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Abstract—We present a method for consistent nonparametric estimation
of a demand function with nonseparable unobserved taste heterogeneity
subject to the shape restriction implied by the Slutsky inequality. We use
the method to estimate gasoline demand in the United States. The results
reveal differences in behavior between heavy and moderate gasoline users.
They also reveal variation in the responsiveness of demand to plausible
changes in prices across the income distribution. We extend our estimation
method to permit endogeneity of prices. The empirical results illustrate the
improvements in finite-sample performance of a nonparametric estimator
from imposing shape restrictions based on economic theory.

I. Introduction

ALTHOUGH the microeconomic theory of consumer
choice provides shape restrictions on individual

demand behavior, it does not provide a finite-dimensional
parametric model of demand (see Mas-Colell, Whinston, &
Green, 1995). This motivates use of nonparametric methods
in the study of empirical demand behavior on microlevel
data (see Matzkin, 2007). However, conventional nonpara-
metric methods apply to conditional mean regressions and
will recover interpretable individual demand only when
unobserved heterogeneity is additively separable in the
regression model. Additive separability occurs under restric-
tive assumptions about preferences. As Brown and Walker
(1989) and Lewbel (2001) have shown, demand functions
generated from random utility functions do not typically
yield demand functions where the unobserved tastes are
additive.

The objective in this paper is to present an analysis of indi-
vidual demands and welfare, as well as the distribution of
these objects, for plausible changes in prices. For example,
in our application to gasoline demand, the approach detects
strong differences in behavior between heavy and moderate
gasoline users and reveals systematic idiosyncratic varia-
tion in demand and welfare costs for discrete price changes
across the income and taste distribution. The identification
and estimation of individual consumer demand models that
are consistent with unobserved taste variation require analyz-
ing demand models with nonadditive random terms. Matzkin
(2003, 2008) derives general identification results for models
that are nonseparable in unobserved heterogeneity in tastes.
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Under suitable restrictions, quantile estimation allows us to
recover demand at a specific point in the distribution of unob-
servables. This motivates our interest in a quantile estimator
and represents a significant development over work on esti-
mating average demands—for example, Blundell, Horowitz,
and Parey (2012).

We use a monotonicity assumption on scalar unobserved
heterogeneity to recover individual demands. Although we
provide a class of preferences that generate individual
demands with these properties, the scalar heterogeneity
assumption is restrictive but not testable empirically. Dette,
Hoderlein, and Neumeyer (2016) show that the quantile
demand function satisfies the Slutsky restriction even when
there is multidimensional heterogeneity. As Hausman and
Newey (forthcoming) note, when the quantile satisfies the
Slutsky condition and the budget constraint, there is a
demand model with scalar (uniform) heterogeneity that gives
the same conditional distribution of quantity given income
as the quantile. They refer to this model where the quan-
tile is the demand function as quantile demand. In the
absence of scalar heterogeneity, the quantile demands can no
longer be interpreted as individual demands, and the com-
plete distribution of counterfactual demands is no longer
identified.

To diminish concerns over the scalar heterogeneity
assumption, we restrict our empirical analysis of gasoline
demand to a group of relatively homogeneous households.
This approach is similar in spirit to that of Graham et al.
(2015), which also includes only a single dimension of
unobserved heterogeneity but reduces the strength of the
assumption by conditioning on all leads and lags of the
regressors. We further show that the consumer expenditure
function obtained under a possibly incorrect assumption of
univariate unobserved heterogeneity is a good approxima-
tion to the correct expenditure function based on multivariate
unobserved heterogeneity if the additional components of
unobserved heterogeneity are small.

We point out the benefits of imposing the Slutsky assump-
tion even in the multidimensional heterogeneity case as
a way of stabilizing the nonparametric estimator of the
quantile demand function. Without adding further structure,
nonparametric estimates of the demand function have the
drawback of being noisy due to random sampling errors. The
estimated function can be wiggly and nonmonotonic. Con-
sequently, predictions of individual demand can be erratic,
and some estimates of individual deadweight losses can have
signs that are noninterpretable within the usual consumer
choice model, even though true preferences may be well
behaved. One solution is to impose a parametric or semi-
parametric structure on the demand function. But there is no
guarantee that such a structure is correct, or approximately
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correct, and demand estimation using a misspecified model
can give seriously misleading results.

We impose the Slutsky restriction of consumer theory on
an otherwise fully nonparametric estimate of the nonsepara-
ble demand function. This yields well-behaved estimates of
the demand function but avoids arbitrary and possibly incor-
rect parametric or semiparametric restrictions. We show that
Slutsky constrained nonparametric estimates reveal features
of the demand function that are not present in simple para-
metric models. Where prices take only a few discrete values,
a related approach is to impose the Afriat revealed preference
inequalities (see Blundell, Kristensen, & Matzkin, 2014).
Our method is quite different, directly using the Slutsky
condition rather than the sequence of revealed preference
inequalities that obtain in the discrete price case.

We do not carry out inference based on the constrained
estimator. Under the assumption that the Slutsky restriction
is not binding in the population, the constrained and uncon-
strained estimators are equal with probability approaching
unity as the sample size increases, and the two estimators
have the same asymptotic distribution. Therefore, asymptotic
inference based on the constrained estimator is the same as
asymptotic inference based on the unconstrained estimator.
However, in finite-samples such as that in this paper, the two
estimators are different and have different sampling distri-
butions. Consequently, the relevant distribution for inference
based on the constrained estimator is the finite-sample dis-
tribution, not the asymptotic distribution. Chernozhukov,
Hansen, and Jansson (2009) have developed methods for car-
rying out finite-sample inference with unconstrained quantile
estimators. Finite-sample methods are not available for con-
strained estimators such as the one used here.1 We use the
bootstrap based on the unconstrained estimator to obtain
confidence bands for the demand function.

In terms of statistical precision, we expect the additional
structure provided by the shape restriction to improve the
finite-sample performance of our estimator, analogous to
the way sign restrictions in parametric models reduce the
mean squared error (MSE). Nonparametric estimation often
requires the choice of bandwidth parameters, such as kernel
bandwidths or number of knots for a spline. These parame-
ters are optimally chosen in a way that balances bias and
variance of the estimates. The use of shape restrictions,
reducing the variance of the estimates, modifies this trade-off
and therefore allows potentially for smaller optimal band-
width choices. Shape restrictions can therefore be thought of
as a substitute for bandwidth smoothing, helping to recover
the features of interest of the underlying relationship.

We provide a substantive illustration of the methods with
an application to the demand for gasoline in the United
States. Given the changes in the price of gasoline in recent
years and the role of taxation in the gasoline market,
understanding the elasticity of demand is of key policy

1 See Wolak (1991) on asymptotically valid hypothesis tests involving
inequality restrictions in nonlinear models.

interest. We pay particular attention to the question of how
demand behavior varies across the income distribution and
ask whether the welfare implications of price changes are
uniform across the income distribution. Using household-
level data from the 2001 National Household Travel Survey
(NHTS), complemented by travel diaries and odometer read-
ings, we find that constrained estimates are monotonic and
reveal features not easily found with parametric models. This
is an example where very simple parametric models impose
strong restrictions on the behavioral responses allowed for,
which may affect resulting policy conclusions.

Our work on the specification of gasoline demand relates
to a long-standing literature. Hausman and Newey (1995)
develop the nonparametric estimation of conditional mean
of gasoline demand. Schmalensee and Stoker (1999) fur-
ther consider the nonparametric demand curve for gasoline.
Yatchew and No (2001) estimate a partially linear model of
gasoline demand. Blundell et al. (2012) extend this work to
the nonparametric estimation of conditional mean demand
under the Slutsky inequality shape restriction and also con-
sider the possible endogeneity of the price variable. Hoder-
lein and Vanhems (2011) incorporate endogenous regressors
in a control function approach. The approach developed
here identifies and estimates the complete distribution of
individual demands in the nonseparable case, thereby relax-
ing the strong assumptions on unobserved heterogeneity
necessary to interpret the conditional mean regression. Haus-
man and Newey (2016) estimate certain features of average
behavior in a framework with multidimensional unobserved
heterogeneity.

The approach we take allows us to study differential
effects of price changes and welfare costs across the dis-
tribution of unobservables. For example, quantile estimation
allows us to compare the price and income responses of
heavy users with those of moderate or light users.2 We
show that there is systematically more responsive price
behavior among the middle-income consumers. This remains
true across consumers with different intensities of use. We
also estimate the deadweight loss of a tax by integrat-
ing under the demand function to obtain the expenditure
function. Some estimates of deadweight losses using uncon-
strained demand function are negative. This is unsurprising
given the nonmonotonicity of the unconstrained estimated
demand function. Our constrained estimates show that the
middle-income group has the largest loss.

The paper proceeds as follows. The next section devel-
ops our nonseparable model of demand behavior and the
restrictions required for a structural interpretation. Section
III presents our estimation method, where we describe the
nonparametric estimation method for both the unconstrained
estimates and those obtained under the Slutsky constraint.
We also present our procedure for quantile estimation under
endogeneity. In Section IV, we discuss the data we use in our

2 In the context of alcohol demand, for example, Manning, Blumberg, and
Moulton (1995) show that price responsiveness differs at different quantiles.
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investigation and present our empirical findings. We compare
the quantile demand estimates to those from a conditional
mean regression. The endogeneity of prices is considered in
section V, where we present the results of an exogeneity test
and our quantile instrumental variables procedure. Section
VI concludes.

II. Unobserved Heterogeneity and Demand Functions

The consumer model of interest in this paper is

W = g(P, Y , U), (1)

where W is demand (measured as budget share), P is price,
Y is income, and U represents (nonseparable) unobserved
heterogeneity. We impose two types of restrictions on this
demand function. The first set of restrictions addresses the
way unobserved heterogeneity enters demand and its rela-
tionship to price and income. In the second set are shape
restrictions from consumer choice theory.

In terms of the restrictions on unobserved heterogeneity,
we assume that demand g is monotone in the unobserved het-
erogeneity U. To ensure identification, for now we assume
that U is statistically independent of (P, Y). We relax this
assumption in section IIID. Given these assumptions, we
can also assume without loss of generality that U ∼ U[0; 1].
This allows recovery of the demand function for specific
types of households from the observed conditional quantiles
of demand: the α quantile of W , conditional on (P, Y), is

Qα(W |P, Y) = g(P, Y , α) ≡ Gα(P, Y). (2)

Thus, the underlying demand function, evaluated at a specific
value of the unobservable heterogeneity, can be recovered
via quantile estimation.

In contrast, the conditional mean is

E (W |P = p, Y = y) =
∫

g( p, y, u) fU(u) du

≡ m( p, y),

where fU(u) is the probability density function of U. Given
that we are interested in imposing shape restrictions based
on consumer theory, estimating the demand function at a
specific value of U = α using quantile methods is attractive
because economic theory informs us about g(·) rather than
m(·). It is possible, therefore, that m(·) does not satisfy the
restrictions even though each individual consumer does (see
also Lewbel, 2001).

To illustrate these points, we consider a class of pref-
erences that generate nonseparable demands that satisfy
monotonicity in unobserved heterogeneity. There are two
goods, q1 and numeraire q0. Suppose preferences have the
form

U(q1, q0, u) = v(q1, q0) + w(q1, u)

subject to p q1 + q0 ≤ y,
(3)

where we have normalized the price of q0 to unity. Matzkin
(2007) shows that provided the functions v and w are twice
continuously differentiable, strictly increasing and strictly
concave, and that ∂2w(q1, u)/∂q1∂u > 0, then the demand
function for q1 is invertible in u. Hence, the demand function
for q1 will satisfy the restrictions of consumer choice (the
Slutsky inequality in this case) for each value u. Similarly,
budget shares will be monotonic in u.

Under these assumptions, quantile demands will recover
individual demands and will satisfy Slutsky inequality
restrictions. However, apart from very special cases, nei-
ther demands nor budget shares will be additive in u.
Consequently, average demands will not recover individual
demands. For the nonseparable demand case, where there are
high-dimensional unobservables, Dette et al. (2016) show
that the Slutsky inequality holds for quantiles if individual
consumers satisfy Slutsky restrictions. This is a key result, as
it provides a more general motivation for Slutsky constrained
estimation of the kind developed in this paper. However, in
their framework, quantile demands do not identify individual
demand behavior. A central objective of our study is to esti-
mate the impact of plausible changes in prices on individual
demands and on individual welfare, as well the distribution
of these objects.

Hausman and Newey (2016) consider the case of multi-
dimensional unobserved heterogeneity; they show that in this
case, neither the demand function nor the dimension of het-
erogeneity is identified. They estimate quantile demands and
use bounds on the income effect to derive bounds for average
surplus. In online appendix A.3, we argue that the individ-
ual consumer expenditure function obtained under a possibly
incorrect assumption of univariate unobserved heterogeneity
is a good approximation to the correct expenditure function
based on multivariate unobserved heterogeneity if the addi-
tional components of unobserved heterogeneity are small. To
diminish the concerns over our scalar heterogeneity assump-
tion, in our empirical analysis we restrict the analysis to a
group of relatively homogeneous households.

In the context of scalar heterogeneity, Hoderlein and
Vanhems (2011) consider identification of welfare effects
and allow for endogenous regressors in a control function
approach. Hoderlein (2011) studies the testable implications
of negative semidefiniteness as well as symmetry of the
Slutsky matrix in a heterogeneous population. Hoderlein
and Stoye (2014) investigate how violations of the weak
axiom of revealed preference (WARP) can be detected in a
heterogeneous population based on repeated cross-sectional
data. Using copula methods, they relax the monotonicity
restriction and bound the fraction of the population violating
WARP.

We impose the Slutsky constraint by restricting the price
and income responses of the demand function g. Pref-
erence maximization implies that the Slutsky substitution
matrix is symmetric negative semidefinite (Mas-Colell et al.,
1995). Ensuring that our estimates satisfy this restriction
is, however, not only desirable because of the increase in
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precision from additional structure, it is also a necessary
restriction in order to be able to perform welfare analy-
sis. Welfare analysis requires knowledge of the underlying
preferences. The question under which conditions we can
recover the utility function from the observed Marshallian
demand function, referred to as the integrability problem,
has therefore been of long-standing interest in the analysis
of consumer behavior (Hurwicz & Uzawa, 1971). A demand
function that satisfies adding up, homogeneity of degree 0,
and a symmetric negative semidefinite Slutsky matrix allows
recovery of preferences (Deaton & Muellbauer, 1980). As
Deaton and Muellbauer (1980) emphasize, these character-
istics also represent the only structure that is implied by
utility maximization. Slutsky negative semidefiniteness is
therefore critical for policy analysis of changes in the prices
consumers face. In the context of the two good model con-
sidered here, these integrability conditions are represented
through the negative compensated price elasticity of gasoline
demand.3

In previous work, household demographics or other
household characteristics have been found to be rele-
vant determinants of transport demand. One possibility of
accounting for these characteristics would be to incorporate
them in a semiparametric specification. However, in order
to maintain the fully nonparametric nature of the model, we
instead condition on a set of key demographics in our analy-
sis.4 Thus, we address the dimension-reduction problem by
conditioning on a particular set of covariates. This exploits
the fact that the relevant household characteristics are all dis-
crete in our application. We then estimate our nonparametric
specification on this sample, which is quite homogeneous in
terms of household demographics.

Note finally that prices could be endogenous in the
demand function (2). We later relax the assumption of inde-
pendence between U and the price P, test for endogeneity
following the cost-shifter approach in Blundell et al. (2012),
and present instrumental variables estimates. Imbens and
Newey (2009) define the quantile structural function (QSF)
as the α-quantile of demand g( p, y, U), for fixed p and y;
under endogeneity of prices, the QSF will be different from
the α-quantile of g(P, Y , U), conditional on P = p and
Y = y.

III. Nonparametric Estimation

A. Unconstrained Nonparametric Estimation

From equation (2), we can write

W = Gα(P, Y) + Vα; P(Vα ≤ 0 | P, Y) = α, (4)

3 See Lewbel (1995) and Haag, Hoderlein, and Pendakur (2009) on testing
and imposing Slutsky symmetry. The quantile approach we adopt for iden-
tifying individual demand and welfare counterfactuals applies only to the
scalar heterogeneity two-good case examined in this paper. The treatment
of multiple goods is a topic for future research.

4 These characteristics include household composition and life cycle stage
of the household, race of the survey respondent, and the urban-rural location
of the household. We describe these selection criteria in detail in section
IVA.

where Vα is a random variable whose α quantile conditional
on (P, Y) is 0. We estimate Gα using a truncated B-spline
approximation with truncation points M1 and M2 chosen by
cross-validation.5 Thus,

Gα(P, Y) =
M1∑

m1=1

M2∑
m2=1

cm1,m2; α Bp
m1

(P)By
m2

(Y),

where Bp and By (with indices m1 and m2) are spline
functions following Powell (1981)6 and cm1,m2; α is the
finite-dimensional matrix of coefficients.

We denote the data by {Wi, Pi, Yi : i = 1, . . . , n}. The
estimator is defined in the following optimization problem,

min{cm1,m2; α}

n∑
i=1

ρα (Wi − Gα(Pi, Yi)) , (5)

where ρα (V) = (α − 1 [V < 0]) V is the check function.

B. Estimation Subject to the Slutsky Inequality

One contribution of this paper is to provide estimates of
the quantile demand function subject to the Slutsky inequal-
ity restriction. As Dette et al. (2016) have shown, even in
the presence of multidimensional unobserved heterogeneity,
the Slutsky condition will hold at each quantile provided
it holds for every individual in the sample. Our estima-
tion results show that the Slutsky restriction considerably
improves the properties of the estimated quantile demand
function, removing the wiggly behavior of the nonparametric
estimator. Under the assumption of scalar heterogeneity, the
Slutsky constrained quantile demand function further iden-
tifies the individual demand function, allowing us to recover
the impact of changes in prices on the distribution of indi-
vidual demands and the distribution of individual welfare
measures.

The Slutsky condition is imposed on the nonparametric
estimate of the conditional quantile function. Writing this
condition in terms of shares and taking price and income to
be measured in logs7 gives

∂ĜC
α (P, Y)

∂p
+ ĜC

α (P, Y)
∂ĜC

α (P, Y)

∂y

≤ ĜC
α (P, Y)

(
1 − ĜC

α (P, Y)
)

, (6)

where the superscript C indicates that the estimator is
constrained by the Slutsky condition.

5 See section IVA for details on the cross-validation procedure.
6 See Powell (1981, equation 19.25).
7 Denoting Q = HC

α (P, Y) as the Marshallian demand function for the
good in question, Slutsky negativity requires

∂HC
α (P, Y)

∂P
+ ∂HC

α (P, Y)

∂Y
GC

α (P, Y) ≤ 0.

Using the definition of the share and substituting leads to equation (6). See
also Deaton and Muellbauer (1980) for a similar share specification in the
context of the Almost Ideal Demand System.
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The Slutsky constrained estimator is obtained by solv-
ing the problem, equation (5), subject to equation (6), for
all (P, Y). This problem has uncountably many constraints.
We replace the continuum of constraints by a discrete set,
thereby solving:

min{cm1,m2; α}

n∑
i=1

ρα

(
Wi − ĜC

α (Pi, Yi)
)

,

subject to

∂ĜC
α ( pj, yj)

∂p
+ ĜC

α ( pj, yj)
∂ĜC

α ( pj, yj)

∂y

≤ ĜC
α ( pj, yj)

(
1 − ĜC

α ( pj, yj)
)

, j = 1, . . . , J ,

where {pj, yj : j = 1, . . . , J} is a grid of points. To implement
this, we use a standard optimization routine from the NAG
library (E04UC). In the objective function, we use a check
function that is locally smoothed in a small neighborhood
around 0 (Chen, 2007). We show that the resulting demand
figures are not sensitive to a range of alternative values of
the corresponding smoothing parameter. For imposing the
constraints, we choose a fine grid of points along the price
dimension at each of the fifteen income category midpoints.

No method currently exists for carrying out inference
based on the Slutsky restricted estimator. Therefore, we use
the bootstrap based on the unconstrained estimator to obtain
confidence bands for the demand function. Asymptotically,
these bands satisfy the Slutsky restriction if it does not bind
in the population. If the Slutsky restriction is binding in the
population or the sample, then the bands based on the uncon-
strained estimator are at least as wide as bands based on the
restricted estimator would be if methods for obtaining such
bands were available. This is because the Slutsky restric-
tion reduces the size of the feasible region for estimation.
Regions within the unconstrained confidence band for which
the restriction is violated are excluded from a confidence
band based on the restricted estimator.

To investigate the gain in precision from imposing the
shape restriction, we have conducted a simulation study. In
this exercise, we draw simulated data in a setting similar
to our empirical application. For each simulation draw, we
estimate both the constrained and the unconstrained demand
function. To compare the variability of these two sets of
estimates, we compute confidence intervals across the sim-
ulation runs. We summarize the findings from this exercise
below.

C. Individual Welfare Measures

The estimates of the Slutsky constrained demand function
can be used to recover the distribution of individual welfare
measures, including deadweight loss (DWL). For this pur-
pose, we consider a hypothetical discrete tax change that
moves the price from p0 to p1. Let e( p) denote the expendi-
ture function at price p and some reference utility level. The
DWL of this price change is given by

L( p0, p1) = e( p1) − e( p0) − ( p1 − p0) Hα

[
p1, e( p1)

]
,

where Hα( p, y) is the Marshallian demand function.
L( p0, p1) is computed by replacing e and H with consistent
estimates. The estimator of e, ê, is obtained by numerical
solution of the differential equation,

dê(t)

dt
= Ĥα

[
p(t), ê(t)

] dp(t)

dt
,

where
[
p(t), ê(t)

]
(0 ≤ t ≤ 1) is a price-(estimated)

expenditure path.
Notice that our focus here is on discrete changes in prices.

If one is interested in the impact of marginal changes in
prices on average welfare measures (see Chetty, 2009, for
example), then local derivatives of average behavior and
weaker conditions on unobserved heterogeneity may be
sufficient, although as Hausman and Newey (2016) show,
nonlinearities in income lead to the average surplus for quan-
tile demand being different from average surplus for the true
demand.

D. Quantile Instrumental Variable Estimation

To recognize potential endogeneity of prices, we introduce
a cost-shifter instrument Z for prices. In the application, this
is a distance measure to a Gulf supply refinery to reflect
transport costs. Consider again equation (4), where now we
impose the quantile restriction conditional on the distance
instrument (and household income):

W = Gα(P, Y) + Vα; P(Vα ≤ 0 | Z , Y) = α.

The identifying relation can be written as

P(W − Gα(P, Y) ≤ 0 | Z , Y) = α.

Let fZ ,Y be the probability density function of (Z , Y). Then
we have∫

Z≤z,Y≤y
P(W − Gα(P, Y) ≤ 0|Z , Y) fZ ,Y (Z , Y) dZ dY

= αP(Z ≤ z, Y ≤ y)

for all (z, y). An empirical analog is

n−1
n∑

i=1

1 [Wi − Gα(Pi, Yi) ≤ 0] 1
[
Zi ≤ z, Yi ≤ y

]

= α

n

n∑
i=1

1
[
Zi ≤ z, Yi ≤ y

]
.

Define

Qn(Gα, z, y) = n−1
n∑

i=1

{1 [Wi − Gα(Pi, Yi) ≤ 0] − α}

× 1
[
Zi ≤ z, Yi ≤ y

]
. (7)
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Estimate Gα by solving

min
GαεHn

∫
Qn(Gα, z, y)2 dz dy,

where Hn is the finite-dimensional space consisting of
truncated series approximations and includes the shape
restriction when we impose it.

E. A Test of Exogeneity

Building on the work for the conditional mean case in
Blundell and Horowitz (2007), we follow Fu, Horowitz, and
Parey (2015) and develop a nonparametric exogeneity test
in a quantile setting. As with Blundell and Horowitz (2007),
this approach does not require an instrumental variables esti-
mate and instead tests the exogeneity hypothesis directly. By
avoiding the ill-posed inverse problem, it is likely to have
substantially better power properties than alternative tests.

We require a test of the hypothesis that an explanatory
variable P in a quantile regression model is exogenous
against the alternative that P is not exogenous.

The object of interest is the unknown function Gα that is
identified by

W = Gα(P, Y) + Vα

and

P(Vα ≤ 0 | Y = y, Z = z) = α

for almost every (y, z) ∈ supp(Y , Z), where W , P, Y , and Z
are observable, continuously distributed random variables; Z
is an instrument for P; Vα is an unobservable continuously
distributed random variable; and α is a constant satisfying
0 < α < 1. Equivalently, Gα is the solution to

P
[
W − Gα(P, Y) ≤ 0 | Y = y, Z = z

] = α

for almost every (y, z) ∈ supp(Y , Z). Now consider the
unknown function Kα that is identified by

W = Kα(P, Y) + Vα

and

P(Vα ≤ 0 | P = p, Y = y) = α.

The null hypothesis to be tested is8

H0 : K( p, y) = G( p, y)

for almost every ( p, y) ∈ supp(P, Y). The alternative
hypothesis is

H1 : P [K(P, Y) �= G(P, Y)] > 0.

8 To simplify the notation, we drop the α subscript from Gα and Kα in the
remainder of this section.

K can be estimated consistently by nonparametric quantile
regression, and G can be estimated consistently by nonpara-
metric instrumental variables quantile regression. Denote the
estimators of K and G by K̂ and Ĝ, respectively. H0 can be
tested by determining whether the difference between K̂ and
Ĝ in some metric is larger than can be explained by random
sampling error. H0 is rejected if the difference is too large.
However, this approach to testing H0 is unattractive because
estimation of G is an ill-posed inverse problem. The rate of
convergence of Ĝ to G is unavoidably slow, and the resulting
test has low power.

However, as in Blundell and Horowitz (2007), estimation
of G and the ill-posed inverse problem can be avoided by
observing that under H0,

P
[
W − K(P, Y) ≤ 0 | Y = y, Z = z

] = α. (8)

Equation (8) can then be used to obtain a test statistic for H0.
More details on the derivation, properties, and computation
of the test statistic are given in online appendix A.1.

IV. Estimation Results

A. Data

The data are from the 2001 National Household Travel
Survey (NHTS), which surveys the civilian noninstitution-
alized population in the United States. This is a household-
level survey conducted by telephone and complemented by
travel diaries and odometer readings.9 We select the sample
to minimize heterogeneity as follows. We restrict the analysis
to households with a white respondent, two or more adults,
at least one child under age 16, and at least one driver. We
drop households in the most rural areas, given the relevance
of farming activities in these areas.10 We also restrict atten-
tion to localities where the state of residence is known and
omit households in Hawaii due to its different geographic sit-
uation compared to the continental states. Households where
key variables are not reported are excluded, and we restrict
attention to gasoline-based vehicles (rather than diesel, natu-
ral gas, or electricity), requiring gasoline demand of at least
1 gallon; we also drop one observation where the reported
gasoline share is larger than 1. We take vehicle ownership
as given and do not investigate how changes in gasoline
prices affect vehicle purchases or ownership. The results by
Bento et al. (2009) indicate that price changes operate mainly
through vehicle miles traveled rather than fleet composition;
they find that more than 95% of the reduction in gasoline
consumption in response to an increase in gasoline tax is
due to a reduction in vehicle miles traveled.

The resulting sample contains 3,640 observations. The key
variables of interest are gasoline demand, price of gasoline,
and household income. Corresponding sample descriptives

9 See ORNL (2004) for further detail on the survey.
10 These are households in rural localities according to the Claritas urban-

ization index, indicating a locality in the lowest quintile in terms of
population density (ORNL, 2004, appendix Q).
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Table 1.—Sample Descriptives

Mean SD

Log gasoline demand 7.127 0.646
Log price 0.286 0.057
Log income 11.054 0.580
Observations 3,640

See text for details.

Table 2.—Cross-Validation Results

Quantile
Number Interior Knots

(α) Price Income

A. Base Case

0.25 1 3
0.50 4 3
0.75 3 3

B. Leaving Out Largest Ten
and Lowest Ten Share Observations

0.25 1 3
0.50 4 4
0.75 1 3

The table shows cross-validation results by quantile.

are reported in table 1; further details on these variables can
be found in Blundell et al. (2012).11

The nonparametric estimates are shown for the three
income groups whose midpoints in 2001 dollars are $42,500,
$57,500, and $72,500. These income levels are chosen to
compare the behavior of lower-, middle-, and upper-income
households.12

We use cubic B-splines for our nonparametric analy-
sis.13 For each quantile of interest, the number of knots
is obtained by cross-validation, separately for each quan-
tile.14 The resulting number of (interior) knots is shown in
panel A of table 2. In particular, at the median, the pro-
cedure indicates four interior knots in the price dimension
and three knots in the income dimension. Across the quar-
tiles, we obtain the same number of knots in the income
dimension, while in the price dimension, the cross-validation
procedure indicates a more restrictive B-spline for the first
quartile (α = 0.25).

11 In the nonparametric analysis below, we impose two additional restric-
tions to avoid low-density areas in the data. For this purpose, we restrict
attention to households with 2001 household income of at least $15,000,
facing a price of at least $1.20.

12 These three income points occupy the 19.1–22.8th, 34.2–42.3th, and
51.7–55.9th percentiles of the income distribution in our data (see table 1).

13 In the income dimension, we place the knots at equally spaced per-
centiles of a normal distribution, where we have estimated the corresponding
mean and variance in our data. In the (log) price dimension, we space the
knots linearly.

14 This allows for different number of knots by quantile. Following
equation (1), we use the budget share as the dependent variable in the cross-
validation. Given that our analysis focuses on the demand behavior for the
three income levels of interest, we evaluate the cross-validation function
only for observations that are not too far from these income points and use
0.5 (in the log income dimension) as our cutoff. The objective function in
our cross-validation reflects the corresponding sum of the check function
evaluated at the residual from the leave-one-out quantile regression.

Table 3.—Log-Log Model Estimates

α = 0.25 α = 0.50 α = 0.75 OLS
(1) (2) (3) (4)

log( p) −1.00 −0.72 −0.60 −0.83
[0.22] [0.19] [0.22] [0.18]

log( y) 0.41 0.33 0.23 0.34
[0.02] [0.02] [0.02] [0.02]

Constant 2.58 3.74 5.15 3.62
[0.25] [0.21] [0.25] [0.20]

N 3,640 3,640 3,640 3,640

The dependent variable is log gasoline demand. See the text for details.

In the subsequent analysis, we follow these knot choices
for both the unconstrained and the constrained quantile esti-
mates under exogeneity. We have also investigated whether
this cross-validation outcome is sensitive to outliers in the
share variable. For this purpose, we have repeated the cross-
validation procedure, leaving out the ten highest and the ten
lowest gasoline budget share observations. The results are
reported in panel A of table 2, suggesting that overall, the
number of knots is not very sensitive to this exercise.

B. Implications for the Pattern of Demand

Parametric benchmark specifications using linear quantile
estimates can be found in table 3, where we regress log
quantity on log price and log income:

log Q = β0 + β1 log P + β2 log Y + U; Qα(U|P, Y) = 0.

For comparison we also report estimates obtained using an
OLS estimator (see column 4). These indicate a price elas-
ticity of −0.83 and an income elasticity of 0.34. These are
similar to those reported by others (see Hausman & Newey,
1995; Schmalensee & Stoker, 1999; West, 2004; Yatchew &
No, 2001).

The quantile regression estimates are reported in columns
1 to 3, revealing plausible and interesting patterns in the
elasticities across quantiles. At lower quantiles, the estimated
price elasticity is much higher (in absolute values) than at
higher quantiles.15 Similarly, the estimated income elasticity
declines strongly as we move from the first quartile to the
median and from the median to the third quartile. Thus, low-
intensity users appear to be substantially more sensitive in
their demand responses to price and income variation than
high-intensity users.

A natural question is whether this benchmark specification
is appropriately specified. To investigate this, we perform
the specification test for the linear quantile regression model
developed in Horowitz and Spokoiny (2002).16 The results
are reported in table 4. We clearly reject our baseline spec-
ification at a 5% level. This holds whether we measure our
dependent variable as log quantity or as gasoline budget
share.

15 A similar pattern is reported in Frondel, Ritter, and Vance (2012) using
travel diary data for Germany.

16 See Zheng (1998) and Escanciano and Goh (2014) for alternative
nonparametric tests of a parametric quantile regression model.
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Table 4.—Specification Test

Critical Value

Dependent Test 0.05 0.01
Variable Statistic Level Level p-Value Reject?

Gasoline share 2.52 1.88 2.69 0.0120 Yes
Log quantity 2.71 1.82 2.43 0.0020 Yes

The test implements Horowitz and Spokoiny (2002) for the median case. The first row reports the test
results for gasoline demand measured as budget share and the second row for log quantity. Under the null
hypothesis, the model is linear in log price and log income. See the text for details.

We have also augmented the specification reported in table
3 with squares and cubes of price and income and found these
to be significant. This suggests that the parametric bench-
mark model may be misspecified. We therefore now proceed
to the nonparametric analysis.

Figure 1 shows the nonparametric estimates, where we
provide the log of demand (measured in gallons per year)
implied by our estimates of equation (5). Each panel corre-
sponds to a particular point in the income distribution. The
line shown with open markers represents the unconstrained
estimates, together with the corresponding bootstrapped con-
fidence intervals (solid lines). We also use these intervals
for the constrained estimator. In the next paragraph, we
use the confidence bands to support our claim that non-
monotonicity of the unconstrained estimates is caused by
random sampling errors whose effects are reduced by use of
the constrained estimator. In panel b for the middle-income
level, for example, the unconstrained estimates show overall
a downward-sloping trend, but there are several instances
where the estimated demand is upward-sloping. A simi-
lar pattern is also found in Hausman and Newey (1995).
Although here we plot the Marshallian demand estimate,
these instances of upward sloping demand also point to vio-
lations of the Slutsky negativity when we compensate the
household for an increase in prices. The line shown as filled
markers represents the estimate constrained by the Slutsky
shape restriction.17 By design, the constrained estimates are
consistent with economic theory.

The constrained and unconstrained estimates are both
well contained in a 90% confidence band based on the
unconstrained estimates. This pattern is consistent with our
interpretation of the nonmonotonicity of the unconstrained
estimates as the consequence of random sampling errors
whose effects are diminished by imposition of the Slutsky
restriction. At the same time, the constrained estimates show
that imposing the shape constraint can also be thought of
as providing additional smoothing. Focusing on the con-
strained estimates, we compare the price sensitivity across
the three income groups. The middle-income group appears
to be more price sensitive than either the upper- or the
lower-income group.18

17 In appendix figure A.1, we show that the resulting demand figures are
not sensitive to a range of alternative values of the smoothing parameter
discussed in section IIIB.

18 This is a pattern also noted in Blundell et al. (2012).

Figure 1.—Quantile Regression Estimates: Constrained versus

Unconstrained Estimates

The figure shows unconstrained nonparametric quantile demand estimates (open markers) and con-
strained nonparametric demand estimates (filled markers) at different points in the income distribution
for the median (α = 0.5), together with simultaneous confidence intervals. Income groups correspond to
$72,500, $57,500, and $42,500. Confidence intervals shown refer to bootstrapped symmetrical, simulta-
neous confidence intervals with a confidence level of 90%, based on 4,999 replications. See the text for
details.
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In appendix A.2 we present the results from a simula-
tion exercise in which we repeatedly estimate constrained
and unconstrained estimates in simulated data modeled on
our empirical application. As a true data-generating func-
tion, we take the constrained estimate reported in our main
results. We then compute (joint) confidence intervals across
simulation draws for the unconstrained and the constrained
estimates, respectively. We find that imposing the constraint
substantially narrows the confidence bands. For example,
for the middle-income group, we find that the width of
the constrained intervals is about 63% of the unconstrained
intervals (averaging over the price range). For the higher-
and the lower-income group, this ratio is 47% and 55%,
respectively. (This is consistent with the finding that the
middle-income group is more price sensitive, with the con-
straint therefore having less effect for this income group.)
Overall, this simulation evidence suggests that in applica-
tions similar to ours the gain in precision from imposing the
shape constraint can be substantial. The results also support
our argument that the unconstrained confidence intervals
are conservative relative to those taking the constraint into
account.

C. Comparison across Quantiles and the Conditional
Mean Estimates

Figure 2 compares the quantile estimates across the three
quartiles, holding income constant at the middle-income
group. In the unconstrained estimates, the differences in
flexibility (corresponding to the cross-validated number of
knots in the price dimension) are clearly visible. The con-
strained estimates, however, are quite similar in shape,
suggesting that they may approximately be parallel shifts
of each other. This would be consistent with a location-
scale model, together with conditional homoskedasticity
(Koenker, 2005). Under this model, conditional mean esti-
mates would show the same shape as seen in the conditional
quartile results, and we turn to this comparison in the
following.

As noted in the section I, we have previously investi-
gated gasoline demand, focusing on the conditional mean
(Blundell et al., 2012). That analysis used a kernel regres-
sion method in which the shape restriction is imposed by
reweighting the data in an approach building on Hall and
Huang (2001). As in the quantile demand results, here we
found strong evidence of differential price responsiveness
across the income distribution, suggesting a stronger price
responsiveness in the middle-income group. Figure 3 shows
the conditional mean regression estimates, where we use the
same B-spline basis functions as in the quantile results pre-
sented above (see figure 1). The shape of these two sets
of estimates is remarkably similar, especially for the con-
strained estimates; in terms of levels, the mean estimates are
somewhat higher than the median estimates (by around 0.1
on the log scale).

Figure 2.—Quantile Regression Estimates: Constrained versus

Unconstrained Estimates (Middle-Income Group)

The figure shows unconstrained nonparametric quantile demand estimates (filled markers) and con-
strained nonparametric demand estimates (filled markers) at the quartiles for the middle-income group
($57,500), together with simultaneous confidence intervals. The confidence intervals shown refer to boot-
strapped symmetrical, simultaneous confidence intervals with a confidence level of 90%, based on 4,999
replications. See the text for details.



300 THE REVIEW OF ECONOMICS AND STATISTICS

Figure 3.—Mean Regression Estimates: Constrained versus

Unconstrained Estimates

The figure shows unconstrained nonparametric mean regression demand estimates (filled markers) and
constrained nonparametric demand estimates (filled markers) at different points in the income distribution,
together with simultaneous confidence intervals. Income groups correspond to $72,500, $57,500, and
$42,500. Confidence intervals shown refer to bootstrapped symmetrical, simultaneous confidence intervals
with a confidence level of 90%, based on 4,999 replications. See the text for details.

D. The Measurement of Individual Welfare Distribution

The Slutsky constrained demand function estimates can
be used for welfare analysis of changes in prices. For this
purpose, we consider a change in price from the 5th to the
95th percentile in our sample for the nonparametric analysis,
and we report deadweight loss (DWL) measures correspond-
ing to this price change. Table 5 shows the DWL estimates
for the three quartiles of unobserved heterogeneity and three
income groups. In the constrained estimates, we find that the
middle-income group has the highest DWL at all quartiles.
This is consistent with the graphical evidence presented in
figure 1. The table also shows the DWL estimates implied
by the parametric estimates corresponding to a linear spec-
ification. The uniform patterns in the corresponding DWL
figures (within each quantile) reflect the strong assumptions
underlying these functional forms, which have direct con-
sequences for the way DWL measures vary across these
subgroups in the population.

There are two instances (both for the lower-income
group) where the unconstrained DWL shows the wrong sign.
This underscores that DWL analysis is meaningful only if
the underlying estimates satisfy the required properties of
consumer demand behavior.

One feature of the estimates in table 5 is the variation
in DWL seen across different quantiles. More generally, we
can ask how DWL is distributed over the entire population
of types. Such an analysis is presented in figure 4. In this
figure we show for each income group the density of DWL
across the range of quantiles (from α = 0.05 to α = 0.95),
comparing unconstrained and constrained estimates.

V. Price Endogeneity

So far we have maintained the assumption of exogene-
ity on prices. There are many reasons that prices vary at the
local market level. These include cost differences on the sup-
ply side, short-run supply shocks, local competition, as well
as taxes and government regulation (EIA, 2010). However,
one may be concerned that prices may also reflect prefer-
ences of the consumers in the locality, so that prices faced
by consumers may potentially be correlated with unobserved
determinants of gasoline demand.

To address this concern, we follow Blundell et al. (2012)
and use a cost-shifter approach to identify the demand func-
tion. An important determinant of prices is the cost of
transporting the fuel from the supply source. The U.S. Gulf
Coast region accounts for the majority of total U.S. refin-
ery net production of finished motor gasoline and for almost
two-thirds of U.S. crude oil imports. It is also the starting
point for most major gasoline pipelines. We therefore expect
that transportation cost increases with distance to the Gulf
of Mexico and implement this with the distance between
one of the major oil platforms in the Gulf of Mexico and
the state capital (see Blundell et al., 2012, for further details
and references). Figure 5 shows the systematic and positive
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Table 5.—DWL Estimates

Unconstrained Constrained Linear Quantile Estimates

Income DWL DWL/Tax DWL/Incomea DWL DWL/Tax DWL/Incomea DWL DWL/Tax DWL/Incomea

Lower quartile (α = 0.25)
72,500 11.76 5.72% 1.62 12.74 6.21% 1.76 13.89 7.12% 1.92
57,500 33.24 20.01% 5.78 29.18 17.54% 5.08 12.88 7.24% 2.24
42,500 −15.40 −8.91% −3.62 0.85 0.54% 0.20 11.30 7.35% 2.66

Median (α = 0.50)
72,500 49.64 17.30% 6.85 16.32 5.81% 2.25 20.33 7.26% 2.80
57,500 5.86 2.20% 1.02 30.20 12.30% 5.25 19.06 7.36% 3.32
42,500 12.81 5.87% 3.01 18.57 8.56% 4.37 16.90 7.45% 3.98

Upper quartile (α = 0.75)
72,500 23.07 5.71% 3.18 20.64 5.07% 2.85 19.29 4.76% 2.66
57,500 15.98 4.35% 2.78 39.40 11.42% 6.85 19.77 5.22% 3.44
42,500 −43.60 −11.25% −10.26 1.17 0.35% 0.28 18.86 5.63% 4.44

The table shows DWL estimates, corresponding to a change in prices from the 5th to the 95th percentile, that is from $1.225 to $1.436. For comparability, all three sets of estimates are based on the sample for the
nonparametric analysis and use budget share as dependent variable.

aDWL per income figures are rescaled by factor 104 for better readibility.

relationship between log price and distance (in 1,000 km) at
state level.

In the following, we first present evidence from a nonpara-
metric exogeneity test. We then estimate a nonparametric
quantile IV specification, incorporating the shape restriction.

A. Exogeneity Test

We use the nonparametric exogeneity test for the quan-
tile setting discussed earlier. To simplify the computation,
we focus on the univariate version of the test here. For this
purpose, we split the overall sample according to household
income and then run the test for each household income
group separately.19 We select income groups to broadly
correspond to our three reference income levels in the
quantile estimation; we select a low-income group of house-
holds (household income between $35,000 and $50,000),
a middle-income group of households (household income
between $50,000 and $65,000), and an upper-income group
of households (household income between $65,000 and
$80,000). Given that we perform the test three times (for
these three income groups), we can adjust the size for a
joint 0.05 level test. Given the independence of the three
income samples, the adjusted p-value for a joint 0.05 level
test of exogeneity, at each of the three income groups, is
1 − (0.95)(1/3) = 0.01695.

Table 6 shows the test results, where column 1 presents
our baseline estimates and columns 2 and 3 show a sensitiv-
ity with respect to the bandwidth parameter choice required
for the kernel density estimation. For the median case, the
p-values are above 0.1 throughout, and thus there is no
evidence of a violation of exogeneity at the median. The
evidence for the first quartile is similar. The only instance of
a borderline p-value is for the lower-income group for the
upper quartile, with a baseline p-value of 0.041, which is

19 The test makes use of the vector of residuals from the quantile model
under the null hypothesis. Although we implement the test separately for
three income groups, we turn to the residuals from the bivariate model
using all observations, so that these residuals correspond to the main
(unconstrained) specification of interest (see, e.g., figure 1).

still above the adjusted cutoff value for a test 0.05 level test.
Overall, we interpret this evidence as suggesting that we do
not find strong evidence of endogeneity in this application.
This finding is also consistent with our earlier analysis focus-
ing on the conditional mean (see Blundell et al., 2012). In
order to allow a comparison, we nonetheless present quantile
IV estimates in the following section.

B. Quantile Instrumental Variable Estimates

Figure 6 presents our quantile IV estimates of demand
under the shape restriction. These estimates are shown
as filled markers and compared with our earlier shape-
constrained estimates assuming exogeneity of prices (see
figure 1), shown as open markers.20 Overall, the shape of
the IV estimates is quite similar to those obtained under the
assumption of exogeneity. This is consistent with the evi-
dence from the exogeneity test presented above. As before,
the comparison across income groups suggests that the
middle-income group is more elastic than the two other
income groups, in particular over the lower part of the price
range.

VI. Conclusion

The paper has made a number of contributions. We have
presented a quantile estimator that incorporates shape restric-
tions. We have developed a new estimator for the case
of quantile estimation under endogeneity. We have applied
these methods in the context of individual gasoline demand
with nonseparable unobserved heterogeneity. The nonpara-
metric estimate of the demand function was found to be noisy

20 To simplify the computation of the IV estimates, we set the number
of interior knots for the cubic splines to two in both the income and the
price dimension here and impose the Slutsky constraint at five points in the
income dimension ($37,500, $42,500, $57,500, $72,500, and $77,500). We
use the NAG routine E04US, together with a multistart procedure, to solve
the global minimization problem. The resulting demand function estimates
do not appear sensitive to specific starting values. In the implementation of
the objective function (see equation [7]), we smooth the indicator function
corresponding to the term 1 [Wi − Gα(Pi, Yi) ≤ 0] in the neighborhood of
0 using a gaussian kernel.
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Figure 4.—Distribution of DWL, Constrained versus Unconstrained

The graphs show density estimates for the distribution of DWL estimates. Based on estimates for the
5th to the 95th percentile (α = 0.05 to 0.95 in steps of 0.005). Density estimates computed using an
Epanechnikov kernel. Since DWL is nonnegative in the constrained case, density is renormalized in the
boundary area (Jones, 1993). Estimates computed using the same knot choice throughout as cross-validated
for the median.

due to random sampling errors. The estimated function is
nonmonotonic, and there are instances where the estimate,
taken at face value, is inconsistent with economic theory.
When we imposed the Slutsky restriction of consumer theory

Figure 5.—Instrument Variable for Price: Distance to the

Gulf of Mexico

Source: BHP (2012, figure 5).

Table 6.—Exogeneity Test ( p-values)

Base
Bandwidth Sensitivity

Income Case Factor 0.8 Factor 1.25
Range (1) (2) (3)

First quartile Low 0.343 0.284 0.452
(α = 0.25) Middle 0.209 0.197 0.192

High 0.313 0.256 0.372

Median Low 0.261 0.179 0.341
(α = 0.50) Middle 0.137 0.170 0.118

High 0.754 0.709 0.814

Third quartile Low 0.041 0.055 0.029
(α = 0.75) Middle 0.624 0.748 0.503

High 0.402 0.467 0.377

The table shows p-values for the exogeneity test from Fu et al. (2015). The endogenous variable is price,
instrumented with distance. We run separate tests for three income groups. For this test, these groups are
defined as follows: “low” is income between $35,000 and $50,000; “middle” is $50,000 to $65,000; “high”
is $65,000 to $80,000. The specification we test is the unconstrained nonparametric quantile estimate as
shown, for example, in figure 1 for the median. In implementing this test, required bandwidth choices for
the kernel density estimates use Silverman’s rule of thumb. Columns 2 and 3 vary all bandwidth inputs by
the indicated factor.

on the demand function, our approach yielded well-behaved
estimates of the demand function and welfare costs across
the income and taste distribution. Comparing across income
groups and quantiles, our work allowed us to document dif-
ferences in demand behavior across both observables and
unobservables.

Two observations were the starting point for our analysis.
First, when there is heterogeneity in terms of usage intensity,
the patterns of demand may potentially be quite different
at different points in the distribution of the unobservable
heterogeneity. Under suitable exogeneity assumptions and
a monotonicity restriction, quantile methods allow us to
recover the demand function at different points in the
distribution of unobservables. This allows us to estimate
demand functions for specific types of individuals rather than
averaging across different types of consumers.

Second, we want to be able to allow a flexible effect of
price and income on household demand and, in particular,
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Figure 6.—Quantile Regression Estimates under the Shape Restriction:

IV Estimates versus Estimates Assuming Exogeneity

The figure shows constrained nonparametric IV quantile demand estimates (filled markers) and con-
strained quantile demand estimates under exogeneity (open markers) at different points in the income
distribution for the median (α = 0.5), together with simultaneous confidence intervals. Income groups cor-
respond to $72,500, $57,500, and $42,500. Confidence intervals shown correspond to the unconstrained
quantile estimates under exogeneity as in figure 1. See the text for details.

allow price responses to differ by income level. Nonpara-
metric estimates eliminate the risk of specification error but
can be poorly behaved due to random sampling errors. Fully
nonparametric demand estimates can be nonmonotonic and
may violate consumer theory. In contrast, a researcher choos-
ing a tightly specified model is able to precisely estimate
the parameter vector; however, simple parametric models
of demand functions can be misspecified and, consequently,
yield misleading estimates of price sensitivity and DWL. We
argue that in the context of demand estimation, this appar-
ent trade-off can be overcome by constraining nonparametric
estimates to satisfy the Slutsky condition of economic theory.
We have illustrated this approach by estimating a gaso-
line demand function. The constrained estimates are well
behaved and reveal features not found with typical para-
metric model specifications. We present estimates across
income groups and at different points in the distribution of
the unobservables.

These estimates are obtained initially under the assump-
tion of exogenous prices, and readers may therefore be
concerned about potential endogeneity of prices. We inves-
tigate this in two ways. First, we implement an exogeneity
test to provide direct evidence on this. As instrument, we
use a cost-shifter variable measuring transportation cost. The
results suggest that endogeneity is unlikely to be of first-
order relevance. Nonetheless, we investigate the shape of
the demand function without imposing exogeneity of prices.
For this purpose, we develop a novel estimation approach
to nonparametric quantile estimation with endogeneity. We
estimate IV quantile models under shape restrictions. The
results are broadly similar to the estimates under exogeneity.

The analysis showcases the value of imposing shape
restrictions in nonparametric quantile regressions. These
restrictions provide a way of imposing structure and thus
informing the estimates without the need for arbitrary func-
tional form assumptions which have no basis in economic
theory.
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