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Abstract

Significant departures from log normality are observed in income data, in violation of Gibrat’s
law. We show empirically that the distribution of consumption expenditures across households is,
within cohorts, closer to log normal than the distribution of income. We explain this empirical
result by showing that the logic of Gibrat’s law applies not to total income, but to permanent
income and to marginal utility.
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1 Introduction

The traditional parametrization of the income distribution is log normal with a thick, Pareto upper

tail. The classic explanation for log normality of income is Gibrat’s (1931) law, which essentially

models income as an accumulation of random multiplicative shocks. In this paper we confirm that

the income distribution in countries including the United States and the United Kingdom has a shape

that is close to, but not quite, log normal. We then show that the distribution of consumption is much

closer to log normal than income.

This yields two puzzles: why are both consumption and income approximately log normal, and why,

within cohorts, is consumption much closer to log normal than income? We show that standard models

of consumption and income evolution can explain both puzzles. In particular, the usual decomposition

of an individual’s income evolution process into permanent and transitory components is shown to

imply that Gibrat’s law applies to permanent income rather than total income. Similarly, standard
∗Original draft October 1999. This paper benefited from constructive comments by the editor and three anonymous

referees. Funding for this research was provided by the ESRC Centre for the Analysis of Public Policy at the IFS.
Data from the FES made available from the CSO through the ESRC data archive has been used by permission of the
Controller of HMSO. We are responsible for all errors and interpretations.
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Euler equation models make Gibrat’s law apply to marginal utility and hence to consumption. The

result is that the consumption distribution is closer to log normal than the income distribution within

cohorts, and observed departures from log normality in the income distribution are attributable to

non log normality of the distribution of transitory income shocks across households.

Having Gibrat’s law apply to consumption within cohorts has a number of implications for welfare

and inequality measurement, aggregation and econometric modeling. See the Battistin, Blundell and

Lewbel (2007) working paper for further discussion of these implications. This working paper also

includes results for many US Consumer Expenditure Survey household cohorts and ages in addition to

those presented later, and includes similar analyses using the British Family Expenditure survey data,

and using different household size adjustments, all of which further support the findings we present

here.

In the next section we show why the logic behind Gibrat’s law applies to permanent income rather

than total income. In Section 3 we show how standard Euler equation models of consumption also yield

Gibrat’s law. The remainder of the paper is then devoted to an empirical analysis of the distributions

of income and consumption by cohort based on multiple surveys of United States data.

2 The Income Process and Log Normality

For an individual that has been earning an income for τ years, let yτ and yp
τ be the individual’s log

income and log permanent income, respectively, so yτ = yp
τ + uτ , where uτ is defined as the transitory

shock in log income and thus independent of the permanent component. Permanent income evolves as

yp
τ = yp

τ−1 + ητ , where ητ is the shock to permanent income and η1 is permanent income in the initial

time period. In the above definitions it is assumed that the annuitized contributions of transitory

income to future permanent income have been removed from uτ and included in ητ . For example, all

shocks to income in the final year of a person’s life would be permanent shocks. This formalization

of Friedman’s (1957) decomposition of current income into permanent and transitory components is

a common model of income behavior (see, e.g., Blundell and Preston, 1998). The permanent income

model implies that yp
τ/τ = 1

τ

∑τ
s=1 ηs, where τ is the number of time periods that the person has been

earning an income, or more formally the number of periods for the income process.

Since yp
τ/τ is a simple average of random shocks, by application of a central limit theorem (CLT)

assuming standard regularity conditions (e.g., shocks ητ that satisfy a mixing process and have mo-

ments higher than two) there exist moments µp and σ2
p such that τ1/2 (yp

τ/τ − µp) → N(0, σ2
p), so that

yp
τ ∼ N(τµp, τσ2

p) for large τ . Therefore, the standard income generation model implies that perma-

nent income should be close to log normally distributed, at least for individuals that are old enough to
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have experienced a moderate number of permanent income shocks. In particular, if permanent income

were observable, the model would imply that the distribution of permanent income across individuals

in the same (working) age cohort should be close to log normal.

The CLT also immediately implies Deaton and Paxson’s (1994) result that the dispersion of income

within cohorts increases with the age of the cohort. This follows since V ar(yτ ) = τσ2
p +V ar(uτ ), which

grows with τ . Our derivation here shows that not only does the standard model make dispersion of

log income increase with age as Deaton and Paxson (1994) observe, but that the distribution becomes

more normal as well. In fact, the observation that Gibrat’s law implies a growing second moment was

noted as early as Kalecki (1945).

Gibrat’s original law assumed that income is determined by the accumulation of a series of pro-

portional shocks. We have shown here that the standard permanent income model implies that it is

permanent income, not total income, that is determined by an accumulation of shocks, and therefore

that Gibrat’s law should hold for permanent income, but not necessarily for total income. If the

transitory shocks uτ are small relative to yp
τ then log total income will also be approximately normal,

but unless transitory shocks are themselves normally distributed, log permanent income will be closer

to normal than log total income. In particular, if transitory shocks have an appropriately skewed

distribution (perhaps through some combination of overtime and temporary layoffs, or occasional

large wealth shocks such as bequest receipts) then the total income distribution can take the classic

empirical form of log normal with a Pareto upper tail.

3 Euler Equations and Log Normality of Consumption

An individual’s permanent income is not directly observable. In this section we show that intertem-

poral utility maximization implies a similar structure for consumption, resulting from the cumulation

of random shocks to income and other variables that affect utility. Traditional models of consumer

behavior going at least as far back as Friedman (1957) assume that consumption is at least approxi-

mately equal to permanent income, and so the results of the previous section directly imply normality

of log consumption in traditional models. In this section we obtain a similar result directly from

consumption Euler equations.

Let cτ be an individual’s real consumption at age τ , and let xτ be a vector of real income Iτ and

other variables that affect utility.1 Assume that in each time period τ the individual maximizes the
1These other variables could include lagged consumption to permit habit effects, as well as prices, wages, demographic

characteristics and stocks of durables.

3



expectation of the present discounted value of a time separable utility function:

u(cτ , xτ ) +
T∑

s=τ+1

δτ+1...δsu(cs, xs),

subject to the expectation of the intertemporal budget constraint:

cτ − Iτ +
T∑

s=τ+1

Rτ ...Rs(cs − Is) = wτ ,

where δτ is the individual’s subjective discount rate at age τ , Rτ is the market discount rate when

the individual is aged τ , and wτ is accumulated wealth at age τ (which can include a desired bequest,

appropriately time discounted). Budget constrained maximization of this utility function yields the

standard Euler equation model for consumption (see Deaton, 1992), which is:

φ(cτ , xτ ) = bτφ(cτ−1, xτ−1) + e∗τ .

Here φτ ≡ φ(cτ , xτ ) ≡ ∂u(cτ , xτ )/∂cτ is the marginal utility of consumption and e∗τ is the shock to

consumption resulting from new information at age τ . Following Hall (1978), this new information

could just be shocks to income Iτ , but could also include new information regarding interest rates Rτ

and bτ = δτ/Rτ . By defining e∗1 = φ1, εττ = e∗τ and ετs = bτ bτ−1...bs+1e
∗
s, for s = 0, ..., τ − 1, there is

φ(cτ , xτ ) =
∑τ

s=1 ετs.

Assuming that the ετs terms satisfy the conditions required for a triangular array CLT, there

exist moments µφ and σ2
φ such that: φ(cτ , xτ ) ∼ N(τµφ, τσ2

φ) for large τ . There are many alternative

regularity conditions that will yield a CLT here (see, e.g., Wooldridge and White 1988). This derivation

shows that marginal utility φ should be close to normal, so if φ(c, x) is approximately log-linear in

c, then logged consumption will also be close to normal. This derivation allows the risk free rate to

be time varying, and also permits some dependence in the Euler equation errors, as would arise if

individuals are sometimes liquidity constrained.

Though this derivation delivers asymptotic normality of the marginal utility of consumption, it does

not imply in general that consumption itself is log normally distributed. Thus, it is worth considering

conditions that are sufficient for exact asymptotic log normality of consumption data. One set of

sufficient conditions is to assume that δτ = Rτ , the shocks e∗τ are independently distributed with finite

moments higher than two, and the utility function given above has u(cτ , xτ ) = αcτ +βcτ ln (cτ )+γ (xτ )

for some function γ and constants α and β. This then makes bτ = 1 and marginal utility φτ =

(α + β) + β ln(cτ ), so the Euler equation yields the sample average β ln(cτ )/τ =
∑τ

s=1 e∗τ/τ , which is

asymptotically normal at rate root τ by the Lindeberg Feller CLT.
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4 Detecting Departures from Log Normality

We examine the closeness of observed data to log normality by comparing different features of the

empirical distributions of log income and log expenditures to their theoretical normal counterparts.

To visually depict departures from normality we construct quantile-quantile (QQ) plots as well as

histograms of the sample, overlaid with a N(µ, σ2) density function.

To construct graphical comparisons or formal test statistics for normality requires estimation of

the location and scale parameters µ and σ. Standard estimates of these and higher moments can

be very sensitive to outliers, and both income and consumption data may well contain reporting

errors, particularly topcoding, underreporting or misreporting by high and low income households.

We therefore use estimates and tests based on robust statistics, which mitigate the impact of gross

errors and outliers in the data (see, e.g., Hampel et al., 1986). Consequently, in our application we

will use the median M(Y ) and the population median absolute deviation MAD(Y ) ≡ M(|Y −M(Y )|)
as our robust measures of location and scale.2 We provide histograms of the data, and superimposed

on each histogram is a normal density function that uses these robust mean and variance estimates.

Given location and scale estimates, tests for departure from normality can be implemented. We

first construct Kolmogorov-Smirnov tests based on the distance between the empirical distributions of

income and expenditure and the corresponding normal distributions. To account for estimation error

in µ̂ and σ̂, we obtained p-values for this test using 10, 000 random samples generated under the null

hypothesis of normality, N(µ̂, σ̂2), and counted the number of replicate samples that produced a test

statistic greater than or equal to that calculated for the actual data.

We also construct two additional tests based on robust indicators of skewness and kurtosis. Groen-

eveld and Meeden (1984) suggest skewness measures of the form:

[Q1−p(Y )−M(Y )]− [M(Y )−Qp(Y )]
Q1−p(Y )−Qp(Y )

, (1)

where Qα(Y ) is the α-th percentile of the distribution of Y . In our application we use quartile skew-

ness, which takes p = 0.25 and is zero for normal distributions. The resulting expression is analogous

to estimating skewness by first using the median to center the data and scaling with the interquartile

range. Positive (negative) values of this statistic indicate right (left) skewness. Additionally, this co-

efficient will take values in the interval (−1, 1), with 1 (−1) representing extreme right (left) skewness.
2For normal distributions M(Y ) and MAD(Y ) are related to the mean and variance by M(Y ) = µ and MAD(Y ) '

0.6745σ (where the appoximation ' is just due to the number of decimal places used). The corresponding robust

estimators of the location and scale parameters for a normal distribution are µ̂ = M̂(Y ) and σ̂ =
ˆMAD(Y )

0.6745
, where M̂(Y )

and ˆMAD(Y ) denote the sample median and sample median absolute deviation.
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Analogous to these other moments, for kurtosis we follow Moors (1988) and use:

[O7(Y )−O5(Y )] + [O3(Y )−O1(Y )]
O6(Y )−O2(Y )

, (2)

where Oα(Y ) is the α-th octile of the distribution of Y . This statistic is non-negative and robust to

the extreme tails of the distribution, and for normal distributions it equals 1.233. We computed the

sample analogues of both the skewness coefficient (1) and the kurtosis coefficient (2), and compare

them to their theoretical values under the assumption of normality. P-values under the null hypothesis

of normality were computed from 10, 000 pseudo-samples as before.

5 The Consumption and Income Data

Most of our empirical analysis is based on expenditure and income data from the US Consumer

Expenditure (CEX) Interview Survey. We used quarterly expenditures published by the Bureau of

Labor Statistics (BLS) between 1980 and 2003 to derive annual aggregate measures of expenditure

at the household level.3 For income, we use before tax figures as reported in the fifth interview by

households who were classified as complete income reporters. This nominal income and expenditure

data are converted to real by deflating using the Consumer Price Index.

We complemented information on income from the CEX with data from the Panel Study of Income

Dynamics (PSID). Unlike the CEX, the PSID collects longitudinal annual data on a sample of house-

holds followed on a consistent basis since 1968. We examine family disposable income in the PSID for

a sample of couples with and without children as described in Blundell, Pistaferri and Preston (2008).

We focus on a sample of married couples (with or without children) and define cohorts based on

the year of birth of the head, which we conventionally take to be the husband. The two panels of

Table 1 provide the cohort definitions and sample size for the CEX and the PSID samples.

6 The Empirical Distributions of Consumption and Income

Figures 1 and 2 show the distribution in the CEX of log expenditure and log income across the life-

cycle for two birth decade cohorts. The left column of figures shows a log real expenditure distribution

that is very close to normal. In contrast, the right column of figures shows that log real income for

these households is much further from normal with the upper tail skewness that is typical of income
3We used only households who participated in the survey for all interviews (representing about 75-80 percent of the

original sample) and sum their quarterly expenditures over the year covered by the four interviews. We considered the
measure of total expenditure as published by the BLS after excluding ‘cash contributions’ and ‘personal insurance and
pensions’, thus using a definition that includes expenditures for food, alcohol, housing, transportation, apparel, medical
care, entertainment, and other miscellaneous items (such as personal care services, reading, education and tobacco
products).
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distributions, and greater kurtosis as well. A similar pattern holds across all age groups. The log

income distributions all present a long lower tail. We expect that at least some of this observed lower

tail behavior is due to measurement error, possibly due to underreporting of income at these levels.

In accordance with Kalecki (1945) and Deaton and Paxson (1992), and consistent with Gibrat’s

law, the figures show as every birth cohort ages their distributions of income and consumption become

more disperse. Also, comparing people aged 41 − 45 in both cohorts shows that the younger cohort

has a higher dispersion of income and consumption. A similar pattern holds for other cohorts and age

groups.

The departures from log normality of consumption are very small and do not seem to systematically

decrease with age, which suggests that by relatively early in one’s working life enough shocks have

accumulated to get close to asymptotic normality. However, in even younger cohorts (21 − 25) the

distributions are further from log normal than for the older groups, which is again consistent with our

inter-temporal consumer theory interpretation of Gibrat’s law.4

Our theory suggests that consumption should be closer to log normal than income, because income

contains a potentially large transitory component in addition to a log normal permanent income

component. This is what we found in the CEX, but one might worry that departures from log

normality in CEX income data could be due measurement error, because income may be measured

less precisely than consumption in that data set. As a check, in Figure 3 we examine income by birth

cohort and age but this time for log family disposable income from the PSID data set, which measures

income more carefully than the CEX. We find significant deviations from normality of log income in

this data, similar to the departures from log normality found in the CEX.

7 Conclusions

The income distribution has long been known to be approximately log normal. We have shown that the

consumption distribution is also close to log normal, and that within demographically homogeneous

groups, the distribution of consumption is much closer to log normal than is the distribution of

income. We also demonstrate that these empirical regularities are implications of traditional models

of the evolution of income and consumption, specifically, that the theory which motivates Gibrat’s

law should apply to permanent income and consumption (via Euler equations), rather than to total
4Our data includes households with varying numbers of children, because sub-populations sorted by household size

would not be comparable across age brackets. For example, households at age 40 with three children are more repre-
sentative of the general population than households at age 20 that have three children. However, numbers of children
correlates with income, and affects the propensity to consume out of current income. So as further check on the robust-
ness of our results, we recalculated distributions after dividing each household’s income and consumption by

√
n where n

is family size, thereby following a common practice of using
√

n as an equivalence scale. These results remain consistent
with our other findings.
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income as originally formulated.

We would not expect perfect normality for a variety of reasons. Traditional permanent income and

Euler equation models are implausibly simplistic, so we should not expect them to hold exactly. Also,

the CLT is an asymptotic property while individuals only have finite lifespans. Even when permanent

income is close to log normal for some individuals, their consumption may depart from log normality

if marginal utility differs substantially from log consumption, or if liquidity constraints, precautionary

savings, or purchases of large durables produce enough dependence in Euler equation innovations to

violate the conditions required for a CLT. More generally, normality may not hold for some individuals

because their time series of shocks may possess features such as the discount ratios bτ ’s far from one

or long memory, that violate the regularity conditions required for a CLT. Despite these possible

problems, we find that the observed distributions of consumption and income are broadly consistent

with the distribution implications of these models, across cohorts, over time, and across data sets.

Other explanations for the observed consumption and income distributions may exist. For ex-

ample, if consumption is very badly measured, then its observed distribution could be dominated by

measurement errors that happen to be log normal. Another possibility is based on the observation that

higher income households tend to consume a smaller fraction of income than lower income households,

resulting in a consumption distribution that has a thinner upper tail than the income distribution. If

the income distribution is close to log normal except for a thick (Pareto) upper tail, the consumption

distribution should then have a thinner upper tail, which could by coincidence be almost the same

size as its lower tail, resulting in a near normal distribution. These alternative explanations for con-

sumption log normality require coincidences that we find less plausible than our derivations based on

permanent income and Euler equation models, though these alternatives could be contributing factors

in the observed distributions.

The finding that Gibrat’s law applies to consumption within cohorts has many important impli-

cations for welfare and inequality measurement, aggregation, and econometric model analysis, and

results in additional regularities in the distributions of related variables. It would be interesting to

test if other economic variables that are determined either by Euler equations or decompositions into

permanent and transitory components display a similar conformity to Gibrat’s law.
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Table 1. Sample size by cohort and interview year, separately for data from the Consumer Expen-
diture Surveys (CEX) and the Panel Study of Income Dynamics (PSID).

CEX Data
Expenditure data Income data

Cohort 1986-1990 1991-1995 1996-2000 1986-1990 1991-1995 1996-2000
Born in 1960-69 952 1,483 2,802 846 1,279 2,226
Born in 1950-59 2,883 2,641 3,458 2,530 2,193 2,639
Born in 1940-49 2,813 2,192 2,681 2,348 1,746 1,964
Born in 1930-39 2,025 1,476 1,831 1,667 1,177 1,419

PSID Data
Expenditure data Income data

Cohort 1986-1990 1991-1995 1996-2000 1986-1990 1991-1995 1996-2000
Born in 1960-69
Born in 1950-59 10,164
Born in 1940-49 5,642
Born in 1930-39 3,366

NOTE. Only married couples (with or without children) are considered. The definition of cohorts is based on the year of

birth of the head, which we conventionally take to be the husband. CEX data: figures for total expenditure (as published

by the BLS, excluding “cash contributions” and “personal insurance and pensions”) and total family income before tax

for complete income reporters in the second interview are considered. Only households who completed all interviews are

considered. PSID data: the measure of income considered excludes income from financial assets and subtracts federal

taxes on nonfinancial income (see Blundell, Pistaferri and Preston, 2008, for further details).
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Figure 1. Expenditure and income distributions for the 1950-59 cohort (CEX data)

Expenditure Income
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NOTE. The sample size of each panel is given in Table 1. Total expenditure excludes “cash contributions” and “personal
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reports: (a) the histogram of the data with a normal density superimposed calculated at robust mean and variance
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Figure 2. Expenditure and income distributions for the 1940-49 cohort (CEX data)

Expenditure Income
At age 41-45 (years 1986-1990)
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At age 46-50 (years 1991-1995)
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At age 51-55 (years 1996-2000)
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NOTE. See note to Figure 1.
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Figure 3. Selected income distributions from PSID data

1950-59 cohort 1940-49 cohort
At age 31-35 At age 41-45
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1930-39 cohort
At age 51-55
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NOTE. The sample size of each panel is given in Table 1. The measure of income considered excludes income from

financial assets and subtracts federal taxes on nonfinancial income (as in Blundell, Pistaferri and Preston, 2008). All

figures are deflated by the CPI. Each panel reports: (a) the histogram of the data with a normal density superimposed

calculated at robust mean and variance estimates, (b) the QQ plot of observed vis-à-vis theoretical quantiles under

normality (the 5th, 25th, 50th, 75th and 95th percentiles are superimposed), and (c) the Kolmogorov-Smirnov statistic,

robust skewness and kurtosis coefficients and the p-value of their difference from theoretical values under normality (see

Section 4 for further details).
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