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Abstract

I examine how disruptions to students’ environments propagate to their
classmates to understand the mechanisms behind peer interactions in the class-
room. I combine administrative and survey data from Chile with detailed mea-
sures of housing damages from the 2010 earthquake, one of the most violent
ever recorded. Damages to a student’s own home reduced achievement and
raised self-reported cost of study effort. Average damages among classmates
induced schools to reallocate resources towards student support and increased
achievement. In contrast, dispersion in classmates’ damages had heterogeneous
achievement effects across the prior performance distribution, which schools
did not appear to mitigate, pointing to peer interactions. Motivated by evi-
dence suggesting students value classroom rank, I show that a game-of-status
model of competition for grades rationalizes the findings. The results suggest
that, beyond production complementarities and a desire to conform, a desire to
compete could shape peer effects on learning.

1 Introduction

Childhood and early adulthood are fundamental years for cognitive development

(Cunha, Heckman, Lochner, and Masterov (2006)). School peers can affect cognitive

achievement during these crucial years1, but the mechanisms are not fully understood,

limiting our ability to design policies that can be effective across contexts.

∗I would like to thank Orazio Attanasio, Richard Blundell, Martin Cripps, Mariacristina De
Nardi, Steven Durlauf, Ed Hopkins, Áureo de Paula, Imran Rasul, Bryony Reich, Elie Tamer, Petra
Todd, and participants at various seminars and conferences for insightful comments. Julia Schmieder
provided excellent research assistance. Research funding from the Centre for Microdata Methods
and Practice and from the European Research Council’s grant number IHKDC-249612 is gratefully
acknowledged. I am grateful to the Chilean Ministry of Education, the Chilean National Institute for
Statistics, and the Agencia de Calidad de la Educación for access to the data used in this research.

1See Ammermueller and Pischke (2009); Arcidiacono, Foster, Goodpaster, and Kinsler (2012);
Booij, Leuven, and Oosterbeek (2017); Carrell, Sacerdote, and West (2013); Duflo, Dupas, and Kre-
mer (2011); Garlick (2018); Hanushek, Kain, Markman, and Rivkin (2003); Hoxby (2000); Imberman,
Kugler, and Sacerdote (2012); Lyle (2009); Sacerdote (2001).
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This paper studies why classroom peers can shape the academic achievement of

students. It introduces a new dataset that links students’ academic outcomes, self-

reported cost of study effort, teacher curriculum coverage, and schools’ resource alloca-

tion to newly constructed measures of disruptions to students’ environment stemming

from one of the most violent earthquakes ever recorded. The dataset allows me to

study how study disruptions spill over to classmates. Identification relies on variation

in peer disruptions rather than in peer characteristics, avoiding confounding effects

associated with the latter.2 I draw on the empirical evidence to propose a new theory

of peer influence in cognitive development. While formulated within the context of an

environmental shock, the theory offers a framework to understand why peers matters

for learning in many contexts.

The empirical context is the 2010 Maule mega-earthquake, the seventh strongest

ever instrumentally recorded (USGS, 2025). I combine administrative and survey

data with information on damage propagation among over 150,000 students. I start

by building a measure of each student’s home’s vulnerability to the earthquake using

information on housing quality. From the last pre-earthquake census I obtain infor-

mation on the construction materials of the homes of the nearly one million Chilean

households with at least one school-aged child. I employ an unsupervised learning

algorithm to stochastically assign their homes to seismic resistance classes. Armed

with this housing quality measure, I develop a model that can accurately predict hous-

ing quality from a household’s characteristics, and apply it to administrative data on

Chilean students to predict the quality of their homes. Drawing upon the structural

engineering literature, I then combine this newly developed measure of housing quality

with geocoded information on ground-shaking intensity in each student’s hometown

to construct a measure of home damages for each student.3 This variable measures

the shock to each student’s environment.

I link the damage measure to administrative and survey data from the Chilean

Ministry of Education. Data on students include standardized test scores and GPA

at two points in time (in fourth and eighth grade), family background, type of school

attended, and survey information on self-reported cost of study effort and ability to

engage with course content. Data on teachers include the fraction of the curriculum

2Examples of studies using naturally occurring exogenous variation in peer characteristics to
account for confounding effects are Hoxby (2000); Angrist and Lang (2004); Hoxby and Weingarth
(2005); Lavy, Paserman, and Schlosser (2012); Imberman, Kugler, and Sacerdote (2012).

3I gratefully acknowledge Prof. Sergio Ruiz of the Geology Department at the University of
Chile, a leading expert on the seismic vulnerability of Chilean buildings, for feedback on the dam-
age measure. The measure falls within Deterministic Earthquake Loss Estimation, which aims to
estimate losses from a specific seismic event. It stands in contrast to Probabilistic Earthquake Loss
Estimation, which aims to predict potential losses from many possible seismic events (McGuire
(2004)).
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they were able to cover. For the 42% of schools participating in the preferential

school subsidy program (SEP, Subvención Escolar Preferencial), data include detailed

reports on SEP resource spending. All observations can be assigned to classrooms and

schools through unique identifiers.

Using this newly constructed dataset, I first document new facts about socioeco-

nomic segregation among Chilean children. Poorer students were more likely to live

in the rural localities experiencing more ground shaking, and conditional on local-

ity, their homes were built according to worse construction standards. As a result,

compared with students whose parents have more than 14 years of education (who

likely attended some college), those whose parents have at most 14 incurred twice

the amount of home damages (USD 1,552 vs. USD 759, or 47% vs. 23% of annual

household income).

I then estimate the causal impacts on students’ outcomes of damages to their

own homes and to the homes of their classmates, focusing on the mean and stan-

dard deviation of damages among classmates. The identification strategy relies on a

difference-in-differences framework leveraging the different correlation between seis-

mic vulnerability and outcomes across two cohorts of students, one whose outcomes

were measured in 2009, before the earthquake struck, and one whose outcomes were

measured in 2011, after the earthquake struck. This strategy eliminates confound-

ing effects that could arise if the measures of earthquake vulnerability correlated

with unobserved outcome determinants. The identifying assumption is that the re-

lationship between outcomes and earthquake vulnerability would be the same across

cohorts absent the earthquake. I provide several pieces of evidence supporting this

assumption, showing no evidence that students reallocated to classrooms and schools

in response to the earthquake in the estimation sample (which excludes by design

forced re-locations), showing no impacts on placebo outcomes pre-determined at the

time of the earthquake, and showing that the seismic vulnerability of peers’ homes

does not correlate differently with outcomes across cohorts in regions that were never

affected by the earthquake.

Using this strategy, I find that the damage incurred by a student’s own home had

a negative and non-negligible effect on achievement 22 months post-earthquake. A 1

standard deviation increase in damages lowered test scores by 0.03 standard devia-

tions, and GPA by 0.02 standard deviations, albeit the GPA impacts are statistically

insignificant. Using survey data, I provide evidence that damages at the students’

own homes increased students’ reported cost of study effort, suggesting it could have

mediated the detrimental impacts on achievement.

Regarding the spillover effect of damages to peers’ homes keeping fixed a student’s

own exposure to the earthquake, I find that increasing the average damages suffered by

3



classroom peers increases own test scores, and the effects are not significantly different

across students with different initial performance. This appears to be the result of

schools overcompensating any potential negative impacts. Data on school spending

show that schools responded to the average level of damages suffered by their students

by reallocating resources from recruitment costs toward activities directly linked to

student support and learning recovery, such as educational and psychological support.

In contrast, increases in the within-classroom standard deviation of damages low-

ered the achievement of students with high initial performance and increased the

achievement of those with low initial performance. Neither the data on curriculum

coverage nor the data on school spending provide statistically significant evidence

of schools reacting to how dispersed the damages were, such as by focusing existing

resources towards activities targeted at students with lower initial performance. Ad-

ditionally, emergency funds were granted to schools depending on the overall damage

severity, not its dispersion (Gobierno de Chile (2010), Appendix D).

The results so far suggest that study disruptions had spillover effects on classroom

peers, and that schools mediated the effects of average damages but possibly not

of damage dispersion, suggesting a potential role for peer-to-peer interactions. To

better understand the damage-dispersion spillovers, I analyze impacts on GPA rank,

to examine if the heterogeneous effects on GPA triggered changes to students’ GPA

rankings in the classroom. Surprisingly, I find this did not occur. Students with higher

initial performance experienced drops in GPA in classrooms with more dispersed

damages, without an accompanying drop in their GPA rank. A possible reason for

this is that students care about their GPA rank. Faced with a changed cost of study

effort among their peers, students adjusted their effort and learning (a peer effect),

but not at the expense of their classroom standing in terms of an achievement measure

observable to classmates. Rank concerns, therefore, could be a mode of peer-to-peer

interactions.

Drawing on this insight and on the empirical findings, I formulate a new theory

of interactions in the classroom. I formalize the simple intuition that students care

about their classroom standing through a game-of-status model of simultaneous effort

choices in the classroom. In the model, students are characterized by an effort-cost

type, which is affected by prior test scores, socioeconomic characteristics, and by the

damages to their home. They produce GPA by exerting costly effort, and derive

utility from GPA and GPA rank. To account for the evidence on schools’ reactions,

mitigating actions by schools in response to average damages are allowed to enter the

achievement production technology. I show that the model, which admits a unique

symmetric Bayesian Nash equilibrium, can rationalize the empirical findings. Specif-

ically, a school’s mitigating efforts lead to positive effects of average damages. The
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competition motive behind students’ effort choices causes the damage dispersion to

have heterogeneous impacts on GPA, and null effects on GPA rank, along the prior

test score distribution, conditional on a student’s own damage and socioeconomic

characteristics. By changing the density of types differently across the effort–cost

type distribution, damage dispersion affects incentives differently for different stu-

dents, both by changing how many nearby types can be overtaken with a marginal

increase in effort, and by shifting equilibrium effort responses throughout the distri-

bution. These forces generate heterogeneous effects on the returns to effort and, in

turn, on GPA, that are consistent with the patterns found in the data.4

The central theoretical insight can be applied more broadly outside the realm

of environmental shocks: when competitive motives drive study effort, changing the

dispersion of peers’ cost-of-effort types, be it through shocks to the cost of effort or

through compositional changes from classroom assignment policies, affects learning,

and does so differently for different students depending on how the change affects the

number of nearby competitors and the effort of all competitors. This has important

and so far mostly unexplored implications for policy, as I discuss in this article’s

concluding section.

Methodologically, this study relates to the small literature that examines peer in-

teractions relying on random shocks to students that keep group composition constant

(see the survey in Bramoullé, Djebbari, and Fortin (2020)). One of the closest studies

is Fruehwirth (2013), who exploits the introduction of a student accountability policy

in North Carolina targeted at low-achievers. The policy serves as a shock to the effort

of some but not all students in the classroom; the fraction of affected peers is used

to estimate the impact of peers’ achievement on own achievement within a linear-in-

means framework.5 The estimates are interpreted as best-response functions through

the lens of a model of effort choices in a strategic environment where students desire to

conform to each other. In contrast, this paper considers a continuous shock, the extent

of damages that each student’s home incurred. Rather than identifying best-response

functions, an ‘endogenous peer effect’ in the terminology of Manski (1993), this paper

4A small strand of the literature on college admissions has developed tournament models of stu-
dent effort under rank incentives (Bodoh-Creed and Hickman (2024); Grau (2018); Tincani, Kosse,
and Miglino (2025)). These papers study the effects of changing the rank incentives, holding peer
characteristics fixed, rather than peer effects given rank concerns. The most relevant is Tincani,
Kosse, and Miglino (2025): after showing experimentally that rank incentives affect study effort in
Chilean high schools, the authors develop and structurally estimate a tournament model of simulta-
neous effort choices, in which college seats are assigned according to within-school GPA rank.

5Berlinski, Busso, and Giannola (2023) have applied a similar strategy to data from a literacy
remediation program in Colombia, and Dieye, Djebbari, and Barrera-Osorio (2014) to data from
a randomized experiment on a scholarship program in Colombia. See also Fruehwirth (2014) for
an in-depth analysis of the identification of the effect of contemporaneous peer outcomes on own
outcomes when outcomes are partly determined by unobserved factors.
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examines the reduced-form impact of changing the distribution of the shocks within

the classroom, an ‘exogenous peer effect’ in this terminology. Through the lens of a

model where students desire to compete with each other, it interprets the estimates

as comparative statics on equilibrium outcomes in the classroom.6 The impacts of

the mean and of the dispersion of this continuous shock among peers are shown to be

helpful to inform a new theory of peer influence.7

Within the vast literature on peer effects in education, relatively few studies have

developed theories of peer influence. Existing theories commonly assume that students

have a desire to conform to their peers, or that there are complementarities between

peers in the achievement production technology (e.g. Brock and Durlauf (2001a,

2006); Calvó-Armengol, Patacchini, and Zenou (2009); Fruehwirth (2013); Conley,

Mehta, Stinebrickner, and Stinebrickner (2024)). Both assumptions rationalize the

workhorse linear-in-means model of peer effects with continuous outcomes (Blume,

Brock, Durlauf, and Jayaraman (2015)). In contrast, I present a new theory that

rationalizes why moments beyond the mean may matter, in a parsimonious way. It

offers a simple insight: when students derive utility from rank, changing the cost

of study effort of peers affects own effort, because it changes the ability of peers to

compete. Empirically, this generates a peer effect where moments beyond the mean

matter, without the need to introduce extensions to the technology or preferences to

capture the influence of higher-order moments. Such a mechanism has been largely

ignored despite its intuitive appeal.8

The idea that students may care about their rank is consistent with a growing body

of evidence showing that competitive preferences can emerge early in life (Sutter and

Glätzle-Rützler (2015); Page, Sarkar, and Silva-Goncalves (2017)) and that classroom

rank can yield both immediate and longer-term benefits. A large literature on rank

effects has examined how exogenous changes in a student’s achievement rank within

a reference group affect student outcomes. A higher rank has been shown to improve

self-concept, happiness, and teacher perceptions of ability, and to raise later educa-

tional attainment and earnings (e.g. Zeidner and Schleyer (1999); Marsh et al. (2007);

6Unlike Fruehwirth (2013), I do not estimate the ‘endogenous peer effect’, because the theoretical
model does not yield a closed-form expression for the best-response function. Instead, the model
characterizes the equilibrium effort function within each classroom, which traces effort as a function
of a student’s effort-cost type, and derives comparative statics on this equilibrium effort function
under different within-classroom distributions for the effort-cost types. When damages to a student’s
home affect the student’s effort-cost type, the model provides testable implications on the shape of
the spillovers from earthquake-induced disruptions.

7De Giorgi and Pellizzari (2013) also test theories of peer influence. They use evidence on the
effects of changing peer composition, which is deliberately kept constant here.

8In line with the theory first introduced in this paper (as detailed in e.g. Tincani (2017)),
Rosenzweig and Xu (2024) recently provided evidence supporting this mode of interaction within
the context of Southeast Asian refugee students in the US.
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Elsner and Isphording (2017, 2018); Murphy and Weinhardt (2020); Denning, Mur-

phy, and Weinhardt (2023); Ladant et al. (2024); Carneiro et al. (2025)). Students,

therefore, may value their relative standing, even when it is not formally rewarded.

Building on this insight, this paper studies instead the implications of rank concerns,

i.e., of students caring about their rank, for how peers influence each other’s learning.

This paper also relates to the empirical literature using natural disasters to iden-

tify peer effects in education, such as Cipollone and Rosolia (2007), Sacerdote (2008),

and Imberman, Kugler, and Sacerdote (2012). In contrast to these studies, it does

not use forced relocations of students for identification, focusing instead on variation

in the intensity of disruptions.9 I interpret these disruptions as shocks to a primi-

tive of the students’ skill-accumulation problem that shape their effort choices. This

interpretation, consistent with the skill-formation framework where human capital

reflects optimally chosen investments (Todd and Wolpin (2003); Cunha and Heckman

(2008); Cunha, Heckman, and Schennach (2010)), allows me to move beyond mea-

suring earthquake spillovers to shed light on how social interactions influence those

investment decisions. Finally, the paper relates to the empirical literature on ability

peer effects studying the impacts of moments beyond the mean (Lyle (2009); Booij,

Leuven, and Oosterbeek (2017); Ding and Lehrer (2007); Vigdor and Nechyba (2007);

Hoxby and Weingarth (2005)) and of partitioning the support of ability, which varies

first and higher-order moments simultaneously (Carrell, Sacerdote, and West (2013);

Duflo, Dupas, and Kremer (2011)). These studies tend to find that moments beyond

the mean matter for learning.

The article is structured as follows. Section 2 details the data, damage measure,

and describes damage propagation among students, documenting new facts about so-

cioeconomic inequalities. Section 3 delves into the empirical analysis of damage effects

on achievement, and assesses the identifying assumption and robustness. Section 4

presents evidence on mediating factors using administrative and survey data. Section

5 introduces the theory of peer influence based on rank concerns, rationalizing the

evidence. Section 6 concludes, discussing policy implications and suggesting future

research avenues.

9This distinguishes this paper also from the experimental and quasi-experimental literature that
use variation in assignment to peer groups, such as dorms (Sacerdote (2001); Zimmerman (2003);
Stinebrickner and Stinebrickner (2006); Kremer and Levy (2008); Garlick (2018)) or classrooms
(Duflo, Dupas, and Kremer (2011); Whitmore (2005); Kang (2007)).
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2 Data and Measurements

This section describes the data sources and measurements and performs a descriptive

data analysis.

2.1 Data

I construct a dataset on two cohorts of students combining information from the

SIMCE dataset (Sistema de Medición de la Calidad de la Educación) and enrollment

and grade registries (Rendimiento). I refer to the two cohorts as pre- and post-

earthquake cohorts, depending on whether their outcomes were measured before or

after the earthquake. The 8th grade outcome for the pre-earthquake cohort is observed

in 2009, before the 2010 earthquake, the 8th grade outcome for the post-earthquake

cohort is observed in 2011, 20 to 22 months after the 2010 earthquake (Figure 1).

The sample includes students in public and private subsidized schools.10 I obtained

from the Ministry of Education the list of schools that closed as a consequence of

the earthquake, and used registry data to identify the schools where the evacuated

students relocated to. I dropped from the sample both sets of schools, from both

cohorts, to ensure the absence of earthquake-induced relocations in my sample.11 Such

relocations could directly affect the outcomes of evacuated students and indirectly

those of incumbent students in receiving schools through changes in peer composition.

Such effects could confound the effects of interest in this paper. I dropped observations

with missing classroom identifiers,12 and classrooms with five or fewer students.13 The

full constructed dataset consists of 353, 914 students in 13, 267 classrooms across 4, 798

schools. The main estimation sample is restricted to students living in regions affected

by the earthquake; students living in non-affected regions are used only for testing the

identifying assumption. As explained in the next section, to mitigate measurement

error in the damage measure the main analyses exclude around 15% of observations,

corresponding to schools located in coastal towns. Table 1 reports the sizes of the

pre- and post-earthquake cohorts under each restriction.

For both cohorts I observe administrative records on 8th grade and 4th grade

Mathematics and Language standardized test scores and school grades, gender, town

of residence and unique student, classroom and school identifiers. I complement these

10I exclude students from the elite private unsubsidized schools. They represent approximately
7% of the student population and they come from the most well-off families in the country.

11I dropped 36, 941 observations from the post-earthquake cohort and 38, 784 from the pre-
earthquake cohort, corresponding to 16% of the sample.

12These are 17, 969 observations in the post-earthquake cohort and 21, 194 observations in the
pre-earthquake cohort. The school and student identifiers are never missing.

13These correspond to 2, 484 student-level observations, or 0.7 percent of the sample.
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Figure 1: Data time-line.

data with linked survey data on students’ perceptions, on the household socioeconomic

background, and on teachers’ instruction. Administrative school-level information

includes rurality and public or private status. I complement this information with

teacher surveys on curriculum coverage and, for a subset of schools, with detailed

reports on school expenditures. Finally, I match students to classrooms, teachers and

schools through unique pseudo-identifiers.

2.2 Measuring damages to homes

Earthquake. On February 27th 2010, at 3.34 am local time, Chile was struck by

a magnitude 8.8 earthquake, the seventh-largest ever instrumentally recorded and

technically referred to as a mega-earthquake (Astroza, Ruiz, and Astroza (2012),

USGS (2025)). Figure 2 shows its position in the global earthquake distribution

since 1900. Shaking was felt strongly throughout 500 km along the country, covering

six regions that together make up approximately 80% of the country’s population.

Damage was widespread, with costs estimated at 18 percent of GDP (WHO (2010)).

The Government implemented a national plan to rebuild or repair housing units for

low- and middle-income families. The mega-earthquake had continued impact on

people’s lives during the period covered by my sample. The post-earthquake cohort,

whose outcomes were collected when they were in the 8th grade in 2011, was about to

start the 7th grade when the earthquake struck. By the time the 2011 outcome data

were collected, 20-22 months had passed since the earthquake struck. Yet, only 24

percent of home reconstructions and repairs had been completed (Comerio (2013)),

leading to frustration in the population (Appendix Figure A1).

Measuring earthquake damage to a student’s home. The damage to a stu-

dent’s home depends on the level of ground shaking and on the construction materials.

I proceed in three steps. First, I construct a measure of the shaking that each stu-

dent’s home was subject to. Second, I build a measure of the seismic vulnerability of

each student’s home, which depends on the construction materials. Third, I combine

these two measures to calculate home damages. I now describe each step.
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Figure 2: Source: Global Earthquake Catalog maintained by the United States Geological Survey
(USGS (2023)).

Step one: ground shaking. For students who reside in earthquake-afflicted re-

gions, I build a measure of distance between each student’s town of residence and

the asperity centroid as ∆A =
√
R2 + h2, where R is the distance between the town’s

center and the point on the earth’s surface vertically above the asperity centroid,

whose coordinates are (34.8oS, 72.6oW), and h = 20km is the depth of the latter. I

then apply the intensity attenuation formula derived by Astroza, Ruiz, and Astroza

(2012) for the 2010 Chilean earthquake that gives for each distance ∆A a level of

severity of ground shaking, I, measured on the Medvedev-Sponheuer-Karnik (MSK)

scale: I = 19.781− 5.927 log10(∆A) + 0.00089∆A (R2 = 0.9894).14

Step two: seismic vulnerability. A building’s seismic vulnerability depends on

its construction materials. The construction materials of students’ homes are not

included in the education dataset, but they are included in census data. Therefore, I

use census data to develop a model that can accurately predict the seismic vulnerabil-

ity of a household’s home from a set of observable household characteristics that are

available in the education dataset, and I apply this model to the education dataset

to build a measure of the seismic vulnerability of the homes of the students in my

sample. The procedure comprises three steps. In the first, using census data I build a

measure of seismic vulnerability of a building based on its construction materials. In

the second, using census data I develop the prediction model and assess its ability to

14∆A is non-negative because it measures a distance, and it is never equal to zero because no
town was directly above the asperity, which was in the ocean. The reported R2 refers to the reported
regression with MSK-Intensity as outcome variable.
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correctly predict housing quality from household characteristics. Finally, I apply the

prediction model to the students in my sample (the education data). I now describe

the first two steps in more detail (the third step is trivial).

The first step consists in building a measure of seismic vulnerability of a home

from information on its building materials as per census data. I obtained the 2002

census data, the last one before the earthquake struck, from the Chilean National

Institute for Statistics. I restricted the data to the nearly one million households with

at least one school-aged child, and extracted information on the construction materials

of their homes: for the exterior walls, roof and floor. Table A2 in the Appendix shows

the distribution of building materials in this population.

I then mapped the vector of building materials into a predicted seismic vulnera-

bility class (Grünthal (1998), Table 1). To do so, I estimated a logistic latent-class-

analysis (LCA) model that assigns to each home the predicted probabilities of be-

longing to each of three classes, an unsupervised learning algorithm. Post-estimation,

I predicted the distribution of building materials by class. As an unsupervised al-

gorithm, LCA does not label the classes, a step requiring human input. I attached

a label to each class (low, medium or high seismic vulnerability) depending on the

similarity between the predominant construction materials within each class gener-

ated by the LCA model and the predominant construction materials used in Chile

within each seismic vulnerability class (Massone et al., 2010). In this step of the data

construction, I obtained feedback from a leading expert on the seismic vulnerabil-

ity of Chilean buildings.15,16 Figure 3 shows the predicted class proportions in the

population of households with at least one school-aged child in the census and the

within-class distributions of construction materials.

The second step consists in building a model that can accurately predict the seis-

mic vulnerability of a household’s home based on household characteristics, in the

population of families with school-aged children. The dependent variable is seismic

vulnerability as obtained from the LCA model, that is, a vector containing the proba-

bilities that a home belongs to the low-, medium- or high-vulnerability class. For the

independent variables, I restrict attention to the characteristics that are available in

15I thank Professor Sergio Ruiz of the Geology Department at the University of Chile for his
expert feedback on this step of the data construction, confirming that the distribution of building
materials within the classes generated by the algorithm correspond to that found within the seismic
vulnerability classes in Chile.

16Astroza, Ruiz, and Astroza (2012) identify four seismic vulnerability classes in Chile, but two
of them (confined masonry and confined masonry designed according to the NCh2123 Chilean Code)
are indistinguishable from each other using census information. Therefore, I group them into one
class. These two types of constructions have the best earthquake resistance profiles (see Table 2
in Astroza, Ruiz, and Astroza (2012)), so they are assigned to the low vulnerability class. But in
calculating damages, I acknowledge that this class contains two different kinds of constructions: I
assume that half of these homes are built according to the NCh2123 Chilean Code, and half are not.
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Figure 3: Results of the latent-class-analysis model estimated on census data: distribution of seismic
vulnerability classes and of building materials within each class (N=929,647). Notes: The percentages
next to each class label represent the proportion of homes in that class in the population of households
with at least one school-aged child in the 2002 census.

both the census and the education data. These are: the age of the household head,

the average years of education of mothers and fathers, and the region of residence, to

capture any differences in construction standards across regions.17

Predicting seismic vulnerability from household characteristics is remarkably easy

in Chile, as I find striking socioeconomic stratification in housing quality among

Chilean families with school-aged children. As shown in Figure 4, students from

high socioeconomic status (SES) households are those most likely to live in homes

with low seismic vulnerability, students from middle SES households in homes with

medium seismic vulnerability, and students from low SES households in homes with

high seismic vulnerability. Such socioeconomic segregation is not built into the seismic

vulnerability measure, which is constructed only from construction materials. There-

fore, the fact that the distribution of seismic vulnerability varies as expected with

SES informally validates the procedure I developed to construct seismic vulnerability.

To my knowledge, this is the first direct evidence that housing quality, in terms of

17I assume that the parent who fills out the education questionnaire is the household head.
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earthquake resistance, is highly segregated along socioeconomic lines among Chilean

students.

Figure 4: Evidence of socioeconomic segregation in housing quality among Chilean families with
school-aged children. This graph plots the probability that the home of a school-aged child belongs
to each of three seismic vulnerability classes (low-, medium- and high-vulnerability) by the education
of the parents. Sources: census 2002 data, restricted to households with at least one school-aged
child (N = 929,647). Class probabilities stem from latent-class-analysis using census information on
the construction materials of the families’ homes.

I build the prediction model by estimating a regression on census data. The

model can be used to predict the seismic vulnerability of the homes of students in

the education dataset because it uses household characteristics available in both the

census and the education dataset. Appendix A.1 describes the model. For each

household, the model predicts the probabilities that the home belongs to each of the

three seismic vulnerability classes. Figure 5 shows that its fit is excellent: the housing

quality predicted using the estimated model traces very closely the actual housing

quality built from information on building materials. The fit worsens slightly only

among very old or very highly educated parents, who are very few in the education

dataset. This gives me confidence that the model can accurately predict seismic

vulnerability for nearly all students in the education dataset. The estimation of the

prediction model uses data on the entire Chilean population of families with school-

aged children, therefore, it is free of finite-population sampling variability.

Step three: combining ground shaking and seismic vulnerability to build a

measure of damages. For each student in the sample I now have measures of the

intensity of ground shaking and of the seismic vulnerability of her home. I combine

these two pieces of information to build a measure of expected damage, defined as the

fraction of the home that needs to be rebuilt. The procedure is as follows.

For each vulnerability class and ground shaking level, Astroza, Ruiz, and Astroza

(2012) provide the distribution of damage grades, which are divided into six cate-
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Figure 5: Goodness of fit of predicted seismic-vulnerability-class probability by parental education
and by age of household head. Notes: census 2002, families with school-aged children (N = 929,647).

gories, ranging from no damage (DG = 0) to complete collapse: (DG = 5). Following

Bommer et al. (2002), I assign to each category DGm a numerical damage measure

d(DG) ∈ [0, 1], called “damage ratio,” which measures damages as a fraction of com-

plete collapse, where d = 1 represents complete collapse. If the vulnerability class was

observed, we could obtain the expected damage ratio of household i given its vulner-

ability class vci and ground shaking intensity level Ii as E[di|vci, Ii] =
∑5

m=0 d(DG =

m)pm(vci, Ii), where p
m(vci, Ii) is the probability that a house of vulnerability class

vci subject to ground shaking Ii suffers a damage grade DG = m, which carries a level

of damage ratio equal to d(DG = m). But the vulnerability class is not observed.

Instead, for each student in the data I observe a vector of predicted probabilities that

her house belongs to one of each vulnerability class. Therefore, for each household

with characteristics xi I use the predicted likelihood that it belongs to each vulner-

ability class j = 1, 2, 3 (p̂j(xi) in Appendix A.1) to build a measure of the expected

damage ratio:

di = E[d|xi, Ii] =
3∑

j=1

p̂j(xi) ·

(
5∑

m=0

d(DG = m)pm(vc = j, Ii)

)
(1)

I standardize this measure in the sample so that it has mean zero and unit variance.

This is the measure of home damage used throughout the analysis.

Tsunami. The damage ratio is not designed to measure damage stemming from

the accompanying tsunami that afflicted coastal towns. In coastal areas it may suffer

from larger measurement error, which would lead to attenuation bias. To avoid this,
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I restrict the sample to non-coastal towns, defined as those located more than 1

km from the coast, verifying the robustness of the results to different geographical

restrictions. This sample restriction excludes approximately 15% of the observations

from the analysis.

2.3 Descriptive analysis

I document new facts about the propagation of damages from the 2010 Maule earth-

quake among students.

Among students of the post-earthquake cohort who live in earthquake regions

(i.e., the students affected by the earthquake), the fraction of the home that collapsed

ranged from 0% to 59%, and on average was 1.7% (Panel A, Table A3). The distribu-

tion was right-skewed, with most students (∼ 95%) suffering damage ratios below 7%.

Average reconstruction costs amounted to USD 1, 439, with a standard deviation of

USD 3, 540. To express damages relative to households’ resources, I also compute the

ratio of damage to annual household income. The average of this ratio is 0.43, and its

standard deviation is 1.55.18 Lower earning households incurred disproportionately

higher damages; a 1% increase in earnings is associated with USD 76 fewer damages.

We have already seen that students from lower SES live in homes with larger seis-

mic vulnerability (Figure 4). Figure 6 shows that also the level of home damage, which

depends on both seismic vulnerability and ground shaking, decreased with students’

SES, as measured by parental education. On average, the homes of students whose

parents have at least some college education incurred 793 fewer USD of damages,

or half the amount, than those of students whose parents do not have any college

education. The Figure also shows that at all levels of parental education, students in

public schools suffered more home damage than those in private schools, and those in

rural schools more than those in urban schools. The evidence therefore suggests that

the homes of the more disadvantaged students (i.e., those with less educated parents,

those in public schools, those in rural schools) suffered the largest earthquake dam-

ages. Appendix Table A4 shows how all student and school characteristics correlate

with home damages and building quality.

Why did homes of disadvantaged students incur greater damage? Figure 7 visu-

ally displays this disparity across two panels, each featuring a map of how damage

18These back of the envelope calculations use the 2010 USD to CLP exchange rate, and depend
on the assumed cost of reconstructing a completely collapsed home. I assume the cost is equal to the
average market price of a 50m2 home in Chile in 2010, which was USD 84, 175 (see https://www.

globalpropertyguide.com/Latin-America/Chile/square-meter-prices). If a home suffered an
unstandardized damage ratio of x%, then the damage in dollars is measured as x% · 84, 175. In the
main analyses, I use the standardized damage ratio di, defined in equation (1), as the measure of
damages, because its value does not depend on assumptions on home reconstruction costs.
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Figure 6: Relationship between home damage and parental education by school characteristics.
Notes: sample of students in earthquake-affected regions in the post-earthquake cohort and residing
more than 1 km from the coast. The figures present local polynomial regression estimates with 95%
confidence intervals. Home damage is measured by the standardized damage ratio di, defined in
equation (1). The top and bottom 1% of observations in terms of parental education were trimmed.

propagated geographically. The left panel is based on lower-SES students — those

without college-educated parents — while the right is based on higher-SES students

— those with college educated parents. The circle size indicates the proportion of the

respective SES populations living in a particular town. The color intensity indicates

the average damage severity for students in that town and SES group, with darker

colors indicating worse damage.

The maps reveal that lower-SES students were more likely to live in the (mostly

rural) areas most affected by the earthquake than higher-SES students. But even

conditional on residing in the same town, the homes of lower-SES students were

more damaged, because of lower-quality housing. Damage propagation, therefore, was

unequal across socioeconomic lines in Chile because of differences in residential choice

and housing quality. While such socioeconomic inequality may appear unsurprising,

this is one of the first studies to document it.

There is variation in how students in the same classroom were affected by the

earthquake: 98% of students from the post-earthquake cohort going to school in

affected non-coastal areas were enrolled in classrooms where not all students suffered

equal damages. This fraction is nearly the same across public and private schools

(98.0% vs. 97.5%), and slightly larger among urban (97.9%) than rural (95.9%)

schools. As shown in Panel Aii of Table A3, students were exposed to substantial

dispersion in earthquake damages. The average within-classroom standard deviation
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Figure 7: Map of Chile showing propagation of damage from the 2010 Maule earthquake among
students by socioeconomic demographics. Notes: The left panel shows damage propagation among
students whose parents do not have college education, the right panel among students whose parents
have college education. Each circle represents a town. Its size represents the percentage of the sample
of non-college-educated parents (left panel) or of college-educated parents (right panel) living in that
town. The shade reflects the average level of damages to the homes of the students without (left
panel) or with (right panel) college-educated parents in that town, measured in USD. For reference,
the average annual wage in the entire sample is USD 8,378. College education is defined as having
more than 14 years of education, as most vocational higher-education degrees require at most 14
years of education.

of the non-standardized damage ratio (the fraction of the home that collapsed) is 0.6%,

which corresponds to USD 531 at 2010 reconstruction costs. As an alternative scale,

I also compute the damage-to-family-income ratio for each student and the standard

deviation of this ratio within each classroom. On average, the standard deviation of

this ratio is 41%, meaning that in a typical classroom, home damages differed across

students by about 41% of households’ own annual income. In some classrooms the

standard deviation in damages reached staggering levels, such as 6.1% at the 99th

percentile, or USD 5, 132, over seven months’ worth of income. Therefore, while

students attending the same classroom tended to live in nearby towns and belong to
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similar socioeconomic classes, there was variation within classrooms in how students

were affected by the earthquake, driven by differences in ground shaking and housing

quality. This provides rich within-classroom variation in individual-level shocks.

Variation in damages did not only arise within classrooms, but also across class-

rooms within the same schools and across schools. Intra-class correlation estimates

reveal that 91.0% of the total variance in home damages was explained by differences

between schools, with the remaining variation occurring within schools. There was

also variation in the classroom-level dispersion in damages: 87.4% of its total variance

occurred across schools, with the remaining variation occurring within schools. By

contrast, virtually all the variation in the classroom-level mean in damages was across

schools (99.8%).

Finally, Table 1 presents descriptive statistics of the pre- and post-earthquake

cohorts of students, both country-wide and for the main estimation sample, which

display similar characteristics. The descriptive statistics for individual and classroom-

level damage-based variables in both cohorts are reported in Appendix Table A3.

Table 1: Summary statistics of student and school characteristics

Pre-earthquake cohort Post-earthquake cohort
Mean St.dev. N Mean St.dev. N
(1) (2) (3) (4) (5) (6)

A. All students
Baseline test score .161 .91 155958 .143 .907 150791
Parental education (years) 10.9 3.11 175511 11 3.06 167565
Female student .504 .5 180244 .504 .5 173864
Rural school .113 .317 180244 .106 .307 173864
Public school .478 .5 180244 .466 .499 173864
Earthquake-affected region .754 .431 180244 .739 .439 173864

B. Excluding coastal towns
Baseline test score .162 .914 135101 .146 .909 129588
Parental education (years) 10.8 3.11 152351 10.9 3.07 143993
Female student .504 .5 156393 .504 .5 149485
Rural school .118 .322 156393 .109 .312 149485
Public school .464 .499 156393 .451 .498 149485
Earthquake-affected region .83 .375 156393 .818 .386 149485

C. Excluding coastal towns and in earthquake regions (main estimation sample)
Baseline test score .193 .913 89910 .162 .908 90973
Parental education (years) 11 3.02 89910 11.1 3 90973
Female student .524 .499 89910 .526 .499 90973
Rural school .112 .316 89910 .108 .31 90973
Public school .428 .495 89910 .421 .494 90973
Earthquake-affected region 1 0 89910 1 0 90973

Notes: Baseline test scores are the average of Mathematics and language SIMCE test scores in fourth grade,
standardized in the population of test takers. A town is defined as coastal if it lies within 1 km of the coast. The
main estimation sample described in Panel C corresponds to the sample used to estimate the regression in column
(1) of Table 2.
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3 Empirical Analysis of Earthquake Effects

3.1 Main findings

Damages to students’ homes varied based on the quality of their homes and the

distance of their hometown from the earthquake’s asperity. This suggests that we can

estimate the causal impact of earthquake damages on student outcomes by using data

from a cohort of students with measurable pre-existing vulnerability to the earthquake

but whose outcomes were measured before the earthquake struck. A difference-in-

differences estimator exploits the differential correlation between vulnerability and

outcomes across cohorts to tease out causal impacts.19

Equation (2) presents the regression model I estimate. I consider two achievement

outcomes: GPA, which depends on teachers’ grades and is in principle observable to

classroom peers, and standardized test scores, which are graded centrally and are not

directly observed by peers. I use the damage ratios defined in equation (1) to measure

pre-existing earthquake vulnerability, which reflects actual home damages only for the

cohort exposed to the earthquake. The vector Dic of vulnerability variables comprises

the damage ratio of student i and the (leave-one-out) mean and standard deviation

of damage ratios in i’s classroom c. The dummy variable posti takes on value 1 if a

student belongs to the post-earthquake cohort, the one exposed to the earthquake, and

0 otherwise. The vector xi of student characteristics includes a lagged achievement

measure (the standardized test score in grade 4). The vector wcs of characteristics of

classroom c in school s includes the school building’s vulnerability.20 The Table notes

contain the full list of regressors.

yics = α0 + α1 · wcs + α2 · xi + β
′ ·Dic + posti ·

[
γ + δ

′ ·Dic

]
+ ϵics. (2)

For the pre-earthquake cohort, the parameter β captures the spurious relationship

between vector Dic and outcomes: the location and quality of a student’s and her

classmates’ homes could correlate with unobserved outcome determinants. If such

spurious relationship is constant across cohorts, an assumption I assess in section 3.2,

the δ parameters reveal the effects of earthquake damages on achievement, keeping

school building damages fixed. This is the parameter vector of interest.

19In this section, “vulnerability” refers to overall vulnerability, measured in damage ratios, which
considers both construction quality and distance from the asperity.

20I do not observe the construction materials of the school building, but I observe the shaking
intensity in the school’s town. To allow for different shaking-resistance levels depending on construc-
tion materials, I include as regressors the shaking in the school’s town, the shaking interacted with
whether the school is public or private (to account for building quality differences across public and
private schools), the shaking interacted with the cohort dummy, the shaking interacted with both
the public school and cohort dummies, and the cohort and public school dummies interacted.
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Table 2 presents the results. The outcome in column (1) is the average between

the Mathematics and Language SIMCE standardized test scores in eighth grade. Ap-

pendix Table A5 shows that considering the two subjects separately yields similar

patterns, with somewhat stronger effects on Language at the point estimates. The

outcome in column (2) is the GPA in eighth grade, standardized. A one standard de-

viation increase in a student’s damage ratio, corresponding to increasing the collapsed

portion of the home by 4.4 percentage points (around USD 3, 600 in damages), lowers

test scores by 0.03 standard deviations (std) and GPA by 0.02 std, albeit insignifi-

cantly for GPA. To put the magnitude into perspective, this impact is a fifth of that

of a one-standard-deviation improvement in teacher value added (Chetty, Friedman,

and Rockoff (2014)).21

Table 2: Impacts of earthquake damages on standardized eighth-grade test
score and GPA

Test score GPA (std)

(1) (2)

Effect of damage to own home -0.028∗∗∗ -0.016
(0.011) (0.014)

Effect of average damage among classmates 0.049∗∗∗ 0.043∗

(0.017) (0.023)

Effect of standard deviation of damage among classmates -0.084∗∗ -0.086∗

(0.039) (0.049)

Observations 180883 183380
R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameter δ obtained from OLS estimation of regression (2). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. The treatment effects, including of the classroom-level damages,
are measured in standard deviations of the student-level damage distribution; Table A8 shows es-
timates where each treatment effect is measured in standard deviations of the treatment variable
itself. Regressions include student and classroom characteristics. Student characteristics: fourth-
grade test score, gender, whether the student lives in the school town, parental education, age of
household head, dummy for region of residence. Classroom characteristics: public school dummy,
rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school
dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort
and public dummies interacted, class size, classroom fractions of females and of local residents;
classroom average and standard deviation of fourth-grade test scores and of parental education;
all pairwise within-classroom covariances between: damage, gender, parental educational, local
residency, lagged test score. Damages’ mean and standard deviation are leave-one-out moments.
Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

The average damages to the homes of classmates have positive effects on own test

scores and GPA. An increase in mean peer damages of one standard deviation of the

damage distribution (i.e., a 4.4 percentage point increase in the portion of the home

that collapsed) increased test scores by 0.05 standard deviations, and GPA by 0.04

standard deviations. This suggests that schools counteracted any potential adverse

learning conditions caused by average damages. Overcompensation in response to

the earthquake was documented also in post-earthquake crime prevention in Chilean

21Teachers are one of the most important school inputs into the production of achievement, but
school inputs are generally not as impactful as home interventions (e.g. Heckman, Liu, Lu, and Zhou
(2022), Heckman (2006)).
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municipalities (Hombrados (2020)). Classroom-level damage dispersion had negative

effects on test scores and GPA, of similar magnitudes. An increase in the within-

classroom standard deviation of damages of one standard deviation of the damage

distribution (i.e., a 4.4 percentage point increase in the portion of the home that

collapsed) lowered test scores and GPA by around 0.085 standard deviations. These

results suggest that schools did not entirely compensate detrimental effects on student

learning due to damage dispersion within classrooms.

To summarize, damages affected the learning of the student living in the dam-

aged home. The detrimental impacts occurred at a critical time in the educational

path of students (the year before transferring to secondary education) and were dis-

proportionately borne by students of lower socioeconomic status due to their greater

exposure (Figures 4 and 7). While schools could not mitigate the impact of such

individual-level shocks, they appear to have successfully mitigated the effect of the

average level of damage in the classrooms. By contrast, dispersion in damages across

classmates had negative effects on learning outcomes, on average.

3.2 Identifying assumption

The identifying assumption underlying the estimator is that the relationship between

achievement and the earthquake vulnerability variables would be the same in the pre-

and post-earthquake cohorts in the absence of the earthquake. A concern is that

the estimates may capture changes in this relationship across cohorts, rather than

true damage impacts. For example, the estimate of the impact of mean damages in

the classroom would be biased if the government introduced a policy between 2009

and 2011, the period between the outcomes for the two cohorts were measured, that

changed the student composition across schools, such as changes to the vouchers for

disadvantaged students to attend private schools.22 If such a policy were introduced,

it could alter how a school’s mean damage measure, based on the socioeconomic

composition, correlates with its unobserved quality across cohorts. This would violate

the identifying assumption. To address such concerns, all specifications include a set

of controls for socioeconomic composition. By the same logic, they include controls

for individual characteristics.23 Identification, therefore, relies on variation across

students and classrooms in earthquake exposure, keeping fixed student characteristics

and classroom characteristics such as socioeconomic status.

22Chile has a voucher policy in place, but it did not undergo any changes at this time (Neilson
(2025)).

23Appendix Table A6 shows that effect estimates are slightly larger but broadly similar in specifi-
cations without such individual and group controls, retaining only the three individual characteristics
used to build the damage measure.
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As the earthquake occurred a few days before the start of grade 7 and outcomes

are measured in grade 8, a second concern is that the estimates may capture the

effect of a reallocation of students across classrooms and/or schools between grades

7 and 8, occurring in response to earthquake damages, that the strategy above and

the exclusion from the sample of forced relocations immediately after the earthquake

(Section 2.1) fail to account for. To examine this, I tracked the movement of students

across schools and classrooms between the 7th and 8th grades, for both cohorts.

Table A7 reports the descriptive analysis. Switches between the 7th and 8th grades

are not common: only 11% of students in the whole sample changed either school

or classroom between these grades. This is aligned with what we would expect:

students typically move school one grade later, during the transition from primary

to secondary school. The vast majority of switches concern school changes: 8.5%

of students changed school, while conditional on staying in the same school, only

2.8% changed classroom. Focusing on students and schools in earthquake regions and

residing more than 1 km from the coast, the main sample of analysis, I find similar

frequencies of all types of switches, as can be seen in the right panel of Table A7.

Next, I analyze whether students could have moved between the 7th and 8th grade

in response to the earthquake. In the main analysis sample (earthquake regions,

non-coastal towns), the fraction of overall switches, school switches, and classroom-

within-school switches is identical in the pre- and post-earthquake cohorts, as shown

in Panel A of Table 3. This suggests that changes to schools or classroom enrollments

between these grades were not a margin of response to the earthquake.

To complement the before-after analysis, I implemented a difference-in-differences

analysis that examines whether the change in switches across cohorts differed between

the regions afflicted and those not afflicted by the earthquake. This additional analysis

delivers precise zero effects as well, as can be seen in Panel B of Table 3, where

only the coefficient in column (3) is significant (p < 0.10), but it is small and the

effect becomes a precise zero once controls are included in column (4). The evidence,

therefore, suggests that the few reallocations observed in the post-earthquake cohort

and in regions affected by the earthquake were not induced by the earthquake itself,

but rather fell within the typical reallocations we observe in normal years around the

country.

Next, I examine the effects of the earthquake-damage measures used in the main

analysis on lagged outcome measures, as a pre-trend test and as a way to further

assess compositional impacts. This test shows precise zero effects of the damage to

a student’s own home, of the average damages in the classroom, and of the standard

deviation of damages in the classroom on lagged (fourth-grade) test scores and GPA,

22



Table 3: Classroom and school changes between grades 7 and 8: cohort and
earthquake-region differences

Any Any School School Classroom Classroom
(1) (2) (3) (4) (5) (6)

Panel A. Before-after analysis
Post 0.002 0.047 0.002 0.005 -0.001 0.046

(0.005) (0.051) (0.003) (0.036) (0.004) (0.037)
Observations 244435 182907 244435 182907 223677 169715
R2 0.000 0.022 0.000 0.026 0.000 0.008
Controls No Yes No Yes No Yes

Panel B. Difference-in-differences analysis
Effect of earthquake -0.006 -0.004 -0.011∗ -0.006 0.005 0.002

(0.010) (0.009) (0.006) (0.005) (0.009) (0.008)
Observations 296791 222658 296791 222658 271474 206481
R2 0.000 0.024 0.000 0.027 0.000 0.009
Controls No Yes No Yes No Yes

Notes: Panel A is based on the sample students enrolled in schools in regions affected by the earthquake
and residing more than 1 km from the coast. It reports the estimate of the coefficient of the dummy
identifying the post-earthquake cohort in a regression where the outcome variable is a dummy equal to
one if a student switched school or classroom (columns 1-2), school (columns 3-4), or classrooms within
their school (columns 5-6) between grades 7 and 8. Panel B is based on the sample of students in any
region of Chile, residing more than 1 km from the coast. It reports the estimate of the coefficient
on the interaction between the dummy identifying the post-earthquake cohort and that identifying
earthquake-affected regions in a regression in which the outcome variable is a dummy equal to one
if a student switched school or classroom (columns 1-2), school (columns 3-4), or classrooms within
their school (columns 5-6) between grades 7 and 8, and including as regressors also the dummies
identifying the post-earthquake cohort and earthquake-affected regions uninteracted. In both panels,
odd-numbered columns do not include any controls. Even-numbered columns include the standard set
of controls, except those based on the damage measure in Panel B because it is undefined in regions not
affected by the earthquake. Standard errors are clustered at the school-by-cohort level. *** p<0.01,
** p<0.05, * p<0.10.

as shown in Table 4. These results give us further confidence that the findings are

not driven by confounding effects due to changes in observed student composition.

Table 4: Validity of the identifying assumption: Impacts of earthquake damages on
lagged GPA and test scores

Lagged test score Lagged GPA (std)

(1) (2)

Effect of damage to own home -0.005 0.011
(0.013) (0.017)

Effect of average damage among classmates 0.005 0.005
(0.013) (0.026)

Effect of standard deviation of damage among classmates 0.005 -0.039
(0.009) (0.046)

Observations 183380 179868
R2 0.283 0.104

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast.
Parameter δ obtained from OLS estimation of regression (2). The outcome variable in column (1) is the average
between the lagged (i.e., grade four) Mathematics and Language SIMCE scores, standardized to have mean 0 and
variance 1. The outcome variable in column (2) is the lagged (i.e., grade four) GPA, also standardized. Regressions
include student and classroom characteristics. Student characteristics: gender, whether the student lives in the
school town, parental education, age of household head, dummy for region of residence. Classroom characteristics:
public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public
dummies interacted, class size, classroom fractions of females and of local residents; classroom average and standard
deviation of fourth-grade test scores and of parental education; all pairwise within-classroom covariances between:
damage, gender, parental education, local residency, lagged test score. Damages’ mean and standard deviation
are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.

Bias could still arise if unmeasured components of socioeconomic composition or

of individual characteristics correlate with earthquake vulnerability variables differ-

ently across cohorts. To address this concern, I assess the validity of the identifying
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assumption using data from regions of Chile not affected by the earthquake. As Table

1 showed, around a quarter of students in the sample lived in regions so far from the

asperity that no damage to buildings occurred.

The ideal test would be to re-estimate equation (2) on the sample of students liv-

ing in non-affected regions. Failing to reject the null hypotheses that δ = 0 provides

evidence in favor of the identifying assumption: we would not be able to reject the

notion that, in the absence of an earthquake, the measures of earthquake vulnerability

used in the analysis (own vulnerability, and mean and standard deviation of vulner-

ability among classmates) correlate with outcomes identically across cohorts (under

the assumption that the evolution of such correlation across cohorts in the regions

unaffected by the earthquake equals that in the regions affected).24

I cannot run the ideal test because damage ratios are equal to zero by construction

in regions where the ground did not shake (pm(vc = j, Ii = 0) in equation (1) is zero

for all j,m). As a result, I focus on variation in students’ home quality, which can be

constructed for any student nationwide. When holding the town of residence constant,

this metric becomes a proxy for earthquake vulnerability. This is because within a

town, differences in damage ratios are determined solely by differences in housing

quality.

Therefore, I use the sample of classrooms where every student resides in the same

town (the school’s town), and include dummy variables for students’ town of residence,

uninteracted and interacted with the cohort dummy. I then re-estimate regression (2),

using earthquake vulnerability measures based on housing quality in vector Dic. For

each student, we have a vector of probabilities indicating the likelihood their home falls

into one of three seismic vulnerability classes. From this vector I construct an index.

A value of 1 indicates that a student certainly lives in a high-vulnerability home, a

value of 0 that she certainly lives in a low-vulnerability home.25 I standardize this

index across the entire sample, so that a one-unit increase corresponds to an increase

in earthquake vulnerability by one standard deviation. I also generate the leave-one-

out classroom mean and standard deviation of this vulnerability index.

Table 5 shows the results. As a plausibility check on the measure of earthquake

vulnerability only based on housing quality, the first two columns are based on the

sample of students from earthquake-affected regions. The patterns align with the

main findings presented in Table 2, suggesting that the measure of damages based on

24More formally, letting y0 denote the potential outcome in the absence of the earthquake, and
E = 1 for regions affected by the earthquake and E = 0 for regions not affected, the identifying
assumption is∇DE[y0|post, E = 1]−∇DE[y0|pre,E = 1] = ∇DE[y0|post, E = 0]−∇DE[y0|pre,E =
0], ∀D, where ∇D denotes the gradient with respect to the components of D, the vector collecting
own seismic vulnerability and the classroom mean and standard deviation of seismic vulnerabilities.

25The index is 1 · p̂HV
i + 0.5 · p̂MV

i + 0 · p̂LV
i .
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housing quality and keeping location fixed is a good proxy for the measure based on

damage ratios used in the main analysis.26

Table 5: Validity of the identifying assumption: Impacts of seismic vulnerability in non-earthquake regions

Test score GPA (std) Test score GPA (std)

(1) (2) (3) (4)

Effect of own home vulnerability -0.043∗∗∗ -0.050∗∗∗ -0.019 -0.061∗∗

(0.011) (0.015) (0.022) (0.031)

Effect of average home vulnerability among classmates 0.107∗∗ 0.158∗∗ -0.132 0.063
(0.051) (0.068) (0.096) (0.122)

Effect of standard deviation of home vulnerability among classmates 0.440∗∗∗ 0.311∗ -0.170 0.133
(0.123) (0.162) (0.213) (0.276)

Observations 54659 55525 31498 32188
R2 0.600 0.293 0.602 0.288
Earthquake region Yes Yes No No

Notes: Sample of classrooms where all students reside in the school’s town. Columns (1) and (2) restrict the sample to earthquake-affected
regions and municipalities at least 1 km from the coast, columns (3) and (4) to earthquake-unaffected regions. Home vulnerability is measured
as an index ranging from 0 (for sure living in low-vulnerability home) to 1 (for sure living in high-vulnerability home), standardized to have
mean zero and variance one in the entire sample. The average and standard deviation of home vulnerability among classmates are leave-one-
out moments of this standardized index. Parameter δ obtained from OLS estimation of regression (2). The outcome variables are the average
between Mathematics and Language SIMCE eighth-grade test scores standardized to have mean 0 and variance 1 in columns (1) and (3), and
GPA in eight grade also standardized in columns (2) and (4). Regressions include student and classroom characteristics, and student’s town
of residence dummies (uninteracted and interacted with the cohort dummy). Student characteristics: fourth-grade test score, gender, whether
the student lives in the school town, parental education, age of household head, dummy for region of residence. Classroom characteristics:
public school dummy, rural school dummy, in earthquake regions shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class
size, classroom fractions of females; classroom average and standard deviation of lagged test scores and of parental education; all pairwise
within-classroom covariances between: home vulnerability, gender, parental educational, local residency, lagged test score. Standard errors
clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Columns (3) and (4) assess the validity of the identifying assumption, present-

ing estimates of δ from equation (2) using data from regions not affected by the

earthquake. In almost all cases, we cannot reject the hypotheses that δ = 0 at any

conventional significance level, with the exception of a significant effect of own home

vulnerability on GPA, but this does not hold for test scores, where the effect of own

home vulnerability is smaller and statistically undetectable. This suggests that any

potential spurious correlation between pre-existing vulnerability to the earthquake

and achievement — attributable to correlations between housing quality and un-

observed achievement determinants — is constant across cohorts. Importantly, the

evidence is consistent with a lack of spurious correlation for the treatment variables of

central interest in this study, that is, the classroom-level earthquake damages. This

gives us further confidence in interpreting the findings on the spillover effects from

peer damages as causal.

26The main difference is the significant positive impact of the standard deviation. This can
be explained by the fact that damage dispersion has heterogeneous effects by baseline test scores
(positive for low-performing and negative for high-performing students, as per section 3.3), and the
sample underlying Table 5 is selected (those attending schools that do not attract students from
other towns tend to be lower-performing students).
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3.3 Heterogeneity by baseline test scores

The impacts of damages to students’ homes can vary depending on the students’

prior achievement. To explore this, I estimate model (3), where prior achievement ai

is measured through a standardized test in fourth grade:

yics = α0 + α1 · wcs + α2 · xi + β
′

1 ·Dic

+ β
′

2 ·Dic · ai + posti ·
[
γ1 + γ2 · ai + δ

′

1 ·Dic + δ
′

2 ·Dic · ai
]
+ ϵics, (3)

and where, like before, xi includes prior achievement.27 The parameters of interest

are δ1, which captures the effects of Dic for a student with mean preparation (i.e.,

ai = 0), and δ2, the coefficient on the interaction term. These inform us about the

variation in the effects across students with different prior achievement. I chose a

centrally graded standardized test as the measure of baseline achievement, as such

tests are less prone to teacher bias in grading (Carlana (2019)) and therefore could

be considered more objective than baseline GPA.

The results are presented in Table 6 and Figure 8. The detrimental impacts of

damages to a student’s own home did not significantly vary with a student’s baseline

achievement, as seen in the second row of Table 6. Similarly, the effects of the average

damage among classmates varied insignificantly with baseline achievement, as seen in

the fourth row. Average damage had insignificantly stronger positive impacts on the

test scores of higher-baseline-achievement students (first column), for whom the im-

pacts on test scores of mean damages were positive and statistically significant, as seen

in the top-left panel of Figure 8. This suggests that any remedial measures undertaken

by schools may have benefited the test scores of higher-baseline-achievement students

more, although differences between students are imprecisely estimated. There is no

heterogeneity on the impacts of average damages on GPA.

While the dispersion in damages in the classroom showed negative effects on av-

erage (Table 2), the effects varied substantially and significantly across students (last

row of Table 6). A rise in such dispersion raised the achievement of students with

lower baseline achievement and lowered that of students with higher baseline achieve-

ment, as can be seen in the second column of Figure 8. These results hold regardless

of the outcome measure, eight grade test score or GPA. For some students, the dis-

persion in damages had a similar or even larger effect than that of the damages at

their own home.28

27As in the previous model, prior achievement enters the specification additively, so xi includes
ai; equation (3) displays explicitly only the interaction terms involving ai.

28Magnitude comparisons rely on the unit of measurement. In Table 6, all treatment variables are
expressed in standard deviations of the overall damage distribution. The table reports the impacts
of increasing each treatment variable by the same amount in absolute terms, that is, increasing the
portion of the home that collapsed by around 4.4 percentage points, or increasing the reconstruction
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Table 6: Heterogeneous impacts of earthquake damages on standardized
eighth-grade test score and GPA by baseline test scores

(1) (2)
Test score GPA (std)

Effect of damage to own home -0.030∗∗∗ -0.019
(0.011) (0.015)

Interacted with baseline test score 0.004 0.023
(0.012) (0.015)

Effect of average damage among classmates 0.049∗∗∗ 0.045∗

(0.017) (0.024)

Interacted with baseline test score 0.021 -0.005
(0.015) (0.019)

Effect of standard deviation of damage among classmates -0.068∗ -0.077
(0.039) (0.049)

Interacted with baseline test score -0.108∗∗∗ -0.073∗∗

(0.030) (0.032)

Observations 180883 183380
R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than
1 km from the coast. Parameters δ obtained from OLS estimation of regression (3). The outcome
variables are measured in eighth grade. In column (1) the outcome is the average between Math-
ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)
it is the GPA, also standardized. Regressions include student and classroom characteristics. Stu-
dent characteristics: fourth-grade test score, gender, whether the student lives in the school town,
parental education, age of household head, dummy for region of residence. Classroom characteris-
tics: public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted,
interacted with public school dummy, interacted with cohort dummy, and interacted with cohort
and public dummies), cohort and public dummies interacted, class size, classroom fractions of fe-
males and of local residents; classroom average and standard deviation of fourth-grade test scores
and of parental education; all pairwise within-classroom covariances between: damage, gender,
parental education, local residency, lagged test score. Damages’ mean and standard deviation are
leave-one-out moments. Standard errors clustered at the school-by-cohort level. *** p<0.01, **
p<0.05, * p<0.10.

These findings hold regardless of the specification, interaction terms, and baseline

achievement measure used. Relaxing the linearity assumption using an interaction

with deciles of the baseline test score distribution results in less precise estimates

but confirms the patterns (Table A10).29 Including interactions with other student

socioeconomic characteristics does not change the findings (Table A11). Replacing

the fourth grade test score with fourth grade GPA to measure baseline achievement

yields broadly similar results (Appendix Figure A2).

In summary, the negative effects of damages to a student’s own home were sim-

ilar across the baseline achievement distribution. The positive effects of classroom

costs by around USD 3,600. In Tables A8 and A9, each treatment variable is instead standardized by
its own distribution. The conclusion that some students suffered similar or larger impacts from the
damage dispersion in the classroom than from the damage to their own home holds in both cases.

29In principle, more flexible non-parametric approaches could be used to model the bias arising
from unobserved correlates within the difference-in-differences framework, as demonstrated in the
seminal conditional difference-in-differences method developed in Heckman, Ichimura, Smith, and
Todd (1998). In the context of social effects, this could be achieved by relaxing parametric restrictions
of control function approaches (see Brock and Durlauf (2001b, 2006), who, by bringing the insights
from Heckman (1979) and Heckman and Robb (1986) into the study of social effects, demonstrated
that control functions can aide in their identification.). The treatment effects could be modelled as
non-parametric functions of student characteristics to examine heterogeneity more flexibly. However,
such non-parametric methods deliver impractically large estimator variances in this empirical setting.
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Figure 8: Marginal effects on standardized eighth-grade test score and GPA by baseline test score.
Notes: Marginal effects of leave-one-out average damage among classmates and leave-one-out stan-
dard deviation of damage among classmates. Effects obtained from estimating the regression model
in equation (3). 80% and 90% confidence intervals reported.

mean damages were insignificantly stronger for the test scores of higher-performing

students. Relatively substantial earthquake impacts arose from damage dispersion in

classrooms, especially lowering the achievement of students with high prior achieve-

ment.

3.4 Robustness

The analyses restricted the sample to non-coastal towns to mitigate potential atten-

uation bias from damages from the tsunami, which are not adequately accounted for

by damage ratios. A town is defined as coastal if it is within a 1 km strip of the

coast. I repeated the analyses defining coastal proximity as within 0.5 and 1.5 km

of the coast. I also repeated the analyses in the unrestricted sample that includes

coastal towns. As shown in Appendix Table A12, the results are robust to different

definitions of coastal proximity. The conclusions stand even considering the entire

sample, but, as expected, whenever damages enter linearly, estimates are attenuated

towards zero in this case.

The analyses allowed for correlation in the error terms of an unknown form between

students in the same school and cohort. But error terms of students in different

schools that are geographically close may correlate, as shaking is similar in nearby

schools. I employ two methods to account for this. First, I cluster the standard
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errors at the school-town-by-cohort rather than the school-by-cohort level. Second,

I use Conley’s method (Conley (1999)) to compute the standard errors, allowing for

a more flexible spatial correlation in the residuals. The method assumes that the

spatial dependence between two students residing in different towns is a decreasing

function of the distance between the towns, and that beyond a pre-specified distance

cutoff, there is no dependence. I present results for different cutoff distances (10 km,

25 km, 50 km, 250 km). As shown in Appendix Tables A13 and A14, the standard

errors are similar across methods and distance thresholds, suggesting that clustering

at the school-by-cohort level accurately captures the spatial correlation in the data-

generating process.

4 Mechanisms

4.1 Classroom- and School-level Factors

4.1.1 School-level responses

The impacts estimated from equations (2) and (3) could be mediated by schools’

response to the earthquake. For example, in line with governmental earthquake re-

construction plans (Appendix D), schools suffering more extensive average damages

in their classrooms might have received more emergency funds. The impacts esti-

mated with these models capture the net effect of the disruptions and any remedial

actions by schools. To account for school responses, I introduce a modified model

that includes school-by-cohort fixed effects. Below I report the specifications with

and without interactions with baseline achievement. Like before, vector xi includes

baseline achievement ai:

yics = α̃0 + α̃1 · wcs + α̃2 · xi + β̃
′ ·Dic + posti · δ̃

′ ·Dic + ηsp + νics (2’)

yics = α̃0 + α̃1 · wcs + α̃2 · xi + β̃
′

1 ·Dic

+ β̃
′

2 ·Dic · ai + posti ·
[
γ̃2 · ai + δ̃

′

1 ·Dic + δ̃
′

2 ·Dic · ai
]
+ ηsp + νics. (3’)

The models in equations (2’) and (3’) draw on comparisons across classrooms within

the same school and cohort. The fixed effects remove average unobserved school-level

changes between the pre- and post-earthquake cohorts; the δ̃ parameters capture

the portion of the damage effects that arises from within-school, across-classroom

differences in damages, net of any school-wide responses.

Consistent with the limited variability in mean classroom damages within schools

noted in Section 2.3, the effects of mean damages are imprecisely estimated and un-
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informative (Appendix Table A15 and Figure 9). Estimates from equation (2’) show

that the average impacts of peer damage dispersion become smaller in magnitude and

statistically undetectable once school-by-cohort fixed effects are included (Appendix

Table A15). The point estimates, therefore, are inconsistent with schools mitigating

the impacts of damage dispersion, because mitigation would have resulted in stronger

negative impacts with the inclusion of the fixed effects, not weaker. Additionally, the

impacts with and without the inclusion of fixed effects are statistically indistinguish-

able: the p-values for equality are 0.413 for test scores and 0.372 for GPA. Therefore,

the data provide no statistically significant evidence that schools responded to disper-

sion in damages, and the point estimates are inconsistent with mitigation in response

to dispersion.

Figure 9 presents the results from the estimation of equation (3’). The heteroge-

neous effects pattern remains robust to the inclusion of the fixed effects, as seen by

comparing these results to Figure 8: a rise in damage dispersion raised the achievement

of lower-baseline-test-score students and lowered that of higher-baseline-test-score stu-

dents, irrespective of the inclusion of the fixed effects. The fixed-effects specification

cannot rule out the possibility that schools (or teachers) responded in ways that var-

ied within schools, across classrooms or students, and does not allow us to distinguish

such potential responses from other mechanisms operating at the peer level. To shed

light on this, the next sections examine mechanisms at the school and classroom level

that could generate heterogeneous effects across students.

4.1.2 Classroom instruction

The impacts on test scores and GPA were similar (Table 2 and Figure 8), indicating

that the earthquake did not alter the way knowledge translated into grades. Teachers,

therefore, do not appear to have adjusted their grading standards in response to the

distribution of earthquake damages among students.30 However, teachers may have

responded by adjusting their instruction.

To examine the impacts on classroom instruction, I use teacher survey data on

the fraction of the curriculum covered in class. On average, Language teachers cover

64.3% of the curriculum, and Mathematics teachers 61.9%. Table 7 shows that the

distribution of damages among students in the classroom did not affect these figures.

The point estimates of the impacts of the classroom average and standard deviation

30Across all specifications, the estimated effects of the standard deviation of damages on GPA
mirror those on standardized test scores, suggesting teachers did not adjust their grading standards
in response to the dispersion of damages. A slight divergence emerges only for the effects of the
mean of damages in one robustness specification (Figure A2). The theoretical model will allow for
school-level responses with respect to average damages (without imposing them), so these patterns
are not inconsistent with the theoretical framework I will propose.
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Figure 9: Marginal effects on standardized eighth-grade test score and GPA by baseline test score,
estimated using school-by-cohort fixed effects. Notes: Marginal effects of leave-one-out average
damage among classmates and leave-one-out standard deviation of damage among classmates. Effects
obtained from estimating the regression model in equation (3’). 80% and 90% confidence intervals
reported.

of damages are close to zero, and these null effects are precisely estimated. The ef-

fects of mean damage have 95% confidence intervals of [−0.014, 0.011] for Language

and [−0.022, 0.009] for Mathematics; the effects of the standard deviation of dam-

ages have confidence intervals of [−0.015, 0.043] for Language and [−0.030, 0.041] for

Mathematics, indicating that we cannot statistically reject only small changes to cur-

riculum coverage.

The lack of instructional pace adaptation suggests that the mitigating efforts taken

by schools in response to the average level of damages among their students did not

take the form of teachers slowing down. Moreover, this evidence does not support the

notion that in classrooms with higher damage dispersion, teachers reduced the instruc-

tional pace to focus on the lower-performing students, which could have explained the

positive impact of damage dispersion on the achievement of lower-prior-achievement

students and detrimental impact on that of higher-prior-achievement students.

4.1.3 Reallocation of school resources

The positive impacts of mean damages on achievement suggest schools overcom-

pensated earthquake impacts by allocating resources towards activities supporting

learning. Additionally, schools may have adjusted in ways that differentially affected
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Table 7: Impacts of earthquake damages on the percentage of the curriculum
covered in class

(1) (2)
Language Mathematics

Effect of average damage among classmates -0.001 -0.006
(0.006) (0.008)

Effect of standard deviation of damage among classmates 0.014 0.006
(0.015) (0.018)

Observations 2291 2335
R2 0.025 0.037

Notes: Schools in regions affected by the earthquake, located more than 1 km from the coast. Pa-
rameters δ obtained from OLS estimation of regressions (3), where the unit of observation is the
classroom. The outcome variables were collected through surveys administered to Language and
Spanish teachers. They are the percentages of the Language (column 1) and Mathematics (column
2) curricula they covered. Regressions include school and classroom characteristics: public school
dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), co-
hort and public dummies interacted, class size, classroom fractions of females and of local residents;
classroom average and standard deviation of fourth-grade test scores and of parental education; all
pairwise within-classroom covariances between: damage, gender, parental education, local residency,
lagged test score. Standard errors clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, *
p<0.10.

students, for example, by reallocating resources towards activities supporting lower-

achieving students. Such adjustments could have mediated the heterogeneous effects

of damage dispersion. To examine this mechanism, I analyze how the earthquake

affected school expenditures.

I use school expenditure data reported under Chile’s Subvención Escolar Prefer-

encial (SEP) law, which provides additional funds to schools serving economically

vulnerable students. Participating schools must report to the Ministry of Education

how these resources are used. I link these reports for 2009 (pre-earthquake) and 2010

(post-earthquake, as the earthquake occurred just before the start of the 2010 school

year) to the main dataset.31 Three caveats apply. First, SEP resources represent

only part of total school funding. Second, expenditure data are available only for

SEP-participating schools. Third, the data exclude any additional emergency funds

granted after the earthquake. Nonetheless, the analysis offers insights into how schools

may have reallocated resources in response to the shock.

Appendix Table A16 reports summary statistics for all schools in the main esti-

mation sample and for those with non-missing expenditure data, representing 42% of

the sample schools. As expected, the latter are more likely to be public and rural and

to serve students with lower grade-4 test scores and parental education. There are no

differences in earthquake shaking in the schools’ towns (last row). Appendix Table

A17 shows no evidence of selective attrition: the treatment variables (the within-

school averages of the classroom-level mean and standard deviation of damages) do

not predict missing expenditure data (column 1). Therefore, estimating regression (2)

31The school year in Chile runs from March to December. I do not have access to expenditure
data for 2011, the year in which the other outcomes in this study are measured post-earthquake.
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on the school-level dataset, with expenditures as outcomes, provides internally valid

estimates of how the damage variables influenced schools’ use of SEP resources.

In the years 2009-2010, SEP funds amounted to around CLP 68.3 billion (∼ USD

134 million in 2010) across all SEP-participating schools. As shown in Appendix Table

A18, personnel was the biggest expenditure category (81%), followed by subcontracted

consultancies providing technical and pedagogical support (18%), and expenditures

for unforeseen events and infrastructure projects (less than 1%). Table 8 reports the

main results. First, the standard deviation of classroom damages had no statistically

significant effects on SEP spending. The impacts are imprecisely estimated, and confi-

dence intervals include economically meaningful reallocations, so we cannot conclude

that the response was null. At the same time, the results provide no statistically

strong evidence that schools reallocated resources toward activities aimed at sup-

porting lower-performing students (such as tutoring), which could have explained the

heterogeneous impacts of damage dispersion along the baseline test-score distribution.

Second, schools did adjust their SEP expenditures in response to the average level

of damages among their students, and the estimated effects are statistically signifi-

cant. Panel B (without controls for direct school damage) shows that more affected

schools spent more on external, non-ATE, consulting and less on new hiring and mis-

cellaneous expenses.32 Because average student damages correlate with school-level

damages, Panel A includes controls for damage to school buildings to isolate the re-

sponse to students’ mean damages. The results suggest that schools reduced new

hiring while increasing spending on external consulting services, likely to avoid teach-

ing disruptions and sustain learning. New hires may have been postponed because of

the earthquake or deliberately avoided to preserve instructional continuity.

To better understand these adjustments, Figure 10 decomposes the “Fee-based

consulting (non-ATE)” and “Other” expenditure categories based on the detailed

descriptions of individual spending items reported by schools. The figure suggests that

resources were redirected toward assistants, educational and psychological support,

and workshops (left panel). In turn, miscellaneous expenses, which were reduced in

more affected schools, primarily included compensation, bonuses, and training (right

panel).

Overall, the evidence suggests that schools responded to the average level of dam-

ages by reallocating resources from recruitment costs toward activities directly linked

to student support and learning recovery. For damage dispersion, there is no statis-

tically strong evidence that schools adjusted their expenditures in ways that would

explain its heterogeneous achievement effects.

32ATE (Asesoŕıa Técnica Educativa) are accredited consultancies that support schools’ improve-
ment plans required under the SEP law.
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Figure 10: Breakdown of “Fee-based consulting (non-ATE)” and “Other” expense categories. The
y-axis reports the total annual expenditure for each subcategory across all SEP schools in the country
in 2010, expressed as a fraction of the total annual expenditure in the broader “Fee-based consulting
(non-ATE)” (left panel) and “Other” (right panel) categories in these schools. Subcategories were
constructed using a text classification of detailed descriptions of individual spending items. Ex-
penditures that could not be specifically categorized due to unclear descriptions are included in the
“Other” subcategory. Within each panel, the “Compensation” subcategory may encompass expenses
related to compensation for personnel listed explicitly in other subcategories, such as assistants, so-
cial workers, and support teachers for consulting expenses (left panel) and administrative and IT
staff for other expenses (right panel). However, due to limited detail in expenditure descriptions,
these compensation costs could not be allocated to more specific subcategories.

4.2 Student-level factors

4.2.1 Perceived cost of effort

Table 9 show impacts on potential student-level mediators, using survey data (sur-

vey items and variable construction are described in Appendix A.2). The first column

presents impacts on students’ perceptions. A one-standard-deviation increase in dam-

age to a student’s home significantly increased their perceived cost of study effort, by

around 0.03 standard deviations, up to 22 months post-event. At the same time,

their ability to engage with the course material diminished, insignificantly, by 0.01

standard deviations (second column). Potential reasons include logistical disruptions

and psychological challenges. The medical literature has reported that earthquake

survivors, especially children, are prone to long-lasting Post Traumatic Stress Disor-
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der (PTSD).33 In the case of the 2010 Maule earthquake, children living in strongly

shaken areas displayed significantly higher PTSD rates compared to similar children

in unaffected areas;34 and adverse impacts on psychological functioning were detected

among preschoolers and primary school students.35 The results, therefore, are consis-

tent with the notion that post-earthquake trauma affects human capital accumulation

in schools.36

Keeping fixed a student’s home damage, an increase in the average damage suf-

fered by peers had a negative effect on own effort cost (Table 9 column 1). This

result aligns with the previous findings on achievement impacts and likely reflects

schools’ compensatory actions. Keeping fixed a student’s home damage, an increase

in the damage dispersion in the classroom had a positive effect on own effort cost,

suggesting that learning was more difficult in classrooms with larger damage disper-

sion, consistent with the negative average effect of dispersion on achievement. The

impacts on course engagement of the mean and the standard deviation of damages

are imprecisely estimated; we cannot rule out null effects.

Table 9: Impacts of earthquake damages on student cost of effort and course en-
gagement

(1) (2)
Effort cost Course engagement

Effect of damage to own home 0.027∗ -0.014
(0.016) (0.016)

Effect of average damage among classmates -0.034∗ 0.009
(0.020) (0.019)

Effect of standard deviation of damage among classmates 0.054∗ 0.030
(0.029) (0.040)

Observations 183380 159642
R2 0.044 0.020

Notes: Students enrolled in schools in regions affected by the earthquake and resding more than 1 km from the
coast. Parameter δ obtained from OLS estimation of regression (3). The outcome variables, perceived cost
of study effort and engagement with the course, are built from items from the survey administered in eighth
grade, using the procedure described in Appendix A.2. Regressions include student and classroom character-
istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school town,
parental education, age of household head, dummy for region of residence. Classroom characteristics: public
school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public
school dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and
public dummies interacted, class size, classroom fractions of females and of local residents; classroom average
and standard deviation of fourth-grade test scores and of parental education; all pairwise within-classroom
covariances between: damage, gender, parental education, local residency, lagged test score. Damages’ mean
and standard deviation are leave-one-out moments. Standard errors clustered at the school-by-cohort level.
*** p<0.01, ** p<0.05, * p<0.10.

33See, for example, Altindag, Ozen et al. (2005), Lui et al. (2009), Giannopoulou et al. (2006).
Children living closer to earthquake epicenters have been found to experience more severe PTSD
(Groome and Soureti (2004)).

34Zubizarreta, Cerda, and Rosenbaum (2013) measured PTSD using the self-rated Davidson
Trauma Scale, administered 3-4 months post-earthquake, and compared students in similar-quality
homes but with varying exposure to shaking.

35See Dutta et al. (2022), who find impacts up to one year after the earthquake. See also Gomez
and Yoshikawa (2017).

36Other papers have estimated earthquake impacts on student achievement (e.g. Shidiqi, Di Paolo,
and Choi (2023)), but exposure has typically been measured solely through location, abstracting from
housing quality conditional on location, which I find to be an important source of inequality.
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4.2.2 Peer interactions with competitive preferences

Schools may not have responded to the dispersion in damages, suggesting a potential

role for peer interactions. To better understand these spillovers, I examine whether

damage dispersion changed GPA rankings in the classroom. Figure 11 shows that

there were no statistically detectable impacts along the baseline test score distribution,

which stands in stark contrast to the impacts on GPA. Higher-performing students

experienced relatively large drops in GPA, but not in GPA rank. These results are

consistent with the notion that students have competitive preferences: they care about

their rank in terms of GPA, an achievement measure observable to classmates. Faced

with changed study effort costs among their peers, they adjusted their effort and

learning, but not at the expense of classroom ranking.

Figure 11: Marginal effects of damage dispersion on within-classroom GPA rank by baseline test
score. Notes: GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA).
Marginal effects of the leave-one-out standard deviation of damage among classmates. Effects ob-
tained from estimating the regression model in equation (3). 90% and 80% confidence intervals
reported. Appendix Figure A3 reports the impacts of average damage.

The idea that students who are around thirteen years old, like those in this study,

may care about their rank is consistent with a growing body of evidence. Competi-

tive preferences can emerge early in life and strengthen through adolescence (Sutter

and Glätzle-Rützler (2015); Page, Sarkar, and Silva-Goncalves (2017)). In schools,

several benefits to a higher rank justify why students may value their rank relative

to peers. A higher within-school rank in elementary school can improve self-concept

(Marsh et al. (2007); Zeidner and Schleyer (1999)), bring immediate benefits such as

improved executive function, higher happiness, and more favorable teacher percep-

tions of ability (Carneiro et al. (2025)), and yield longer-term gains in achievement,

self-esteem, educational attainment, and earnings (Murphy and Weinhardt (2020);
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Denning, Murphy, and Weinhardt (2023); Ladant et al. (2024)). Rank in high school

has positive effects on aspirations, future educational attainment, and later-life health

and social behaviors (Elsner and Isphording (2017, 2018)). These wide-ranging re-

wards, therefore, suggest that rank concerns could arise in school even when rank is

not formally rewarded.

Concerns for rank, in turn, could cause spillovers from peer damages. If disruptions

to peers affect their ability to compete by making their effort more costly, they change

the competition incentives in the classroom, triggering effort responses. Section 5

formalizes this intuition through a theoretical model.

4.3 Summary

At the student level, damages appeared to hinder the accumulation of human capital.

At the classroom level, there is no evidence of instructional adaptation. At the school

level, schools with on average more severely affected students reallocated resources

towards student support and learning recovery, consistent with the higher achieve-

ment observed in those schools. However, neither expenditure nor instructional data,

nor the specifications with school-by-cohort fixed effects, convincingly support the hy-

pothesis that schools responded to how dispersed damages were among their students.

There is no statistically strong evidence that larger damage dispersion led schools to

reallocate resources or teachers to target instruction towards lower-achieving students.

The heterogeneous spillovers from damage dispersion on achievement, therefore, may

arise from peer-to-peer interactions rather than institutional responses. The lack of

shifts to GPA rank despite shifts to learning suggest peers’ concerns for rank may

underpin peer-to-peer interactions, an idea consistent with existing evidence on the

early onset of competitive preferences and on the benefits of a higher rank in school.

5 A potential mechanism: peer interactions

In this section I propose a conceptual framework to interpret the empirical findings.

I follow the approach adopted in Blume, Brock, Durlauf, and Jayaraman (2015) of

micro-founding observed spillover effects through a model of behavior.

In the model, students are heterogeneous with respect to a trait that affects how

easy or difficult it is to exert study effort; utility-maximizing effort decisions depend

on this trait, which I refer to as effort-cost type.37 In line with the literature on

37Unlike Blume, Brock, Durlauf, and Jayaraman (2015), who assume that students choose achieve-
ment directly, I assume that students choose effort, and that effort affects achievement monotonically
like in Fruehwirth (2013). This assumption allows me to derive model implications in terms of the
observed achievement outcomes. Several studies show empirically that effort increases achievement
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the technology of skill formation, which views knowledge acquisition as a cumulative

process where current investments depend on a lagged stock of skills and lagged in-

puts (e.g., Todd and Wolpin (2003); Cunha and Heckman (2008); Cunha, Heckman,

and Schennach (2010)), the model assumes that the effort-cost type varies across stu-

dents depending on their prior test scores and socioeconomic characteristics (proxying

lagged inputs).38 Additionally, motivated by the evidence that home damages from

the earthquake increased students’ perceived cost of study effort (Table 9), I assume

that damages affect the effort-cost type as well.

Building on this framework for the student’s problem, I present a new theory of

peer influence in which exogenous changes to peers’ effort-cost types affect a student’s

own outcomes through a competition motive. When students care about relative

performance, changes in peers’ effort-cost types change the competition students face,

affecting their effort choices and achievement. Empirically, this manifests as a peer

effect: exogenous variation in the determinants of peers’ effort-cost types, holding

fixed a student’s own type, causally affects a student’s own achievement. In this study,

the exogenous variation stems from earthquake shocks. The model’s insights, however,

are independent of the source of variation in peers’ effort-cost types. In particular,

whenever prior test scores determine students’ effort choices, the model implies that

exogenous changes to peers’ prior test scores can generate spillover effects if students

have rank concerns. The model, therefore, offers a new framework to interpret ability

peer effects, a major focus of the empirical peer effects literature.

I build on the status game model developed by Hopkins and Kornienko (2004),

where individuals choosing costly consumption care about consumption both in abso-

lute and relative terms, and adapt it to the classroom setting, where students choosing

costly effort care about achievement both in absolute and relative terms. While Hop-

kins and Kornienko (2004) study how exogenous changes in the within-group income

distribution affect the equilibrium distribution of consumption, I study how exogenous

(Stinebrickner and Stinebrickner (2004, 2008); De Fraja, Oliveira, and Zanchi (2010)), providing
strong empirical support to this model’s assumption. Good measures of effort are typically unavail-
able in large scale administrative datasets like the ones used in this study, as they require costly data
collections to obtain detailed time diaries; researchers have been able to collect them from smaller
samples (see e.g. Conley, Mehta, Stinebrickner, and Stinebrickner (2024)).

38The dependence of current investments on past investments can be micro-founded in different
ways. In the studies quoted in the text, it is through the impact of past investments on the current
period’s initial skills stock, which is complementary with current investments in the skill production
technology. Recently, Caucutt, Lochner, Mullins, and Park (2025) developed a dynamic life-cycle
model of parental investments into child skills in which investments depend on past investments not
through technological complementarity, but indirectly through the marginal utility of consumption.
In contrast to the literature on the technology of skill formation, my study does not aim to estimate
the parameters of the achievement production function; its focus is instead on comparative statics
from changing the distribution of peers’ effort-cost types. In my model, letting students differ in the
cost or productivity of effort would yield the same testable implications.
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changes in the within-group distribution of effort-cost types affect the equilibrium dis-

tribution of achievement. Additionally, I adapt the model to the earthquake context

by incorporating into the achievement technology schools’ mitigating responses to the

severity of disruptions, and by allowing damage to a student’s home to act as an

additive shock to the student’s effort-cost type. This feature implies that classrooms

with different damage distributions, ceteris paribus, also have different distributions

of effort-cost types, triggering equilibrium responses through the competition motive.

I show that the theory can explain the full set of empirical findings, including

those that school-level factors alone cannot explain, in a simple and intuitive way.

5.1 A theory of peer influence

Within a reference group l there is a continuum of students, each indexed by i. Stu-

dents are heterogeneous in terms of effort-cost type ci, which is distributed in the

reference group according to a twice continuously differentiable cumulative distribu-

tion function (c.d.f.) Gl(·) on [cl, c̄l], with cl ≥ 0. The reference group is where

interpersonal interactions occur, such as the classroom.

Students choose how much costly effort ei to exert, and effort increases GPA yi.

Utility is increasing in own GPA and in the GPA rank in the reference group. While

the empirical analyses used both GPA and a standardized test score as outcome

measures, the theory focuses on GPA as its rank is in principle observable by peers.

Students with a higher effort-cost type ci incur a larger cost of exerting study effort

for each effort level. Cost type ci captures all student characteristics, environmental,

psychological and socioeconomic, that affect the ease or difficulty with which a student

exerts study effort. For each student i, it depends on her baseline test score ai, family

characteristics xi, and damages her home incurred from the earthquake di:
39

ci = θ0 + θ1ai + θ2xi + θ3di. (4)

The cost type ci is assumed to be decreasing in the baseline test score ai and increasing

in the damages di, assumptions that are supported in the data (Table 9 and Appendix

Figure A4). Each student’s cost type is private information, but the distribution of

cost types in the reference group, Gl(·), is common knowledge. Appendix C.3 provides

an extension to the model where ci also depends on an idiosyncratic shock, ϵi, that is

unobserved by the econometrician. There are no distributional assumptions on Gl(·).
39In this section, I use the notation xi to denote the vector of student characteristics excluding the

fourth-grade standardized test score ai. xi includes parental education, student’s gender, whether
the student resides in the school town, region of residence, public school and rural school attendance.
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The cost of effort is determined by a strictly increasing and strictly convex function

of effort: q(ei; ci). Higher cost types ci incur larger costs for every level of effort ei,

i.e., ∂q(ei,ci)
∂ci

> 0 for all ei. Moreover, at higher cost types the marginal cost of effort

is (weakly) higher: ∂2q(ei;ci)
∂ci∂ei

≥ 0. Effort increases GPA according to the production

function:

y(ei) = (a0 + a1(µdl))ei + u0 + u1(µdl), with a0 + a1(µdl) > 0, (5)

where µdl is the mean of damages among peers in the reference group.40 The functions

a1(µdl) and u1(µdl) capture mitigating, compensatory actions taken by schools in

response to mean damages in the classroom.41 Mitigation is allowed for but not

imposed, as the u1 and a1 functions are allowed to be flat, specifically, it is assumed

that da1(µdl)
dµdl

≥ 0 and du1(µdl)
dµdl

≥ 0. Mitigation is allowed to affect either the level of

achievement (through u1), or the productivity of effort (through a1), or both; the

model is agnostic about which channel drives mitigation efforts. Motivated by the

evidence, I do not let mitigation depend on the standard deviation of damages.

The utility function for student i can be decomposed into a utility that depends

only on own GPA yi in absolute terms and on effort cost qi = q(ei, ci), ui = V (yi, qi),

and a utility that depends on GPA rank in the classroom. Function V does not

have an i subscript because it is the same for all students. The utility from GPA

in absolute terms net of effort cost is non-negative, strictly increasing and linear in

GPA, strictly decreasing and linear in qi, and it admits an interaction between utility

from GPA and from effort cost such that at higher costs, the marginal utility from

GPA is (weakly) lower (V12 ≤ 0).42 No functional form assumptions are made on q(·)
or on the interaction between yi and qi; the results are valid under a broad class of

preferences. For example, students with lower effort-cost type ci may (or may not)

have higher marginal utilities from GPA.

A student’s GPA rank in the classroom is given by the within-classroom cumulative

distribution function (c.d.f.) of GPA computed at her own GPA, FY l(yi), where

l, like before, refers to the classroom. This is the fraction of students with GPA

lower than one’s own. Because GPA is an increasing deterministic function of effort,

40Other models of competition between students in the literature make the same assumptions
that students are characterized by a type that affects their cost of producing achievement, and that
achievement depends only indirectly on their type through the investment choice (Bodoh-Creed and
Hickman (2024, 2018); Cotton, Hickman, and Price (2022)).

41Alternatively, one could assume that the mitigating action in response to µdl directly affects
the average cost type in the reference group, thus indirectly affecting yi in equilibrium. The model’s
implications would stand.

42All results are valid under an alternative set of assumptions for the utility V and cost function
q. These are: strictly quasi-concave utility from GPA, strictly decreasing and linear utility from cost

of effort (V2 < 0, V22 = 0) with a linear cost function (∂
2q

∂e2i
= 0) and additive separability between

utility from GPA and cost of effort (V12 = 0).
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GPA rank equates effort rank: FY l(y(ei)) = FEl(ei), where FEl(·) is the within-

classroom c.d.f. of effort. The utility from rank, S
(
FY l(y(ei))

)
, equals FEl(ei) + ϕ,

with ϕ > 0. Overall utility U(yi, qi) is the product of utility from GPA and GPA

rank: V (yi, qi) (FEl(ei) + ϕ). Each student chooses effort to maximize overall utility.

In a symmetric Nash equilibrium in pure strategies, every student follows the

same strategy el(ci) that is such that, given this common strategy, no student i can

increase her expected utility by deviating unilaterally. Focusing on such equilibria,

and initially assuming that the equilibrium strategy el(ci) is strictly decreasing and

differentiable with inverse function cl(ei), GPA rank in equilibrium can be rewritten as

1−Gl

(
cl(ei)

)
, and i’s utility as V

(
y(ei), q(ei, ci)

)(
1−Gl

(
cl(ei)

)
+ϕ
)
.43 The first-order

condition then is:

V1

mg. GPA increase︷ ︸︸ ︷
(a0 + a1(µdl))︸ ︷︷ ︸

mg. ut. from increased GPA

+
V (yi, qi)

1−Gl

(
cl(ei)

)
+ ϕ

mg. GPA rank increase︷ ︸︸ ︷
gl
(
cl(ei)

)(
− c′l(ei)

)
︸ ︷︷ ︸

mg. ut. from increased GPA rank

= −V2
∂q

∂ei︸ ︷︷ ︸
mg. cost

. (6)

The model is an application of the status game in Hopkins and Kornienko (2004).44

Proposition A1 in Appendix C.2 establishes equilibrium existence and uniqueness and

that the equilibrium strategy is indeed strictly decreasing, confirming equation (6) as

the appropriate first-order condition.

5.2 Model predictions and their empirical counterparts

Impacts of mean damages on GPA. The first set of model implications regards

the impacts on GPA of increasing mean damages in the classroom while preserving

damage dispersion. I consider an identical increase in di for all classmates. Consider

two classrooms A and B with identical distributions of ai and xi (i.e., identical peer

compositions), but with different damage distributions D(·): DB(d) = DA(d− k) ∀d,
where k is a positive constant. That is, the damage distribution in classroom B is

shifted to the right by k.

43Strict monotonicity and differentiability of equilibrium el(ci) are initially assumed, and subse-
quently proven (see the proof of Proposition A1 in Appendix C.2). GPA rank can be written as
1 − Gl(cl(ei)) in equilibrium because the probability that a student i of type ci with effort choice
ei = el(ci) chooses a higher effort, obtaining a higher GPA, than another arbitrarily chosen student
j in classroom l is FEl(ei) = Pr

(
ei > el(cj)

)
= Pr

(
e−1
l (ei) < cj

)
= Pr

(
cl(ei) < cj

)
= 1−Gl

(
cl(ei)

)
where Gl(·) is the c.d.f. of ci in classroom l and cl(·) = e−1

l (·). The function cl maps ei into the
type ci that chooses effort ei under the equilibrium strategy, it exists by strict monotonicity and,
therefore, invertibility of el(·).

44For related games of status models, see also Hoppe, Moldovanu, and Sela (2009) and Moldovanu,
Sela, and Shi (2007).
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Proposition 1. Let EA[·] and EB[·] denote classroom-specific expectations. Assume

that equilibrium effort schedules in classrooms A and B do not cross after the uniform

shift in cost types. At the Nash equilibrium in each classroom l = A,B:

(i) If ∂2q
∂ei∂ci

= 0 and da1
dµdl

= 0, then the model does not deliver a sharp prediction for

the sign of EB[yi]− EA[yi].

(ii) If ∂2q
∂ei∂ci

= 0 and da1
dµdl

> 0, then EB[yi] > EA[yi].

(iii) If ∂2q
∂ei∂ci

> 0 and da1
dµdl

> 0, then ∃γ > 0 such that if ∂2q
∂ei∂ci

≤ γ, EB[ei] ≥ EA[ei],

so that EB[yi] > EA[yi]. If
∂2q

∂ei∂ci
> γ, then EB[ei] < EA[ei], and EB[yi] ≥ EA[yi]

or EB[yi] < EA[yi] depending on the magnitudes of da1
dµdl

and du1

dµdl
, i.e. on whether

school action compensates for the decrease in effort.

(iv) If ∂2q
∂ei∂ci

> 0 and da1
dµdl

= 0, then EB[ei] < EA[ei], and EB[yi] ≥ EA[yi] or

EB[yi] < EA[yi] depending on the magnitude of du1

dµdl
, i.e. on whether additive

compensatory action through u1 compensates the decrease in effort.

Proof: see Appendix C.2.

Proposition 1 states that the impacts on GPA of increasing mean damages in the

classroom through a dispersion-preserving shift in the damage distribution depend on

schools’ compensatory action.

If schools do not implement multiplicative compensatory action ( da1
dµdl

= 0) and

if the marginal effort cost increases with own type, then the effect on GPA will be

positive or null if additive compensatory action (over)compensates for the decrease in

effort, negative otherwise. If instead the marginal effort cost does not vary with own

type, the model is agnostic.

If schools adopt multiplicative compensatory action ( da1
dµdl

> 0), then the impact on

GPA will be positive provided each student’s marginal effort cost does not vary with

own type. If it does, then the impact on GPA will still be positive provided effort

cost increases with own type sufficiently slowly such that effort does not decrease

(0 < ∂2q
∂ei∂ci

< γ), or provided compensatory action (multiplicative, additive, or both)

over-compensates for any decrease in effort, otherwise the impact on GPA will be

negative or null (in the case of exact compensation).

This result rationalizes the empirical findings that GPA and test scores increased

with mean damage, keeping classroom composition constant, suggesting schools took

compensatory actions (Table 2), and that mean damages had insignificant, potentially

negative impacts once the effects of schools’ compensatory actions are removed using

school-by-cohort fixed effects (first column of Figure 9), although the confidence bands

for these estimates are large. The result also rationalizes the evidence that schools

reallocated SEP resources towards student support in response to mean damages

(Section 4.1.3).
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Impacts of dispersion in damages on GPA. The second set of model implica-

tions regards the impacts on GPA of increasing damage dispersion in the classroom

while keeping mean damages constant. I consider an increase in dispersion in the uni-

modal likelihood ratio (ULR) sense. Consider two classrooms A and B with identical

distributions of ai and xi (i.e., identical peer compositions), but with different damage

distributions D(·): DA ≻ULR DB, that is, the ratio of the densities L(di) =
dA(di)
dB(di)

is

strictly increasing for di < d̃ and strictly decreasing for di > d̃ for some d̃ ∈ [d, d̄)

and µdA = µdA. In particular, if B has the same mean but higher variance than A,

then DA ≻ULR DB. We restrict attention to changes in the dispersion of d such that

the effort-cost-type distributions satisfy the same ULR order, GA ≻ULR GB, with

cutoff point c̃ ∈ [c, c̄). Figure 12 visualizes the effort-cost type distributions of two

classrooms where the distributions of ai and xi are identical (blue density functions in

the two top panels), and the damage distribution in classroom B is a mean-preserving

spread of that in classroom A. The resulting effort-cost type distribution in classroom

B is a mean-preserving spread of that in classroom A (bottom panel).

Proposition 2. (Adapted from Proposition 4 in Hopkins and Kornienko (2004)).

Let yA(ci) and yB(ci) denote the GPA each effort-cost type ci obtains at the Nash

Equilibrium choices of effort in classrooms A and B, and let c− and c+ denote the

extremal points of the ratio (1 − GA(ci))/(1 − GB(ci)) over the interval [c, c̄], where

c < c− < c+ ≤ c̄. Then:

(i) yA(ci) < yB(ci) for all ci ∈ [c+, c̄]; i.e., the damage dispersion increase raises

the GPA of high-cost-type students.

(ii) yA(ci) > yB(ci) for all ci ∈ [c̃, ccross), where ccross ∈ (c̃, c+) is the point where yA

and yB cross; i.e., the damage dispersion increase lowers the GPA of medium-

cost-type students.

(iii) yA(ci) > yB(ci) for all ci ∈ [c, c̃) or yA(ci) < yB(ci) for all ci ∈ [c, ccross2), where

ccross2 ∈ [c, c−) is the point where yA and yB cross, i.e., the damage dispersion

increase may lower or increase the GPA of low-cost-type students.

Proof: see Appendix C.2.

This proposition states that when students have rank concerns, changing the dis-

persion of damages and, hence, of effort-cost-types has heterogeneous effects across

the cost-type distribution, because it affects differently the incentives to exert effort

of different students depending on their position in the distribution. Such heteroge-

neous effects arise even when the standard deviation of damages does not directly

enter the technology of achievement production, such as through an interaction with

effort. The intuition is that when students have rank concerns, the cost-type density

at one’s own type determines how easy it is to improve one’s rank. If there are more
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(a) Classroom A, low damage variance (b) Classroom B, high damage variance

(c) Classrooms A and B: Post-Earthquake
effort-cost type distributions

Figure 12: Effect of different damage shock distributions on the effort-cost type distributions of two
initially identical classrooms. Notes: The pre-earthquake effort-cost type distribution is represented
by a normal distribution X ∼ N(0, 0.15), drawn in blue. It captures the portion of effort-cost type
influenced only by student baseline test score and individual characteristics. After the earthquake,
the damage distribution in classroom A is described by DA ∼ N(1, 0.21) and in classroom B by
DB ∼ N(1, 0.38). The post-earthquake effort-cost type is the summation of componentX (influenced
by student characteristics and lagged test score) and the damage. Specifically, for classroom A it
is given by Xpost,A = X +DA and for classroom B by Xpost,B = X +DB , whose distributions are
drawn in red and green.

peers with a similar effort-cost type to one’s own, more students can be surpassed for

a marginal increase in effort, causing a higher marginal utility of effort. We expect

heterogeneous effects because increasing the type dispersion affects the type density

differently at different points, increasing it at the tails and lowering it in the middle

of the distribution, as can be seen in Panel (c) of Figure 12.

High- and low-cost-type students face an incentive to increase effort, and medium-

cost-type students to decrease it, because of how the type density changes at their

type level when the type dispersion increases. The model predicts that high- and

middle-cost-type students behave according to these incentives. Low-cost-type stu-

dents, however, also face the opposite incentive to decrease effort due to the lower

competition from above (from the middle-cost types), which allows them to save on

effort cost while not sacrificing rank. The model is agnostic as to which incentive

prevails for low-cost-type students.
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Lemma 1. Proposition 2 can be recast in terms lagged test score instead of effort-cost

type. Given equation (4), if xi = xj and di = dj for i ̸= j, then ci > cj ⇐⇒ ai < aj.

Proposition 2 and Lemma 1 rationalize the empirical findings that, keeping a

student’s own characteristics and damage constant, achievement and GPA decreased

for high-baseline-test-score students and increased for low-baseline-test-score students

as an effect of increased damage dispersion, holding classroom composition constant

(Table 6 and Figures 8 and 9).45

Impacts on GPA rank. Changing the classroom distribution of damages changes

that of effort-cost types. What are the implications on GPA rank, when students draw

utility from rank? Consider two classrooms A and B with identical distributions of

ai and xi (i.e., identical peer compositions), but different distributions of damages di.

The resulting cumulative distribution functions of effort-cost types, GA and GB, are

assumed to be twice continuously differentiable, so that Proposition A1 applies.

Proposition 3. Let yA(ci) and yB(ci) denote the GPA each cost type ci obtains at

the Nash Equilibrium choices of effort in classrooms A and B. Let F J
Y (·) denote the

c.d.f. of GPA in classroom J ∈ {A,B}, and FT (·) the c.d.f. of baseline test score

ai in classrooms A and B. Then, F J
Y (yi)|x,d = FT (ai)|x,d ∀J, ai; i.e., at given values

of xi and di, rank in GPA conditional on the baseline test score is identical across

classrooms, for all baseline test scores.

Proof: see Appendix C.2.

Proposition 3 states that, keeping fixed characteristics xi and damage di, the

mapping between a student’s baseline test score and her classroom GPA rank stays

constant, regardless of the distribution of damages in the classroom. As we change

the damage distribution, students with higher baseline test scores — ceteris paribus

— remain those with higher GPA rank.

This result rationalizes the empirical finding that changing the mean or the stan-

dard deviation of damages in the classroom, controlling for students’ characteristics

and individual damages, does not have statistically detectable effects on GPA rank

at any point of the baseline test scores distribution (Figures 11 and A3), even when

it affects GPA.

45Appendix C.1 provides the regression specification that holds classroom composition constant
and that is such that, under the specification for the effort-cost type in equation (4), shifts in the
classroom mean (Proposition 1) or standard deviation (Proposition 2) of damages translate into
shifts in the classroom mean or standard deviation of effort-cost types. Appendix C.3 shows under
what assumptions this specification remains valid when the effort-cost type is allowed to depend on
an unobserved idiosyncratic shock.
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5.3 Summary of results

Schools’ mitigating actions in the achievement production function rationalize the

positive impacts of mean damages on achievement and are consistent with observed

school resource reallocations. To account for the remaining empirical patterns, I model

social interactions among students. The model of rank concerns not only intuitively

explains the lack of shifts to GPA rank despite shifts to GPA, but also rationalizes

the heterogeneous effects of damage dispersion among students with different initial

performance. These seemingly unrelated findings can be explained through one simple

modification to standard models of social interactions in schools: the introduction of

a desire to compete for grades. The theory provides insights into the nature of social

interactions in schools that apply beyond the quasi-experimental empirical context

used to formulate it.

6 Conclusions

Across many education systems, peers have been shown to influence a student’s own

academic achievement (Sacerdote (2011)). Understanding the mechanisms behind

this influence could shed light on how school environments shape early differences

in achievement, which persist over time with major lifelong consequences (Cunha,

Heckman, Lochner, and Masterov (2006); Heckman and Mosso (2014)). But empirical

challenges have hindered progress towards this goal (Blume, Brock, Durlauf, and

Ioannides (2011)). This article exploits a new empirical context with rich data on how

students and schools responded to earthquake-induced study disruptions to examine

how disruptions spill over to peers’ learning and develop a new theory of peer influence

in schools.

Exploiting the context of one of the most violent earthquakes ever recorded and

detailed data on the disruptions to each student’s home environment, the study finds

that disruptions can lower the reported ease of exerting study effort, with negative

consequences for achievement that persist for at least 22 months. Notably, such dis-

ruptions can spill over to classmates, affecting their achievement.46 Schools mediated

some, but likely not all, of these spillover effects, suggesting a possible mediating

role for peer interactions. Following Blume, Brock, Durlauf, and Jayaraman (2015),

I micro-found the observed spillovers through a model of student interactions, that

also allows for school mitigation, and I derive comparative statics that rationalize the

empirical findings. I show that the empirical evidence is consistent with a mode of

46There is evidence that environmental risks can spill over to classmates also in the context of
lead exposure (Gazze, Persico, and Spirovska (2023)).
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interaction that has not received much attention in the peer effects literature before:

competition for classroom rank. A desire to compete implies that moments beyond

the mean of peer characteristics matters, which is an empirical fact across several

settings.47

The results offer new insights for policy. Peer assignment policies, such as tracking

students by ability, are among the most commonly studied in the schooling context

(e.g. Duflo, Dupas, and Kremer (2011); Garlick (2018)). My results suggest that their

impacts could vary depending on whether performance rank is intrinsically or extrin-

sically rewarded. Ability tracking may improve the achievement of all students, even

those in the lower-tracks, in settings in which students care about their performance

rank, by increasing the number of nearby competitors. There are several reasons why

students may value rank: competitive preferences emerge early on, and a growing

body of evidence shows that class rank offers immediate and long-term benefits. In

many education settings, intrinsic rank concerns are reinforced by explicit rank-based

incentives. Teachers often grade on a curve (Calsamiglia and Loviglio (2019)), and

higher education admissions frequently rely on within-school rankings (Horn, Flo-

res, and Orfield (2003); Grau (2018); Carlana, Miglino, and Tincani (2024); Tincani,

Kosse, and Miglino (2025)). The mechanism identified in this paper, therefore, may

operate broadly.

Much is still unknown about the interaction between rank-based rewards and

classroom allocation rules. Measuring intrinsic rank concerns and extrinsic rank re-

wards in schools could become a way to inform the targeting of grouping policies.

Future research could also compare the achievement gains from optimally designing

rank rewards and group allocations to the potential labor market losses from lower

prosociality due to enhanced competition (Kosse and Tincani (2020); Chen and Hu

(2024); Kosse, Rajan, and Tincani (2025)). Answering these open questions could

significantly advance our understanding of social interactions in school, and expand

our toolkit of cost-effective policy interventions.

47In contrast, a desire-to-conform assumption underlies empirical identification strategies that
contrast within- and across-group variances in outcomes to identify excess variance across groups
that cannot be explained by individual and group heterogeneity and/or selection (Graham (2008) and
Glaeser, Sacerdote, and Scheinkman (1996)). Whenever a desire to compete is the true interaction
mode, such methods may fail to detect peer effects when they are present, a false negative result.
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Appendix

A Measurements

A.1 Predicting Seismic Vulnerability of a Household’s Home

This section describes the model used to predict seismic vulnerability as a function

of household characteristics.

For each household in the census data (restricted to households with at least

one school-aged child), I link the vulnerability class distribution obtained from the

latent-class analysis to the household characteristics that are available both in the

census and in the education data, which I indicate with xi here. These are: the

age of the household head, the average years of education of mothers and fathers,

the region of residence. I then estimate linear regression models using census data

restricted to households with at least one school-aged child. The outcome variables

are pji , the probability that household i lives in a home of seismic vulnerability j ∈
{LV,MV,HV }, obtained from the latent-class analysis. The independent variables

are parental education and age with exponents one, two and three, and region of

residence. All independent variables appear uninteracted and interacted with each

other (from pair-wise interactions to the interaction of all variables).

I apply the estimated predictive regression model to the education dataset to

obtain a predicted likelihood of belonging to each vulnerability class for each student

in my sample: p̂ji = pj(xi), j = LV,MV,HV .48

A.2 Survey Measures of Perceived Cost of Study Effort and

Course Engagement

Students from both cohorts were asked to fill out a questionnaire when they were in

eighth grade, the grade in which outcomes were measured. The pre-earthquake cohort

filled it out in 2009 and the post-earthquake cohort in 2011. The questionnaire asked

about the ability to engage with the course and the perceived cost of study effort.

The structure of the questions was as follows: “Thinking of your experience in your

school, how much do you agree with the following statements?”, followed by a list of

statements. Between 2009 and 2011 the number of options in the Likert-scale options

changed. In 2009 the possible answers were “I agree very much”, “I agree”, “I do not

agree nor disagree”, “I disagree”, “I disagree very much”. In 2011 the middle option,

“I do not agree nor disagree”, was eliminated.

48Since the outcome variable is a probability, I assign a 0 to negative predictions and a 1 to those
above 1.
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From the raw data, I build measures of perceived effort cost and engagement with

course content that are comparable across cohorts. For each statement I build two

dummy variables: one equal to 1 if a student answers “I agree very much”, and 0 if

she gives a different answer, and another equal to 1 if a student answers “I disagree

very much”, and 0 if she gives a different answer. Perceived effort cost is a categorical

variable recording whether a student reported agreeing very much, disagreeing very

much, or neither agreeing very much or disagreeing very much with the statement “It

costs me to concentrate and pay attention in class”, standardized to have mean 0 and

unit variance. Engagement with course content is the score based on the first principal

component of a principal component analysis on the six dummy variables obtained

from the students’ level of agreement with the statements listed at the bottom of

Table A1. I standardize the score to have mean 0 and unit variance.

The statements with which students recorded their level of agreement are the

following:

Construct Survey Items

Perceived cost of effort It costs me to concentrate and pay attention in
class.

Course engagement I do the homework even when it is difficult.
My notebooks are generally incomplete.
During class I take notes of all that our teachers
teach us.

Table A1: Constructs and Corresponding Survey Items. Note: Source: English translation of SIMCE
questionnaire administered to all 8th grade students.
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B Additional Tables and Figures

Freq. Percent

Walls

Reinforced concrete, stone 85,152 9.21

Brick 371,457 40.16

Structural panels, prefabricated 72,285 7.81

Wood, lined partition 312,517 33.79

Eternit 41,283 4.46

Adobe, soggy mud 40,291 4.36

Makeshift materials 2,032 0.22

Roof

Roof tiles (clay, metal, cement) 80,385 8.69

Shingle (wood, asphalt) 23,101 2.50

Concrete slab 10,056 1.09

Zinc 380,640 41.15

Slate 421,946 45.61

Fiberglass, femocolor 612 0.07

Clickstone 6,172 0.67

Mud straw 73 0.01

Makeshift materials 2,032 0.22

Floor

Hardwood floor 30,183 3.26

Ceramic tiles 189,075 20.44

Wooden decking 334,824 36.20

Wall to wall carpet 48,905 5.29

Cement tiles 42,202 4.56

Plastics (flexit, linoleum, etc.) 196,327 21.22

Radier 78,813 8.52

Earthen 4,688 0.51

Table A2: Distribution of building materials in the population of households with at least one school-
aged child, N=929,647. Source: Chilean census, 2002.
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Table A3: Descriptive statistics of damage measures (student and classroom level).

Mean SD N

Panel A: Post-earthquake cohort

(i) Student-level variables

Damage ratio (share of home collapsed, p.p.) 1.71 4.21 104299

Damage (USD) 1439.35 3539.66 104299

Damage relative to income .43 1.55 73741

(ii) Classroom-level variables

Class mean: damage ratio (p.p.) 1.86 4.4 4591

Class mean: damage (USD) 1566.68 3706.72 4591

Class mean: damage relative to income .46 1.26 4572

Class SD: damage ratio (p.p.) .63 1.38 4588

Class SD: damage (USD) 530.52 1163.74 4588

Class SD: damage relative to income .41 1.02 4555

Panel B: Pre-earthquake cohort

(i) Student-level variables

Damage ratio (share of home collapsed, p.p.) 1.57 4.04 105129

Damage (USD) 1323.51 3402.3 105129

Damage relative to income .39 1.33 88681

(ii) Classroom-level variables

Class mean: damage ratio (p.p.) 1.78 4.33 4352

Class mean: damage (USD) 1498.55 3644.52 4352

Class mean: damage relative to income .44 1.12 4349

Class SD: damage ratio (p.p.) .5 1.17 4333

Class SD: damage (USD) 417.78 987.43 4333

Class SD: damage relative to income .37 .91 4327

Notes: Panel A restricts the sample to students and classrooms in the post-earthquake cohort, in earthquake
regions, and attending non-coastal schools (more than 1 km from the coast). Panel B applies the same geographic
restrictions to the pre-earthquake cohort. For this cohort, the damage variables do not reflect realised destruction
but rather predicted damage, i.e., the level of damage their homes would have suffered had they experienced the
2010 Maule earthquake. Income refers to annual income. It suffers from large attrition because it is collected by
the Ministry of Education through a take-home paper survey that the students must bring back to school. In
computing the classroom mean and standard deviations of damage relative to income, observations with missing
family income are ignored. The damage ratio is the portion of the home that collapsed, expressed in percentage
points. US dollars quantification of damages uses the 2010 USD to CLP exchange rate and depends on the
assumed cost of reconstructing a completely collapsed home. I assume the cost is equal to the average market
price of a 50m2 home in Chile in 2010, which was USD 84,175 (see https://www.globalpropertyguide.com/

Latin-America/Chile/square-meter-prices). If a home suffered an unstandardized damage ratio of x%, then
the damage in dollars is measured as x%· 84,175.
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Table A4: Correlates of damages and of seismic vulnerability of students’ homes

(1) (2) (3) (4)

Damage Prob H Prob M Prob L

Baseline test score 0.019∗∗∗ -0.002∗∗∗ -0.000 0.002∗∗∗

(0.002) (0.000) (0.000) (0.000)

Female student 0.003 0.001∗∗∗ -0.003∗∗∗ 0.002∗∗∗

(0.003) (0.000) (0.000) (0.000)

Student resides in same town as school’s 0.001 -0.002∗∗∗ 0.014∗∗∗ -0.012∗∗∗

(0.005) (0.000) (0.001) (0.000)

Age of parent-respondent 0.000 -0.002∗∗∗ -0.001∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)

Parental education (years) -0.027∗∗∗ -0.037∗∗∗ 0.003∗∗∗ 0.034∗∗∗

(0.001) (0.000) (0.000) (0.000)

Public school 0.061∗∗∗ 0.006∗∗∗ -0.004∗∗∗ -0.002∗∗∗

(0.004) (0.000) (0.000) (0.000)

Rural school -0.054∗∗∗ 0.011∗∗∗ -0.032∗∗∗ 0.021∗∗∗

(0.006) (0.000) (0.001) (0.000)

POST -0.031∗∗∗ -0.000 0.000 -0.000

(0.003) (0.000) (0.000) (0.000)

Observations 183145 183631 183631 183631

R2 0.456 0.963 0.696 0.821

Notes: Results from OLS regressions estimated on the sample of students in earthquake-affected regions

and residing more than 1 km from the coast. Damage is measured by the standardized damage ratio.

Seismic vulnerability is measured by the predicted probabilities that a student lives in a home of High

(column 2), Medium (column 3) or Low (column 4) seismic vulnerability class. The class probabilities

are predicted using the LASSO model in Appendix A.1. The baseline test score is the average between

the Mathematics and language SIMCE test scores in the fourth grade, standardized in the population of

test takers. All regressions include dummies for the region of residence. POST is a dummy equal to 1 if

the student belongs to the post-earthquake cohort, 0 otherwise. *** p<0.01, ** p<0.05, * p<0.10.
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Table A5: Impacts of earthquake damages on standardized eighth-grade test
scores in Spanish and Mathematics

(1) (2)

Language Mathematics

Effect of damage to own home -0.029∗∗ -0.022∗

(0.012) (0.012)

Effect of average damage among classmates 0.051∗∗∗ 0.037∗∗

(0.018) (0.018)

Effect of standard deviation of damage among classmates -0.105∗∗∗ -0.055

(0.040) (0.039)

Observations 181787 182403

R2 0.492 0.517

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km

from the coast. Parameter δ obtained from OLS estimation of regression (2). The outcome variables

are Language (column (1)) and Mathematics (column (2)) SIMCE scores, standardized to have mean

0 and variance 1. Regressions include student and classroom characteristics. Student characteristics:

fourth-grade test score, gender, whether the student lives in the school town, parental education, age

of household head, dummy for region of residence. Classroom characteristics: public school dummy,

rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school

dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and

public dummies interacted, class size, classroom fractions of females and of local residents; classroom

average and standard deviation of fourth-grade test scores and of parental education; all pairwise

within-classroom covariances between: damage, gender, parental educational, local residency, lagged

test score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are

clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.

Table A6: Impacts of earthquake damages on standardized eighth-grade test score and
GPA, robustness to controls

Test score GPA (std)

(1) (2) (3) (4)

Effect of damage to own home -0.050∗∗ -0.028∗∗∗ -0.016 -0.016

(0.021) (0.011) (0.014) (0.014)

Effect of average damage among classmates 0.106∗∗∗ 0.049∗∗∗ 0.048∗∗ 0.043∗

(0.032) (0.017) (0.022) (0.023)

Effect of standard deviation of damage among classmates -0.195∗∗ -0.084∗∗ -0.105∗ -0.086∗

(0.076) (0.039) (0.056) (0.049)

Observations 206244 180883 209331 183380

R2 0.110 0.589 0.036 0.251

Controls No Yes No Yes

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast.

Parameter δ obtained from OLS estimation of regression (2). The outcome variables are measured in eighth grade. In

columns (1) and (2) the outcome is the average between Mathematics and Language SIMCE scores, standardized to have

mean 0 and variance 1, in columns (3) and (4) it is the GPA, also standardized. All regressions include controls for the

student characteristics used to predict home quality (age of household head, parental education, region of residence).

Columns (1) and (3) include no other control variables. Columns (2) and (4) include all standard controls. For

students, these are: fourth-grade test score, gender, whether the student lives in the school town, parental education,

age of household head, dummy for region of residence. For classrooms, these are: public school dummy, rural school

dummy, shaking intensity in school’s town (uninteracted, interacted with public school dummy, interacted with cohort

dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class size, classroom

fractions of females and of local residents; classroom average and standard deviation of fourth-grade test scores and

of parental education; all pairwise within-classroom covariances between: damage, gender, parental education, local

residency, lagged test score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are

clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A7: Descriptive statistics of classroom and school changes between grades 7 and 8

All sample Main estimation sample

Mean St.dev. N Mean St.dev. N

(1) (2) (3) (4) (5) (6)

Switched school or classroom .111 .314 343625 .11 .313 244435

Switched school .0854 .28 343625 .0849 .279 244435

Switched classroom within school .0278 .164 314265 .0272 .163 223677

Notes: The main estimation sample corresponds to the sample of observations in earthquake-affected regions and
in non-coastal towns. A town is defined as coastal if it lies within 1km of the coast. The last row restricts the
sample to students who did not change school between grades 7 and 8.

Table A8: Impacts of earthquake damages on standardized eighth-grade
test score and GPA, all treatment variables measured in standard deviations

Test score GPA (std)

(1) (2)

Effect of damage to own home -0.028∗∗∗ -0.016

(0.011) (0.014)

Effect of average damage among classmates 0.044∗∗∗ 0.039∗

(0.016) (0.021)

Effect of standard deviation of damage among classmates -0.023∗∗ -0.024∗

(0.011) (0.013)

Observations 180883 183380

R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than

1 km from the coast. Parameter δ obtained from OLS estimation of regression (2). The outcome

variables are measured in eighth grade. In column (1) the outcome is the average between Math-

ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)

it is the GPA, also standardized. The treatment variables are standardized to have mean zero

and variance one in the estimation sample. Regressions include student and classroom character-

istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the

school town, parental education, age of household head, dummy for region of residence. Classroom

characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (un-

interacted, interacted with public school dummy, interacted with cohort dummy, and interacted

with cohort and public dummies), cohort and public dummies interacted, class size, classroom frac-

tions of females and of local residents; classroom average and standard deviation of fourth-grade

test scores and of parental education; all pairwise within-classroom covariances between: damage,

gender, parental educational, local residency, lagged test score. Damages’ mean and standard

deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level.

*** p<0.01, ** p<0.05, * p<0.10.
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Table A9: Heterogeneous impacts of earthquake damages on standardized
eighth-grade test score and GPA by baseline test scores, all treatment vari-
ables measured in standard deviations

(1) (2)

Test score GPA (std)

Effect of damage to own home -0.030∗∗∗ -0.019

(0.011) (0.015)

Interacted with baseline test score 0.004 0.023

(0.012) (0.015)

Effect of average damage among classmates 0.046∗∗∗ 0.043∗

(0.016) (0.023)

Interacted with baseline test score 0.020 -0.005

(0.014) (0.018)

Effect of standard deviation of damage among classmates -0.019∗ -0.022

(0.011) (0.014)

Interacted with baseline test score -0.030∗∗∗ -0.020∗∗

(0.008) (0.009)

Observations 180883 183380

R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than

1 km from the coast. Parameters δ obtained from OLS estimation of regression (3). The outcome

variables are measured in eighth grade. In column (1) the outcome is the average between Math-

ematics and Language SIMCE scores, standardized to have mean 0 and variance 1, in column (2)

it is the GPA, also standardized. The treatment variables are standardized to have mean zero

and variance one in the estimation sample. Regressions include student and classroom character-

istics. Student characteristics: fourth-grade test score, gender, whether the student lives in the

school town, parental education, age of household head, dummy for region of residence. Classroom

characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (un-

interacted, interacted with public school dummy, interacted with cohort dummy, and interacted

with cohort and public dummies), cohort and public dummies interacted, class size, classroom

fractions of females and of local residents; classroom average and standard deviation of fourth-

grade test scores and of parental education; all pairwise within-classroom covariances between:

damage, gender, parental education, local residency, lagged test score. Damages’ mean and stan-

dard deviation are leave-one-out moments. Standard errors clustered at the school-by-cohort level.

*** p<0.01, ** p<0.05, * p<0.10.

Table A10: Heterogeneous impacts of earthquake damages on standardized eighth-grade test scores
and GPA by deciles of baseline test scores

(1) (2)

Score GPA (std)

Effect of damage to own home for decile 1 baseline score -0.027 -0.053

(0.032) (0.046)

Additional effect for decile 2 baseline score 0.006 -0.013

(0.043) (0.062)

Additional effect for decile 3 baseline score -0.026 0.077

(0.044) (0.067)

Additional effect for decile 4 baseline score -0.042 0.016

(0.046) (0.059)

Additional effect for decile 5 baseline score 0.011 -0.023

Continued on next page
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(1) (2)

(0.050) (0.069)

Additional effect for decile 6 baseline score 0.071 0.065

(0.050) (0.068)

Additional effect for decile 7 baseline score 0.011 0.126**

(0.046) (0.063)

Additional effect for decile 8 baseline score 0.028 0.052

(0.047) (0.061)

Additional effect for decile 9 baseline score -0.036 0.025

(0.044) (0.064)

Additional effect for decile 10 baseline score -0.018 0.031

(0.051) (0.065)

Effect of average damage among classmates for decile 1 baseline score 0.026 0.063

(0.038) (0.060)

Additional effect for decile 2 baseline score 0.001 -0.006

(0.048) (0.071)

Additional effect for decile 3 baseline score 0.021 -0.042

(0.049) (0.083)

Additional effect for decile 4 baseline score 0.067 -0.004

(0.052) (0.071)

Additional effect for decile 5 baseline score -0.004 0.063

(0.058) (0.079)

Additional effect for decile 6 baseline score -0.032 -0.051

(0.058) (0.080)

Additional effect for decile 7 baseline score 0.004 -0.137*

(0.054) (0.074)

Additional effect for decile 8 baseline score 0.003 -0.018

(0.054) (0.076)

Additional effect for decile 9 baseline score 0.075 0.021

(0.052) (0.076)

Additional effect for decile 10 baseline score 0.093 -0.000

(0.058) (0.076)

Effect of st dev of damages among classmates for decile 1 baseline score 0.054 0.047

(0.063) (0.086)

Additional effect for decile 2 baseline score -0.094 -0.010

(0.090) (0.105)

Additional effect for decile 3 baseline score -0.049 -0.151

(0.067) (0.097)

Additional effect for decile 4 baseline score -0.152* -0.198*

(0.088) (0.112)

Additional effect for decile 5 baseline score -0.078 -0.178*

(0.082) (0.097)

Additional effect for decile 6 baseline score -0.173** -0.170

(0.081) (0.106)

Additional effect for decile 7 baseline score -0.090 -0.050

(0.079) (0.109)

Continued on next page
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(1) (2)

Additional effect for decile 8 baseline score -0.146* -0.140

(0.083) (0.112)

Additional effect for decile 9 baseline score -0.208** -0.197*

(0.083) (0.118)

Additional effect for decile 10 baseline score -0.383*** -0.223**

(0.094) (0.113)

Observations 180883 183380

R2 0.595 0.257

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the

coast. Parameters δ obtained from OLS estimation of regressions (3), where a is replaced by dummy variables

identifying a student’s fourth-grade test score (SIMCE) decile. The outcome variables are measured in eighth grade.

In column (1) the outcome is the average between Mathematics and Language SIMCE scores, standardized to have

mean 0 and variance 1, in column (2) it is the GPA, also standardized. Regressions include student and classroom

characteristics. Student characteristics: fourth-grade test score, gender, whether the student lives in the school

town, parental education, age of household head, dummy for region of residence. Classroom characteristics: public

school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school

dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies

interacted, class size, classroom fractions of females and of local residents; classroom average and standard deviation

of fourth-grade test scores and of parental education; all pairwise within-classroom covariances between: damage,

gender, parental educational, local residency, lagged test score. Damages’ mean and standard deviation are leave-one-

out moments. Standard errors are clustered at the school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A11: Heterogeneous impacts of earthquake damages on standard-
ized eighth-grade test score and GPA by student characteristics

(1) (2)

Effect of damage to own home 0.007 0.007

(0.023) (0.033)

Interacted with baseline test score 0.007 0.026

(0.015) (0.019)

Interacted with parental education -0.025∗ -0.015

(0.014) (0.017)

Interacted with female dummy -0.035 -0.018

(0.025) (0.032)

Interacted with income 0.001 0.010

(0.010) (0.014)

Effect of average damage among classmates 0.031 0.027

(0.027) (0.037)

Interacted with baseline test score 0.008 -0.012

(0.019) (0.022)

Interacted with parental education 0.060∗∗∗ 0.034∗

(0.016) (0.020)

Interacted with female dummy 0.027 0.017

(0.029) (0.039)

Interacted with income -0.004 -0.016

(0.012) (0.017)

Effect of standard deviation of damage among classmates -0.104∗∗ -0.032

(0.051) (0.065)

Interacted with baseline test score -0.083∗∗∗ -0.070∗∗

(0.029) (0.033)

Interacted with parental education -0.082∗∗∗ -0.044

(0.027) (0.036)

Interacted with female dummy -0.024 -0.090

(0.050) (0.065)

Interacted with income 0.029 -0.000

(0.023) (0.034)

Observations 140059 142055

R2 0.590 0.252

Notes: Students enrolled in schools in regions affected by the earthquake and residing more

than 1 km from the coast. Parameters δ obtained from OLS estimation of a variation of re-

gression (3) that includes further interactions. The outcome variables are measured in eighth

grade. In column (1) the outcome is the average between Mathematics and Language SIMCE

scores, standardized to have mean 0 and variance 1, in column (2) it is the GPA, also stan-

dardized. Lagged test score, parental education and lagged household income are standardized

to have mean 0 and unit variance. Regressions include student and classroom characteristics.

Student characteristics: fourth-grade test score, gender, whether the student lives in the school

town, parental education, age of household head, dummy for region of residence. Classroom

characteristics: public school dummy, rural school dummy, shaking intensity in school’s town

(uninteracted, interacted with public school dummy, interacted with cohort dummy, and in-

teracted with cohort and public dummies), cohort and public dummies interacted, class size,

classroom fractions of females and of local residents; classroom average and standard deviation

of fourth-grade test scores and of parental education; all pairwise within-classroom covariances

between: damage, gender, parental educational, local residency, lagged test score. Damages’

mean and standard deviation are leave-one-out moments. Standard errors are clustered at the

school-by-cohort level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A12: Impacts of earthquake damages on standardized eighth-grade test score and GPA under
different geographical sample restrictions

Test score GPA (std)

(1) (2) (3) (4) (5) (6) (7) (8)

Effect of own damage -0.027∗∗ -0.028∗∗∗ -0.023∗∗ -0.021∗∗ -0.014 -0.016 -0.014 -0.010

(0.011) (0.011) (0.011) (0.010) (0.015) (0.014) (0.014) (0.013)

Effect of average damage 0.047∗∗∗ 0.049∗∗∗ 0.046∗∗∗ 0.045∗∗∗ 0.041∗ 0.043∗ 0.041∗ 0.031

(0.017) (0.017) (0.017) (0.016) (0.023) (0.023) (0.022) (0.021)

Effect of st. dev. of damage -0.083∗∗ -0.084∗∗ -0.086∗∗ -0.092∗∗ -0.088∗ -0.086∗ -0.087∗ -0.073

(0.039) (0.039) (0.038) (0.037) (0.049) (0.049) (0.047) (0.046)

Observations 176405 180883 184897 190259 178839 183380 187446 192880

R2 0.589 0.589 0.588 0.587 0.251 0.251 0.251 0.253

Geographic restriction 1.5 km 1 km 0.5 km All towns 1.5 km 1 km 0.5 km All towns

Notes: Students enrolled in schools in regions affected by the earthquake. Geographic restriction indicates the minimum distance from the

coast required for a municipality to be included in the sample (e.g., 1 km means only municipalities at least 1 km from the coast; All towns

includes all municipalities, including coastal ones). Parameter δ obtained from OLS estimation of regression (2). In columns (1)-(4) the

outcome is the average between Mathematics and Language SIMCE scores, standardized to have mean 0 and variance 1. In columns (5)-(8)

it is the GPA, also standardized. Regressions include student and classroom characteristics. Student characteristics: fourth-grade test score,

gender, whether the student lives in the school town, parental education, age of household head, dummy for region of residence. Classroom

characteristics: public school dummy, rural school dummy, shaking intensity in school’s town (uninteracted, interacted with public school

dummy, interacted with cohort dummy, and interacted with cohort and public dummies), cohort and public dummies interacted, class

size, classroom fractions of females and of local residents; classroom average and standard deviation of fourth-grade test scores and of

parental education; all pairwise within-classroom covariances between: damage, gender, parental educational, local residency, lagged test

score. Damages’ mean and standard deviation are leave-one-out moments. Standard errors are clustered at the school-by-cohort level. ***

p<0.01, ** p<0.05, * p<0.10.
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Table A13: Impacts of earthquake damages on
standardized eighth-grade test score and GPA, ac-
counting for spatial correlation in the residuals

Test score GPA (std)

(1) (2)

Effect of own damage -0.028∗∗∗ -0.016

(0.009) (0.015)

Effect of average damage 0.049∗∗ 0.043∗

(0.019) (0.025)

Effect of st. dev. of damage -0.084∗∗ -0.086∗

(0.038) (0.050)

Observations 180883 183380

R2 0.589 0.251

Notes: Students enrolled in schools in regions affected by the

earthquake and residing more than 1 km from the coast. Pa-

rameter δ obtained from OLS estimation of regression (2). The

outcome variables are measured in eighth grade. In column (1)

the outcome is the average between Mathematics and Language

SIMCE scores, standardized to have mean 0 and variance 1, in

column (2) it is the GPA, also standardized. Regressions include

student and classroom characteristics. Student characteristics:

fourth-grade test score, gender, whether the student lives in the

school town, parental education, age of household head, dummy

for region of residence. Classroom characteristics: public school

dummy, rural school dummy, shaking intensity in school’s town

(uninteracted, interacted with public school dummy, interacted

with cohort dummy, and interacted with cohort and public dum-

mies), cohort and public dummies interacted, class size, class-

room fractions of females and of local residents; classroom av-

erage and standard deviation of fourth-grade test scores and

of parental education; all pairwise within-classroom covariances

between: damage, gender, parental educational, local residency,

lagged test score. Damages’ mean and standard deviation are

leave-one-out moments. Standard errors are clustered at the

school-municipality-by-cohort level. *** p<0.01, ** p<0.05, *

p<0.10.

13



Table A14: Impacts of earthquake damages on standardized eighth-grade test score and GPA accounting
for spatial correlation in the residuals using the Conley method

(1) (2) (3) (4) (5)

A. Test scores

Effect of damage to own home -0.026∗∗ -0.026∗∗ -0.026∗∗ -0.026∗∗ -0.026∗∗∗

(0.011) (0.013) (0.012) (0.013) (0.005)

Effect of average damage among classmates 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗ 0.047∗∗∗

(0.012) (0.018) (0.018) (0.022) (0.016)

Effect of standard deviation of damage among classmates -0.088∗∗∗ -0.088∗∗ -0.088∗∗ -0.088∗∗ -0.088∗∗∗

(0.018) (0.035) (0.035) (0.038) (0.012)

B. GPA (std)

Effect of damage to own home -0.009 -0.009 -0.009 -0.009 -0.009∗

(0.014) (0.015) (0.012) (0.010) (0.006)

Effect of average damage among classmates 0.038∗∗ 0.038 0.038 0.038 0.038∗∗∗

(0.016) (0.024) (0.026) (0.027) (0.013)

Effect of standard deviation of damage among classmates -0.099∗∗∗ -0.099∗∗ -0.099∗∗∗ -0.099∗∗∗ -0.099∗∗∗

(0.024) (0.043) (0.035) (0.036) (0.011)

Threshold distance N/A 10 km 25 km 50 km 250+ km

Notes: Students enrolled in schools in regions affected by the earthquake and residing more than 1 km from the coast. Parameters δ

obtained from OLS estimation of regression (2). The first column reports the original standard errors clustered at the school-by-cohort

level and corresponding significance levels. Columns (2) to (5) report standard errors and significance levels calculated according to the

method in Conley (1999), under different distance thresholds. The farthest town with positive shaking intensity lay 587 km from the

asperity; I use maximum spatial cutoffs of 250 km for test scores and 350 km for GPA to avoid numerical instability at larger distances.

The standard errors at the largest cutoff should still be interpreted with caution. Parameter estimates slightly differ from those in Table

2 because regional fixed effects are omitted for computational reasons. *** p<0.01, ** p<0.05, * p<0.10.
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Table A15: Impacts of earthquake damages on
standardized eighth-grade test score and GPA,
with school by cohort fixed effects

Test score GPA (std)

(1) (2)

Effect of own damage -0.032∗∗∗ -0.023

(0.012) (0.015)

Effect of average damage 0.067 0.068

(0.116) (0.153)

Effect of st. dev. of damage -0.032 -0.023

(0.055) (0.069)

Observations 180883 183380

R2 0.511 0.257

Notes: Students enrolled in schools in regions affected by the

earthquake and residing more than 1 km from the coast. Pa-

rameter δ̃ obtained from OLS estimation of regression (2’). The

outcome variables are measured in eighth grade. In column (1)

the outcome is the average between Mathematics and Language

SIMCE scores, standardized to have mean 0 and variance 1, in

column (2) it is the GPA, also standardized. Regressions in-

clude school by cohort fixed effects and student and classroom

characteristics. Student characteristics: fourth-grade test score,

gender, whether the student lives in the school town, parental

education, age of household head, dummy for region of resi-

dence. Classroom characteristics: class size, classroom frac-

tions of females and of local residents; classroom average and

standard deviation of fourth-grade test scores and of parental

education; all pairwise within-classroom covariances between:

damage, gender, parental education, local residency, lagged test

score. Damages’ mean and standard deviation are leave-one-out

moments. Standard errors are clustered at the school-by-cohort

level. *** p<0.01, ** p<0.05, * p<0.10.
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Table A16: Summary statistics of school characteristics.

All Schools with non-missing

schools expenditure data

Mean St.dev. N Mean St.dev. N

(1) (2) (3) (4) (5) (6)

Class size 27.3 10.14 6150 23.54 10.06 2586

Public .49 .5 6150 .77 .42 2586

Rural .25 .43 6150 .44 .5 2586

Average simce 0 .47 6148 -.13 .41 2586

Average parental education (yrs) 10.35 1.94 6150 9.29 1.54 2586

St. dev. of simce .79 .15 6145 .79 .16 2586

St. dev. of parental education 2.55 .55 6150 2.62 .59 2586

Fraction female .49 .16 6150 .49 .16 2586

Fraction local residents .87 .19 6150 .93 .12 2586

MSK intensity 5.99 .83 6150 5.99 1.06 2586

Notes: The unit of observation in this table is a school. The sample is restricted to schools in earthquake regions,
located more than 1 km from the coast, and for whom the treatment variables (mean and dispersion of damages)
are not missing. Simce refers to baseline test scores, obtained as the average of Mathematics and language test
scores in fourth grade, standardized in the population of test takers. Average characteristics of the student body
are obtained as within-school averages across classrooms of classroom-level values. For example, average simce
refers to the average across classrooms of within-classroom mean simce scores.

Table A17: Lack of selective attrition

(1)

Expenditure data missing

Effect of mean damage 0.011

(0.018)

Effect of standard deviation of damage -0.074

(0.061)

Pre-earthquake mean 0.584

R-squared 0.054

Observations 6150

Notes: Schools in regions affected by the earthquake, located more

than 1 km from the coast. Parameters δ obtained from OLS esti-

mation of a variation of regression (3) where the unit of observation

is the school. The treatment variables represent across-classroom

averages within a school, that is, the school-level mean of damages

refers to the average of the within-classroom damage means; the

school-level standard deviation of damages refers to the average of

the within-classroom damage standard deviations. The regression is

estimated on the sample of all schools, regardless of whether expen-

diture data were available, and uses as outcome variable a dummy

equal to 1 if data on expenditures is missing, 0 otherwise. Data on

expenditures after the earthquake is available only for the 2010 school

year, therefore, the post-earthquake period in this Table corresponds

to the 2010 school year. Standard errors shown in parentheses. ***

p<0.01, ** p<0.05, * p<0.10.

16



Total
Category
Personnel
Sub-category
Hire new staff hours 21,294,613,941
Extend hours for existing staff 17,458,823,730
Fee-based services (non-ATE) 11,413,079,292
Per diems and travel 84,963,866
Other 5,215,939,814
Total 55,467,420,643

External ATE services
Sub-category
Courses, workshops, tutoring 870,958,985
Pedagogical and technical support 10,342,804,689
Administrative and management consulting 1,155,087,457
Total 12,368,851,131

Emergency
Sub-category
Overtime 149,447,305
Other 184,822,505
Total 334,269,810

Projects
Sub-category
Infrastructure construction 12,052,466
Infrastructure repair 32,610,842
Equipment 45,882,535
Furniture 7,975,445
Total 98,521,288

Table A18: Breakdown of expenditures of the additional resources provided under the SEP program,
by category and sub-category. Amounts are in Chilean pesos and represent total spending across
all SEP schools in 2009–2010. External ATE services (Asesoŕıa Técnica Educativa) correspond to
subcontracted consultancies provided by accredited institutions that support schools’ improvement
plans required under the SEP law. Source: Rendidos SEP dataset.
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Figure A1: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on February 2,
2012, nearly two years after the earthquake. Translation: “Reconstruction is like God. Everyone
knows it exists. But nobody sees it.”

Figure A2: Marginal effects on standardized eighth-grade test score and GPA by baseline (fourth
grade) GPA. Notes: Marginal effects of leave-one-out average damage among classmates and leave-
one-out standard deviation of damage among classmates. Effects obtained from estimating the
regression model in equation (3), replacing the baseline test score with the baseline GPA. 80% and
90% confidence intervals reported.
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Figure A3: Marginal effects of damage mean on within-classroom GPA rank by baseline test score.
Notes: GPA rank is the classroom rank, it ranges from 0 (worst GPA) to 1 (top GPA). Marginal
effects of the leave-one-out average of damage among classmates. Effects obtained from estimating
the regression model in equation (3). 90% and 80% confidence intervals reported.

Figure A4: Relationship between reported effort cost and baseline test score. Notes: Local polyno-
mial regression estimated on the sample of students in earthquake regions and in the cohort affected
by the earthquake. Top and bottom 1% of baseline test score distribution trimmed. 95% confidence
intervals reported.
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C Theoretical Appendix

C.1 Empirical counterparts of the model’s comparative stat-

ics

Propositions 1 and 2 consider comparative statics that increase the within-classroom

mean and dispersion of damages in a way that increases the within-classroom mean

and dispersion of effort-cost types. This Appendix shows which variation in the

data, leveraged in the regression analyses, provides the empirical counterpart to these

comparative statics.

Proposition 1 varies the within-classroom mean of damages while keeping fixed the

within-classroom distributions of the other determinants of the effort-cost type. Given

the specification for the effort-cost type in equation (4), it follows that, whenever

θ3 > 0, an increase in the within-classroom mean of damages induces an increase in

the within-classroom mean of the effort-cost type, provided that the within-classroom

means of the other determinants of ci are held constant. Grouping (ai, xi) into vector

wi with coefficient vector θw, the average effort-cost type among classmates is:

Ec[c] = θ0 + θ⊤wEc[w] + θ3Ec[d], (7)

where the averages are taken with respect to within-classroom distributions. When

θ3 > 0, increasing the within-classroom mean of damages Ec[d] while keeping class-

room composition Ec[w] constant increases the average effort-cost type. The regres-

sions that estimate the impacts of the within-classroom mean of damages Ec[d] include

the vector Ec[w] of controls (e.g. average parental education, average fraction of local

residents, etc.); the full list is reported in the Table notes. Thus, these regressions

provide the empirical counterpart to the theoretical comparative statics.

Proposition 2 varies the within-classroom dispersion of damages so as to induce

a change in the within-classroom dispersion of effort-cost types, while keeping fixed

the within-classroom distributions of the other determinants of the effort-cost type.

Letting w[j] denote element j of vector wi, and θw[j] its coefficient, the variance of the

effort-cost type among classmates is:

Varc[c] =
m∑
j=1

θ2w[j] Varc[w[j]]+θ
2
3 Varc[d]+2

m−1∑
j=1

m∑
j′>j

θw[j]θw[j′] Covc(w[j], w[j′])+2
m∑
j=1

θw[j]θ3Covc(w[j], d),

(8)

where the variances and covariances are taken with respect to within-classroom distri-

butions. When θ3 ̸= 0, increasing the within-classroom variance of damages Varc[d],

while keeping constant the other variances and covariances on the right-hand side
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of equation (8), increases the variance of effort-cost types. The regressions that esti-

mate the impacts of the within-classroom standard deviation of damages include these

terms as controls (e.g. standard deviation of parental education, pairwise covariance

between damage and lagged test score, etc.); the full list is reported in the Table

notes. Thus, they provide the empirical counterpart to the theoretical comparative

statics.

C.2 Proofs

To simplify notation, this appendix drops the l classroom index, under the under-

standing that all distributions and equilibrium functions are classroom-specific. In

deriving comparative statics that compare classrooms with different distributions of

the effort cost type, I explicitly specify the classroom indices to clearly distinguish

between classrooms.

Rearranging equation (6) and substituting c′(ei) = 1
e′(ci)

, the following first-order

differential equation characterizes the equilibrium strategies:

e′(ci) =

(
g(ci)

1−G(ci) + ϕ

)(
V (y(e(ci)), q(e(ci), ci))

(a0 + a1(µd))V1 + V2
∂q
∂ei

)
(9)

=
g(ci)

1−G(ci) + ϕ
ψ(e(ci), ci),

where ψ(e(ci), ci) =
V (y(e(ci)),q(e(ci),ci))

(a0+a1(µd))V1+V2
∂q
∂ei

.

Proposition A1. (Adapted from Proposition 1 in Hopkins and Kornienko (2004)).

The unique solution to the differential equation (9) with the boundary condition e(c̄) =

enr(c̄), where enr solves the first-order condition absent rank concerns

V1(a0 + a1(µd))|ei=enr = −V2
∂q

∂ei
|ei=enr ,

is a unique symmetric Nash Equilibrium of the game of status. Equilibrium effort e(ci)

and equilibrium GPA y(ci) are both continuous and strictly decreasing in student’s type

ci.

Proof of Proposition A1. First, as in the proof of Proposition 1 in Hopkins and

Kornienko (2004), it is easy to show that the boundary condition is optimal for the

student with the highest cost, c̄. Such student chooses the effort that maximizes

utility V in the absence of rank concerns. In equilibrium, her utility from rank is

zero, therefore, she maximizes V , because V × F + ϕ× V = V × 0 + ϕ× V = ϕV .
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Next, I adapt the proof in Hopkins and Kornienko (2004) to show that if the

strategy e∗(ci) is a best response to other students’ effort choices, then it is de-

creasing (while Hopkins and Kornienko (2004) deal with increasing functions). If

a student i of type ci exerts effort ei = e∗(ci) and this is a best response to the

efforts of the other students as summarized by the effort distribution FE(·), then it

must be that ei ≥ enr(ci), where enr(ci) solves the first-order condition in the ab-

sence of rank concerns, i.e., V1(a0 + a1(µd))|ei=enr = −V2 ∂q
∂ei

|ei=enr . This is because if

ei < enr(ci), then FE(ei) + ϕ < FE(enr) + ϕ, because FE is strictly increasing, and

V (y(ei), q(ei, ci)) < V (y(enr(ci)), q(enr(ci), ci)), because V1 > 0, V2 < 0, and q1 > 0.

Therefore, V (y(ei), q(ei, ci)) (FE(ei) + ϕ) < V (y(enr), q(enr, ci)) (FE(enr) + ϕ), i.e.,

any level of effort below the no-rank-concerns level is strictly dominated by the no-

rank-concerns level. Suppose that equality holds, so ei = enr(ci). Then e∗(ci) is de-

creasing because enr(ci) is decreasing. This follows from the assumptions that V 11 =

0, V 22 = 0, V12 ≤ 0, and from the assumptions that q1 > 0, q2 > 0, q11 > 0, and

q12 ≥ 0. To see why, let FOC(ei, ci) = V1(a0 + a1(µd)) + V2q1 and notice that by the

Implicit Function Theorem:

denr
dci

= −∂FOC/∂ci
∂FOC/∂ei

.

The numerator is:

∂FOC

∂ci
= (a0 + a1(µd))V12

∂q

∂ci
+ V22

∂q

∂ei

∂q

∂ci
+ V2

∂2q

∂ei∂ci
≤ 0.

The denominator is:

∂FOC

∂e
= (a0+a1(µd))

2V11+(a0+a1(µd))V12
∂q

∂ei
+

(
(a0 + a1(µd))V21 + V22

∂q

∂ei

)
∂q

∂ei
+V2

∂2q

∂2ei
≤ 0.

As a result, e∗(·) is decreasing in ci when it is equal to optimally chosen effort in the

absence of rank concerns, because denr

dci
≤ 0.

If equality does not hold, we want to show that if ei is a best-response and ei >

enr(ci), then it is still the case that ei is decreasing in ci. First, I show that for any

other choice ẽ ∈ (enr(ci), ei),

∂V

∂ci
(y(ei), q(ei, ci))(FE(ei) + ϕ) <

∂V

∂ci
(y(ẽ), q(ẽ, ci))(FE(ẽ) + ϕ). (10)

Rewrite the left-hand side as:

∂V

∂ci
(y(ei), q(ei, ci))(FE(ẽ+ ϕ) +

∂V

∂ci
(y(ei), q(ei, ci))(FE(ei)− FE(ẽ)).
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The first term is smaller or equal to the right-hand side of equation (10), because ∂V
∂ci

is decreasing in ei, as V21 ≤ 0, V22 = 0, ∂q
∂ci

> 0, V2 < 0, and ∂2q
∂ci∂ei

≥ 0. To see why,

notice that ∂2V
∂ci∂ei

=
(
V21(a0 + a(µd) + V22

∂q
∂ei

)
∂q
∂ci

+ V2
∂q

∂ci∂ei
≤ 0. The second term is

strictly negative, because first, ∂V
∂ci

is strictly negative because V2 < 0 and ∂q
∂ci

> 0, and

second, FE(ei) − FE(ẽ) > 0. To see why the latter is true, notice that for ei > enr,

V (y(ei), q(ei, ci)) is decreasing in ei. Therefore, if ei is a best-response, it must be

the case that FE(ei) > FE(ẽ), otherwise a student could lower effort and obtain a

higher utility, while not lowering her status. This establishes the inequality in (10),

so that at ei, the overall marginal utility with respect to ci, (
∂
∂ci

(V (yi, qi)(FE(ei)+ϕ))),

is strictly decreasing in ei. This implies that an increase in cost type ci leads to a

decrease in the marginal return to ei, therefore, the optimal choice of effort ei must

decrease.

To show that if an effort function is an equilibrium strategy, then it must be

continuous, we can follow the proof in Hopkins and Kornienko (2004) with a minor

adaptation to account for the fact that the equilibrium strategy in this paper is

a decreasing rather than increasing function. Specifically, suppose the equilibrium

strategy was not continuous. That is, suppose that that there was a jump downwards

in the equilibrium effort function e∗(ci) at ẽ, so that limci→c̃ e
∗(ci) = ẽ < e∗(c̃). Then,

there would exist an ϵ > 0 small enough, such that the student of type c̃ − ϵ can

reduce her effort to c̃, which is below e∗(c̃−ϵ), and obtain a discrete increase in utility

because of the lower effort, while her rank would decrease by less, by continuity of

the rank function S (·) at c̃. Therefore, there exists a student with an incentive to

deviate, and such discontinuous e∗(ci) function cannot be an equilibrium strategy.49

Finally, if e∗(ci) is continuous and decreasing then it must be that y∗(ci) = y(e∗(ci))

is continuous and decreasing, because y(·) is a continuous function of ei and
dy
dei

> 0

∀ei as per equation (5).

Uniqueness of the solution to the differential equation in (9), and therefore unique-

ness of the equilibrium, follows from the fundamental theorem of differential equations.

The boundary condition pins down the unique solution.

Proof of Proposition 1. Let eA(ci) and eB(ci) denote the equilibrium effort choices

in classrooms A and B. Proposition A1 established that eA(ci) and eB(ci) are strictly

decreasing functions of ci. Moreover, for the highest value of ci in each classroom, de-

noted by c̄J for J = A,B, these effort choices satisfy the following first-order condition

49That the equilibrium strategy is strictly decreasing and differentiable follows from Hopkins and
Kornienko (2004) after replacing zi with ci, xi with ei, and x(zi) with e(ci) (with the only difference
that e(·) is decreasing and x(·) is increasing), and setting α > 0.
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for maximization in the absence of rank concerns:

V1(a0 + a1(µ
J
d )) = −V2

∂q

∂ei
for J = A,B. (11)

Assuming that the equilibrium effort functions in classrooms A and B do not cross

after the uniform shift in cost types, we can focus on the optimal effort choice for the

student with the highest ci in each classroom.50 Under this assumption, the ordering

of equilibrium efforts for the highest-cost type extends to all types in the classroom.

Therefore, if eB(c̄B) > eA(c̄A), then EB[ei] > EA[ei]. Similarly, if eB(c̄B) < eA(c̄A),

then EB[ei] < EA[ei]. Recall that y(ei) = (a0 + a1(µd))ei + u0 + u1(µd), with
da1
dµd

≥ 0

and du1

dµd
≥ 0 representing the multiplicative and additive compensatory actions by

schools. The damage distribution shift implies that µB
d > µA

d . Then:

• If ∂2q
∂ei∂ci

= 0 and da1
dµd

= 0, then the right-hand side (RHS) and left-hand side

(LHS) of equation (11) are identical in classrooms A and B. Hence the equi-

librium effort choice of the highest-cost type is the same in both classrooms:

eB(c̄B) = eA(c̄A). For all other types, however, the shift in costs affects both

their utility levels and the strength of rank incentives, and the model does not

deliver a sharp prediction for the sign of the resulting changes in equilibrium

effort or GPA.

In the case of no multiplicative compensation ( da1
dµd

= 0), the model is agnostic

about the effect of a uniform increase in damages on average GPA. This con-

clusion holds regardless of whether schools implement additive compensation

( du1

dµd
> 0) or not ( du1

dµd
= 0).

• If ∂2q
∂ei∂ci

= 0 and da1
dµd

> 0, then the LHS of equation (11) is larger in classroom

B than in classroom A. As q is an increasing convex function of ei, so that ∂q
∂ei

is

increasing in e, it must be that eB(c̄B) > eA(c̄A), resulting in EB[yi] > EA[yi].

When compensatory action increases the marginal return to effort and there is

no change to its marginal cost, students exert more effort, resulting in higher

GPA both because of increased effort and of a larger coefficient on effort in the

achievement production function.

• If ∂2q
∂ei∂ci

> 0 and da1
dµd

> 0, then the LHS of equation (11) is larger in classroom

B than in classroom A. As c̄B > c̄A because damages are larger for all students

in classroom B, the RHS is larger in classroom B than in classroom A for any

given effort level.

50This monotone-comparative-statics property is standard in games with strategic complemen-
tarities and when payoffs exhibit (weak) decreasing differences in the relevant choice-parameter pair,
(ei, k) in this case (see Milgrom and Shannon (1994)).
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For small enough ∂2q
∂ei∂ci

, i.e. ∂2q
∂ei∂ci

≤ γ with γ a positive constant, we have

eB(c̄B) ≥ eA(c̄A), resulting in EB[yi] > EA[yi] (holding with strict inequality

because the increased coefficient on effort in the GPA production function in

classroom B causes larger GPA even in the case in which effort is equal across

classrooms).

For large enough ∂2q
∂ei∂ci

, i.e. ∂2q
∂ei∂ci

> γ, eB(c̄B) < eA(c̄A). This can results in

EB[yi] ≥ EA[yi] if the compensatory action (through a1, u1 or both) (over)compensates

the reduction in effort, or in EB[yi] < EA[yi] if it does not.

When both the marginal cost and benefit of effort increase, the sign of the

impact on effort depends on the relative magnitudes of such increases. When

the increase in the marginal benefit due to the compensatory action is larger

in magnitude than the increase in the marginal cost due to the larger damages,

GPA increases in classrooms more affected by the earthquake, because of the

increased effort and of the compensatory action. When the increase in the

marginal benefit is lower than that in the marginal cost, GPA may increase or

decrease depending on whether the compensatory action (over)compensates for

the decreased effort.

• If ∂2q
∂ei∂ci

> 0 and da1
dµd

= 0, the LHS of equation (11) is identical across classrooms,

while the RHS is larger in classroom B for any given effort level, resulting in

eB(c̄B) < eA(c̄A). This results in either EB[yi] ≥ EA[yi] if the compensatory

action through u1 (over)compensates the reduction in effort, or in EB[yi] <

EA[yi] if it does not.

When the marginal cost of effort increases (due to the larger damages) and its

marginal benefit stays constant (due to lack of compensatory action through

a1), effort decreases. GPA may increase or decrease depending on whether the

additive compensatory action (u1) overcompensate for decreased effort.

Proof of Proposition 2. The results follow from Proposition A1 and Proposition 4

in Hopkins and Kornienko (2004) for the case α > 0 (where α there is the equivalent of

ϕ in this paper), noting that ei in this paper corresponds to xi in theirs, ci corresponds

to zi, e
∗(ci) corresponds to x

∗(zi). As per Proposition A1, e∗(ci) is strictly decreasing,

while x∗(zi) in Hopkins and Kornienko (2004) is strictly increasing, which implies

that rank G(x−1(xi)) in their paper’s proof must be replaced by rank 1−G(c(ei)) =

1−G(e−1(ei)) here, and the results follow.
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Proof of Proposition 3. At the Nash Equilibrium in classroom J ∈ {A,B}, keep-
ing di and xi fixed, GPA y(·) is strictly increasing in ai, and therefore invertible. This

follows from the fact that yi is strictly decreasing in ci, and ci is strictly decreasing in

ai. Therefore, the probability that a student i with baseline test score ai and GPA yi

obtains a higher GPA than another student j, chosen at random among those with

xj = xi = x and dj = di = d, is F J
Y (yi)|x,d = Pr

(
yi > y(aj)

)
|x,d = Pr

(
y−1(yi) >

aj
)
|x,d = Pr

(
a(yi) > aj

)
|x,d = FT (ai)|x,d where FT (·)|x,d is the c.d.f. of ai conditional

on x, d and a(·) = y−1(·).
Therefore, conditional on xi, di, the GPA rank of a student with baseline test score

ai is constant across classrooms ∀ai.

C.3 Extension with an idiosyncratic shock to effort cost type

The model assumes that each student’s cost-of-effort type is private information.

Since the determinants of this type include student characteristics that are plausibly

observable to peers, this assumption may be too strong in the empirical context. This

Appendix, therefore, extends the model to allow the effort-cost type to depend on

an additional idiosyncratic component ϵi, whose realization is observed only by the

student. It then shows that the study’s conclusions are robust to this extension.

Consider the augmented cost-of-effort type

ci = θ0 + θ⊤wwi + θ3di + ϵi, wi ≡ (ai, xi), θw ≡ (θ1, θ2)
⊤. (12)

As in the baseline model, each student’s type ci is private information, while the

reference-group distribution Gl(·) is common knowledge. We impose no parametric

restrictions on Gl(·). The shock ϵi is unobserved by the econometrician.

Existence and uniqueness. Proposition A1 continues to hold because its proof

does not depend on the distribution of ci or its components, nor on the specification

for ci.

Comparative statics. Propositions 1–2 compare equilibria across classrooms un-

der changes in the within-classroom distribution of di that hold fixed the joint within-

classroom distribution of the remaining determinants of ci. Hence, provided the joint

within-classroom distribution of (ai, xi, ϵi) is held fixed, the comparative-statics results

remain valid.
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Empirical counterpart to Proposition 1. Let Ec[·] denote within-classroom av-

erages and EC [·] the expectation across classrooms. From (12),

Ec[c] = θ0 + θ⊤wEc[w] + θ3Ec[d] + Ec[ϵ]. (13)

The empirical implementation provides a counterpart to the model’s compara-

tive statics by controlling for within-classroom means of the determinants of ci ob-

served by the econometrician, i.e., of w (Appendix C.1). Because ϵi is unobserved,

its within-classroom mean cannot be included as a regressor. The regressions remain

valid empirical counterparts of the theoretical comparative statics under the following

assumption.

Assumption C.3.1 (Conditional mean independence and linearity). Within each class-

room, {(dci, wci, ϵci)}ni=1 are i.i.d. draws from the population distribution of (d, w, ϵ).

The idiosyncratic shock ϵci is mean independent of dci conditional on wci, and the

conditional expectation E[ϵ | w] is linear in w:

E[ϵ | d, w] = E[ϵ | w] = α + βw.

Under these assumptions, the within-classroom mean Ec[ϵ] satisfies

EC

[
Ec[ϵ]

∣∣ Ec[d] = d̄, Ec[w] = w̄
]
= EC

[
Ec[ϵ]

∣∣ Ec[w] = w̄
]
,

which does not vary with d̄. Hence,

d

d d̄
EC

[
Ec[ϵ]

∣∣ Ec[d] = d̄, Ec[w] = w̄
]
= 0,

and
d

d d̄
EC

[
Ec[c]

∣∣ Ec[d] = d̄, Ec[w] = w̄
]
= θ3.

Therefore, under assumption C.3.1, increasing across classrooms the within-classroom

mean Ec[d] while keeping observed classroom composition Ec[w] constant increases

the average value of the effort-cost type without changing the within-classroom mean

of the unobservable in expectation, and therefore provides a valid empirical coun-

terpart to the theoretical comparative statics, even when ci includes the unobserved

shock ϵi.

In practice, the empirical implementation relies on a difference-in-differences de-

sign that delivers the exogeneity condition in C.3.1 through across-cohorts differenc-

ing. The regression error term may be correlated with damages within cohorts, but

this correlation is assumed to remain constant across the pre- and post-earthquake

cohorts. The difference-in-differences estimator thus differences out any correlation
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between unobserved determinants of outcomes and classroom damages, satisfying the

mean-independence condition required for the interpretation of the estimates as em-

pirical counterparts to the extended model’s comparative statics.

Empirical counterpart to Proposition 2. Proposition 2 in the extended model

varies the within-classroom dispersion of di while holding fixed the within-classroom

distributions of (ai, xi, ϵi). From (12), the within-classroom variance of the effort-cost

type is:

Varc[c] =
m∑
j=1

θ2w[j] Varc[w[j]] + 2
m−1∑
j=1

m∑
j′>j

θw[j]θw[j′] Covc(w[j], w[j′]) + θ23 Varc[d] (14)

+ 2
m∑
j=1

θw[j]θ3Covc(w[j], d) + Varc[ϵ] + 2
m∑
j=1

θw[j] Covc(w[j], ϵ) + 2θ3Covc(d, ϵ),

where all moments are taken with respect to within-classroom distributions. In

the (extended) theoretical model, the comparative statics vary Varc[d] while keep-

ing Varc[ϵ], Covc(d, ϵ), and Varc[w[j]],Covc(w[j], d),Covc(w[j], ϵ), Covc(w[j], w[j′]) for

j = 1, ...,m, j ̸= j
′
= 1, ...,m − 1 fixed. The regressions include controls for the

within-classroom variances and covariances of the observed determinants of c (i.e.,

Varc[w[j]],Covc(w[j], d),Covc(w[j], w[j′])); the full list is reported in the Table notes.

Because ϵi is unobserved, its within-classroom variance and covariances cannot be

included as controls in the empirical regressions. The regressions remain valid empir-

ical counterparts to the comparative statics under the following assumption.

Assumption C.3.2 (Conditional mean independence and conditional invariance of ϵ

moments). Within each classroom, {(dci, wci, ϵci)}ni=1 are i.i.d. draws from the popu-

lation distribution of (d, w, ϵ). The idiosyncratic shock ϵci is mean independent of dci

conditional on wci:

E[ϵ | d, w] = E[ϵ | w].

In addition, conditional on the observed classroom composition Sc (which includes

the within-classroom variances and covariances of w and their covariance with d) the

within-classroom moments of ϵ do not co-vary across classrooms with the within-

classroom variance of damages:

CovC
(
Varc[ϵ], Varc[d] | Sc

)
= 0, CovC

(
Covc(d, ϵ), Varc[d] | Sc

)
= 0,

CovC
(
Covc(w[j], ϵ), Varc[d] | Sc

)
= 0 ∀j.
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These conditions allow Varc[ϵ], Covc(d, ϵ), and Covc(w[j], ϵ) to vary across class-

rooms, but require that any such variation be orthogonal to Varc[d] once observable

classroom characteristics are controlled for.51

Under assumption C.3.2, the within-classroom variance of ϵi and its covariance with

di satisfy

EC

[
Varc[ϵ]

∣∣Varc[d], Sc

]
= EC

[
Varc[ϵ]

∣∣ Sc

]
, EC

[
Covc(d, ϵ)

∣∣Varc[d], Sc

]
= EC

[
Covc(d, ϵ)

∣∣ Sc

]
,

which implies that neither Varc[ϵ] nor Covc(d, ϵ) varies systematically with Varc[d]

once the observed classroom characteristics Sc are controlled for. Hence,

d

dVarc[d]
EC

[
Varc[ϵ]

∣∣ Varrc[d], Sc

]
= 0,

d

dVarc[d]
EC

[
Covc(d, ϵ)

∣∣ Varc[d], Sc

]
= 0.

Substituting these results into equation (14) yields

d

dVarc[d]
EC

[
Varc[c]

∣∣ Varc[d], Sc

]
= θ23.

Therefore, under conditional mean independence and conditional invariance of the

moments of ϵi, increasing across classrooms the within-classroom variance of damages

while holding constant the observed classroom composition Sc increases, in expec-

tation, the within-classroom variance of the effort-cost type by θ23. Therefore, the

regressions provide a valid empirical counterpart to the theoretical comparative stat-

ics, even when ci includes the unobserved shock ϵi.

In the empirical implementation, the regressions that estimate the effects of the

within-classroom standard deviation of damages include controls for the within-classroom

variances and covariances of the observed components of c. Under assumption C.3.2,

the omission of the within-classroom moments of the unobserved ϵi does not affect

the interpretation of these regressions as empirical counterparts to the model’s com-

parative statics.52 As in the empirical counterpart to Proposition 1, identification in

practice relies on a difference-in-differences design, which delivers the required exo-

geneity condition in C.3.2 through across-cohorts differencing: although the regression

error may be correlated with damage dispersion within a cohort, this correlation is

assumed to remain constant between the pre- and post-earthquake cohorts, so that

51A sufficient (stronger) condition would be that d and ϵ are independent in the population.
52As the impacts of the within-classroom mean and dispersion of damages are estimated from

a single regression, assumption C.3.2, which is stronger than C.3.1, must hold for the estimates of
the impact of the mean and dispersion of damages to be valid empirical counterparts to the model’s
comparative statics.
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differencing removes it.

Heterogeneity by baseline test score in the extended model. I introduce an

additional assumption to ensure that the results on heterogeneity of the impacts by

baseline test scores provide correct empirical counterparts to the theoretical results

from the extended model.

In the baseline model (equation (4)), heterogeneity by the observed component

ai coincides with heterogeneity by the (unobserved) effort-cost type ci when xi and

di are held fixed (Lemma 1). With the addition of ϵi in (12) in the extended model,

we cannot condition on ϵi. The following assumption is sufficient to recover the same

monotone mapping in expectation.

Assumption C.3.3 (Conditional mean independence of ϵi with respect to ai). Within

a classroom, conditional on (xi, di), the idiosyncratic shock ϵi is mean independent of

the baseline test score ai:

E[ϵi | ai, xi, di] = E[ϵi | xi, di].

That is, the expectation of the unobserved shock ϵi is the same for students with

high and low baseline test score ai, conditional on the vector of student observables

(xi, di).

Lemma 2. Suppose Assumption C.3.3 holds and θ1 < 0. Given equation (12), if

xi = xj and di = dj for i ̸= j, and ai < aj, then

E[ci | ai, xi, di] > E[cj | aj, xj, dj],

so that grouping students by ai (holding xi and di constant) orders them by ci in

expectation.

Proof of Lemma 2. By (12) and Assumption C.3.3,

E[ci | ai, xi, di] = θ0 + θ1ai + θ2xi + θ3di + E[ϵi | xi, di]

where the conditional expectation of ϵi does not depend on ai by Assumption C.3.3.

Therefore:

∂E[ci | ai, xi, di]
∂ai

= θ1 < 0,

so that E[ci | ai, xi, di] is strictly monotone in ai.
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Under Assumption C.3.3, ai provides a monotone ranking of ci in expectation,

conditional on (xi, di), so interacting the classroom-level regressor measuring disper-

sion in d with student-level ai recovers heterogeneity with respect to ci in expectation.

In practice, the empirical framework satisfies this assumption through across-cohort

differencing: although the individual unobservable may correlate with ai conditional

on (xi, di) within each cohort, as long as this correlation is identical across cohorts, it

is eliminated by the difference-in-differences design implemented in equation (3).

D Details of the School Reconstruction Plan

This section provides an English translation of the “Education” section from a docu-

ment authored by the Presidential Delegation for Reconstruction, the Ministry of the

Interior and Public Security (Gobierno de Chile, 2010), detailing the reconstruction

plan following the 2010 Maule earthquake.

In Table A20, I highlight in bold font all mentions of school types targeted by the

reconstruction plan. As evident from the table, the plan specifically targeted schools

based on the extent of damage at the establishment level.

Translation of governmental policy document

In educational matters, the earthquake and tsunami of February 27 meant that

2,095,671 students saw their schools damaged, delaying the start of their school year.

The disaster-affected area had 8,326, of which 6,168 suffered some kind of damage,

corresponding to 74 percent. Forty-eight percent of schools in the affected areas had

moderate, severe, or disabling damage.

Table A19: Table 19: Summary of Schools Affected by the Earthquake by Region

Region Number of Schools Enrollment
Valparáıso 997 289,724
O’Higgins 620 166,153
Maule 732 175,469
Biob́ıo 1,155 355,186
Araucańıa 423 97,056
Metropolitan 2,241 1,012,082
Total 6,168 2,095,670

To solve the problems caused by the earthquake, the Ministry of Education de-

veloped an Emergency and Reconstruction Plan organized in four stages: emergency,

stabilization, early reconstruction, and reconstruction, described as follows:
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Table A20: Stage, Deadlines, Description

Stage Deadlines Description
Emergency 27-02-10 to 26-04-10 Infrastructure habilitation for class com-

mencement. Within 45 days all students re-
turned to classes.

Stabilization 26-04-2010 to 26-07-11 Period of reconstruction aimed to stabilize
the school system, focusing on reassignment
or relocation of temporary facilities used dur-
ing the emergency period that could affect
students’ health, did not adequately per-
mit curricular activities (non-educational es-
tablishments), or cases where coexistence
of school communities sharing infrastructure
posed critical situations. Approximately 200
schools were detected in critical condi-
tions, assigning regional executives who sup-
ported local urgent needs according to estab-
lished criteria, and facilitating appropriate
solutions (modular classrooms, insulation of
temporary housing adapted during the emer-
gency, among others).

Early Reconstruction 27-02-10 to 27-02-11 Stage aimed at normalizing infrastructure
for the maximum number of students and
supporting municipal and subsidized private
schools to recover habitability and safety
conditions. For this, the Minor Repairs Plan
was launched in July, with around one thou-
sand schools applying and preparing a second
stage for late August, totaling 30 billion pe-
sos.

Reconstruction 27-02-10 to 26-02-14 The last stage aims to finalize repairs of mi-
nor and moderate damage and focus efforts
on severely damaged schools and replace-
ments, to finish the process before the 2014
school year begins. This Plan, benefiting
schools with severe damage, both mu-
nicipal and subsidized private, will launch in
September for 30 billion pesos. Additionally,
15 emblematic high schools will benefit this
year, with an estimated 35 billion pesos, for
infrastructure repair projects. They will be
selected through joint work between munic-
ipalities, Regional Ministerial Secretaries of
Education, and the community, using crite-
ria of high social and local recognition and
at least one thousand students.
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