effort choice of the highest-cost type is the same in both classrooms:
ep(cp) = ea(Ca). For all other types, however, the shift in costs affects both
their utility levels and the strength of rank incentives, and the model does not
deliver a sharp prediction for the sign of the resulting changes in equilibrium

effort or GPA.

In the case of no multiplicative compensation (2% = 0), the model is agnostic

about the effect of a uniform increase in damages on average GPA. This con-
clusion holds regardless of whether schools implement additive compensation

(Z—Z; > 0) or not (Z—Z; =0).

o If 38-25?- =0 and gﬂ > 0, then the LHS of equation (11) is larger in classroom
e;dc; Hd
B than in classroom A. As ¢ is an increasing convex function of e;, so that % is

increasing in e, it must be that eg(¢g) > ea(ca), resulting in Eply;] > Ealyi).

When compensatory action increases the marginal return to effort and there is
no change to its marginal cost, students exert more effort, resulting in higher
GPA both because of increased effort and of a larger coefficient on effort in the

achievement production function.

o If 832510 > 0 and jﬁ > 0, then the LHS of equation (11) is larger in classroom
10Cq Hd

B than in classroom A. As ¢g > ¢4 because damages are larger for all students

in classroom B, the RHS is larger in classroom B than in classroom A for any

given effort level.

50This monotone-comparative-statics property is standard in games with strategic complemen-
tarities and when payoffs exhibit (weak) decreasing differences in the relevant choice-parameter pair,
(e;, k) in this case (see Milgrom and Shannon (1994)).
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0%q 9%q
Oe;0c;? Oe;0c;

ep(Cp) > ea(Ca), resulting in Eply;] > Ealyi] (holding with strict inequality

1.e.

For small enough < v with v a positive constant, we have
because the increased coefficient on effort in the GPA production function in
classroom B causes larger GPA even in the case in which effort is equal across
classrooms).

92q 92q
Oe;0c;’ Oe;0c;

Eglyi| > Ealy:] if the compensatory action (through ay, u; or both) (over)compensates

i.e.

For large enough > 7, eg(cp) < ea(Ca). This can results in

the reduction in effort, or in Fgly;| < Ealy;] if it does not.

When both the marginal cost and benefit of effort increase, the sign of the
impact on effort depends on the relative magnitudes of such increases. When
the increase in the marginal benefit due to the compensatory action is larger
in magnitude than the increase in the marginal cost due to the larger damages,
GPA increases in classrooms more affected by the earthquake, because of the
increased effort and of the compensatory action. When the increase in the
marginal benefit is lower than that in the marginal cost, GPA may increase or
decrease depending on whether the compensatory action (over)compensates for

the decreased effort.

o If afjaqci > 0 and 2% = 0, the LHS of equation (11) is identical across classrooms,
while the RHS is larger in classroom B for any given effort level, resulting in
ep(Cp) < ea(€a). This results in either Eply;] > Ealy] if the compensatory
action through w; (over)compensates the reduction in effort, or in Egly;] <

E4[y;] if it does not.

When the marginal cost of effort increases (due to the larger damages) and its
marginal benefit stays constant (due to lack of compensatory action through
ay), effort decreases. GPA may increase or decrease depending on whether the

additive compensatory action (u;) overcompensate for decreased effort.
O

Proof of Proposition 2. The results follow from Proposition A1 and Proposition 4
in Hopkins and Kornienko (2004) for the case a > 0 (where « there is the equivalent of
¢ in this paper), noting that e; in this paper corresponds to z; in theirs, ¢; corresponds
to z;, €*(¢;) corresponds to x*(z;). As per Proposition Al, e*(¢;) is strictly decreasing,
while 2*(z;) in Hopkins and Kornienko (2004) is strictly increasing, which implies
that rank G(z7!(z;)) in their paper’s proof must be replaced by rank 1 — G(c(e;)) =
1 — G(e *(e;)) here, and the results follow.

[

25



Proof of Proposition 3. At the Nash Equilibrium in classroom J € {A, B}, keep-
ing d; and z; fixed, GPA y(-) is strictly increasing in a;, and therefore invertible. This
follows from the fact that y; is strictly decreasing in ¢;, and ¢; is strictly decreasing in
a;. Therefore, the probability that a student ¢ with baseline test score a; and GPA y;
obtains a higher GPA than another student j, chosen at random among those with
=z =z and d; = d; = d, is F{(Yi)|sa = Pr(yi > y(;))]ea = Pr(y*(y:) >
aj)|m7d = Pr(a(yi) > aj) |z.a = Fr(ai)|za where Fp(-)|,.q is the c.d.f. of a; conditional
on x,d and a(-) =y~ (-).

Therefore, conditional on z;, d;, the GPA rank of a student with baseline test score

a; 18 constant across classrooms Va;.

]

C.3 Extension with an idiosyncratic shock to effort cost type

The model assumes that each student’s cost-of-effort type is private information.
Since the determinants of this type include student characteristics that are plausibly
observable to peers, this assumption may be too strong in the empirical context. This
Appendix, therefore, extends the model to allow the effort-cost type to depend on
an additional idiosyncratic component ¢;, whose realization is observed only by the
student. It then shows that the study’s conclusions are robust to this extension.

Consider the augmented cost-of-effort type
ci = Oy + 0 w; + O3d; + €, w; = (a3, 2;), Op=(01,05)". (12)

As in the baseline model, each student’s type ¢; is private information, while the
reference-group distribution G,(-) is common knowledge. We impose no parametric

restrictions on G(+). The shock ¢; is unobserved by the econometrician.

Existence and uniqueness. Proposition Al continues to hold because its proof
does not depend on the distribution of ¢; or its components, nor on the specification

for ¢;.

Comparative statics. Propositions 1-2 compare equilibria across classrooms un-
der changes in the within-classroom distribution of d; that hold fixed the joint within-
classroom distribution of the remaining determinants of ¢;. Hence, provided the joint
within-classroom distribution of (a;, x;, €;) is held fixed, the comparative-statics results

remain valid.
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Empirical counterpart to Proposition 1. Let E.[-] denote within-classroom av-

erages and Eq[-] the expectation across classrooms. From (12),
E.ld = 6y + 0, E.Jw] + 0:E.[d] + E_[e. (13)

The empirical implementation provides a counterpart to the model’s compara-
tive statics by controlling for within-classroom means of the determinants of ¢; o0b-
served by the econometrician, i.e., of w (Appendix C.1). Because ¢; is unobserved,
its within-classroom mean cannot be included as a regressor. The regressions remain
valid empirical counterparts of the theoretical comparative statics under the following
assumption.

Assumption C.3.1 (Conditional mean independence and linearity). Within each class-
room, {(dei, Wei, €;) }7, are i.i.d. draws from the population distribution of (d,w,€).
The idiosyncratic shock €. is mean independent of d.; conditional on w,;, and the

conditional expectation Ele | w] is linear in w:
Ele | d,w] = Ele | w] = a + fw.
Under these assumptions, the within-classroom mean F.[e] satisfies
Ec[ Ele] | Ecld] = d, E[w] =w] =Ed|Ele | Efw]=w],

which does not vary with d. Hence,

dic? Ec| Edld] | Eld) = d, EJu]=w] =0,

and
d

77 Ec[ E.ld | E.ld] =d, EJuw]=w] = 65.

Therefore, under assumption C.3.1, increasing across classrooms the within-classroom
mean FE,.[d] while keeping observed classroom composition E,[w] constant increases
the average value of the effort-cost type without changing the within-classroom mean
of the unobservable in expectation, and therefore provides a valid empirical coun-
terpart to the theoretical comparative statics, even when ¢; includes the unobserved
shock ;.

In practice, the empirical implementation relies on a difference-in-differences de-
sign that delivers the exogeneity condition in C.3.1 through across-cohorts differenc-
ing. The regression error term may be correlated with damages within cohorts, but

this correlation is assumed to remain constant across the pre- and post-earthquake

cohorts. The difference-in-differences estimator thus differences out any correlation
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between unobserved determinants of outcomes and classroom damages, satisfying the
mean-independence condition required for the interpretation of the estimates as em-

pirical counterparts to the extended model’s comparative statics.

Empirical counterpart to Proposition 2. Proposition 2 in the extended model
varies the within-classroom dispersion of d; while holding fixed the within-classroom

distributions of (a;, z;, €;). From (12), the within-classroom variance of the effort-cost

type is:
m m—1 m

Var[e] = Y 07 Varfwy] + 2 > Oupfug Cove(wy), wyy) + 63 Var[d] (14)
=1 =1 j'>j

+ 2 Z w103 Cove(wy, d) + Varcle] + 2 Z ) Cove(wyy), €) + 203 Cove(d, €),

J=1 J=1

where all moments are taken with respect to within-classroom distributions. In
the (extended) theoretical model, the comparative statics vary Var.[d] while keep-
ing Var.[e|, Covc(d,e¢), and Var.|w], Cov.(wy, d), Cove(wy, €), Cove(wy, wyn) for
j=1,..m, j #j =1,...,m—1 fixed. The regressions include controls for the
within-classroom variances and covariances of the observed determinants of ¢ (i.e.,
Var.[wy], Cove(wy, d), Cove(wy, wyj)); the full list is reported in the Table notes.
Because ¢; is unobserved, its within-classroom variance and covariances cannot be
included as controls in the empirical regressions. The regressions remain valid empir-

ical counterparts to the comparative statics under the following assumption.

Assumption C.3.2 (Conditional mean independence and conditional invariance of €
moments). Within each classroom, {(d.;, wei, €:)}7-, are i.i.d. draws from the popu-
lation distribution of (d,w, €). The idiosyncratic shock €.; is mean independent of d.;

conditional on wg;:
Ele | d,w] = Ele | w].

In addition, conditional on the observed classroom composition S, (which includes
the within-classroom variances and covariances of w and their covariance with d) the
within-classroom moments of € do not co-vary across classrooms with the within-

classroom variance of damages:
Cove(Var.[e], Var[d] | S.) =0, Cove(Cove(d, €), Var[d] | S.) =0,
Cove(Cove(wy),€), Vare[d] | S.) =0 Vj.
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These conditions allow Var[e], Cov.(d,€), and Cov.(wy,€) to vary across class-
rooms, but require that any such variation be orthogonal to Var.[d] once observable
classroom characteristics are controlled for.*!

Under assumption C.3.2, the within-classroom variance of ¢; and its covariance with

d; satisty
Ec[Var[e] | Var.[d], S.] = Ec[Var.[e] | S|,  Ec[Cov.(d,€) | Var.[d], S.] = Ec[Cov.(d,€) | Se],

which implies that neither Var.[e] nor Cov.(d,€) varies systematically with Var.[d]

once the observed classroom characteristics S, are controlled for. Hence,

_d d
d Var,|d] Ec|Var.[] ’ Varr[d], S.] =0, dVar.ld] Ec[Cov.(d,€) ’ Var[d], S.] = 0.

Substituting these results into equation (14) yields

d

e _ 2
IVar.(d ]EC[Varc[c] ‘ Var,|[d], SC] 03.

Therefore, under conditional mean independence and conditional invariance of the
moments of ¢;, increasing across classrooms the within-classroom variance of damages
while holding constant the observed classroom composition S, increases, in expec-
tation, the within-classroom variance of the effort-cost type by 635. Therefore, the
regressions provide a valid empirical counterpart to the theoretical comparative stat-
ics, even when ¢; includes the unobserved shock ¢;.

In the empirical implementation, the regressions that estimate the effects of the
within-classroom standard deviation of damages include controls for the within-classroom
variances and covariances of the observed components of ¢. Under assumption C.3.2,
the omission of the within-classroom moments of the unobserved ¢; does not affect
the interpretation of these regressions as empirical counterparts to the model’s com-
parative statics.’? As in the empirical counterpart to Proposition 1, identification in
practice relies on a difference-in-differences design, which delivers the required exo-
geneity condition in C.3.2 through across-cohorts differencing: although the regression
error may be correlated with damage dispersion within a cohort, this correlation is

assumed to remain constant between the pre- and post-earthquake cohorts, so that

1A sufficient (stronger) condition would be that d and € are independent in the population.

52As the impacts of the within-classroom mean and dispersion of damages are estimated from
a single regression, assumption C.3.2, which is stronger than C.3.1, must hold for the estimates of
the impact of the mean and dispersion of damages to be valid empirical counterparts to the model’s
comparative statics.
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differencing removes it.

Heterogeneity by baseline test score in the extended model. [ introduce an
additional assumption to ensure that the results on heterogeneity of the impacts by
baseline test scores provide correct empirical counterparts to the theoretical results
from the extended model.

In the baseline model (equation (4)), heterogeneity by the observed component
a; coincides with heterogeneity by the (unobserved) effort-cost type ¢; when z; and
d; are held fixed (Lemma 1). With the addition of ¢; in (12) in the extended model,
we cannot condition on ¢;. The following assumption is sufficient to recover the same

monotone mapping in expectation.

Assumption C.3.8 (Conditional mean independence of €; with respect to a;). Within
a classroom, conditional on (z;, d;), the idiosyncratic shock ¢; is mean independent of

the baseline test score a;:
Ele | ai,xi,d;] = Ele; | x4, d].

That is, the expectation of the unobserved shock ¢; is the same for students with

high and low baseline test score a;, conditional on the vector of student observables

(x4, d;).
Lemma 2. Suppose Assumption C.3.3 holds and 0, < 0. Given equation (12), if
x; =x; and d; = d; fori# j, and a; < a;, then
Elci | ai,xi, di] > Elej | aj, x4, d;],
so that grouping students by a; (holding x; and d; constant) orders them by c¢; in

expectation.

Proof of Lemma 2. By (12) and Assumption C.3.3,

E[CZ‘ ‘ a;, T;, dl} = 90 + Hlai + 921’1' + @3(11 + E[Ez | Ty, dl]

where the conditional expectation of €; does not depend on a; by Assumption C.3.3.

Therefore:

aE[Cl | a;, Tj, dl}
86Li

so that Elc; | a;, z;,d;] is strictly monotone in a;.

:81<0,
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Under Assumption C.3.3, a; provides a monotone ranking of ¢; in expectation,
conditional on (z;,d;), so interacting the classroom-level regressor measuring disper-
sion in d with student-level a; recovers heterogeneity with respect to ¢; in expectation.
In practice, the empirical framework satisfies this assumption through across-cohort
differencing: although the individual unobservable may correlate with a; conditional
on (z;,d;) within each cohort, as long as this correlation is identical across cohorts, it

is eliminated by the difference-in-differences design implemented in equation (3).

D Details of the School Reconstruction Plan

This section provides an English translation of the “Education” section from a docu-
ment authored by the Presidential Delegation for Reconstruction, the Ministry of the
Interior and Public Security (Gobierno de Chile, 2010), detailing the reconstruction
plan following the 2010 Maule earthquake.

In Table A20, T highlight in bold font all mentions of school types targeted by the
reconstruction plan. As evident from the table, the plan specifically targeted schools

based on the extent of damage at the establishment level.

Translation of governmental policy document

In educational matters, the earthquake and tsunami of February 27 meant that
2,095,671 students saw their schools damaged, delaying the start of their school year.
The disaster-affected area had 8,326, of which 6,168 suffered some kind of damage,
corresponding to 74 percent. Forty-eight percent of schools in the affected areas had

moderate, severe, or disabling damage.

Table A19: Table 19: Summary of Schools Affected by the Earthquake by Region

Region Number of Schools | Enrollment
Valparaiso 997 289,724
O’Higgins 620 166,153
Maule 732 175,469
Biobio 1,155 355,186
Araucania 423 97,056
Metropolitan 2,241 1,012,082
Total 6,168 2,095,670

To solve the problems caused by the earthquake, the Ministry of Education de-
veloped an Emergency and Reconstruction Plan organized in four stages: emergency,

stabilization, early reconstruction, and reconstruction, described as follows:
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Table A20: Stage, Deadlines, Description

Stage Deadlines Description

Emergency 27-02-10 to 26-04-10 Infrastructure habilitation for class com-
mencement. Within 45 days all students re-
turned to classes.

Stabilization 26-04-2010 to 26-07-11 | Period of reconstruction aimed to stabilize

the school system, focusing on reassignment
or relocation of temporary facilities used dur-
ing the emergency period that could affect
students’ health, did not adequately per-
mit curricular activities (non-educational es-
tablishments), or cases where coexistence
of school communities sharing infrastructure
posed critical situations. Approximately 200
schools were detected in critical condi-
tions, assigning regional executives who sup-
ported local urgent needs according to estab-
lished criteria, and facilitating appropriate
solutions (modular classrooms, insulation of
temporary housing adapted during the emer-
gency, among others).

Early Reconstruction

27-02-10 to 27-02-11

Stage aimed at normalizing infrastructure
for the maximum number of students and
supporting municipal and subsidized private
schools to recover habitability and safety
conditions. For this, the Minor Repairs Plan
was launched in July, with around one thou-
sand schools applying and preparing a second
stage for late August, totaling 30 billion pe-
SOS.

Reconstruction

27-02-10 to 26-02-14

The last stage aims to finalize repairs of mi-
nor and moderate damage and focus efforts
on severely damaged schools and replace-
ments, to finish the process before the 2014
school year begins. This Plan, benefiting
schools with severe damage, both mu-
nicipal and subsidized private, will launch in
September for 30 billion pesos. Additionally,
15 emblematic high schools will benefit this
year, with an estimated 35 billion pesos, for
infrastructure repair projects. They will be
selected through joint work between munic-
ipalities, Regional Ministerial Secretaries of
Education, and the community, using crite-
ria of high social and local recognition and
at least one thousand students.
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