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Abstract

We address the problem of causal discovery in the two-variable case, given a sample from their joint distribution.
Since X → Y and Y → X are Markov equivalent, conditional-independence-based methods [Spirtes et al.,
2000, Pearl, 2009] can not recover the causal graph. Alternative methods, introduce asymmetries between cause
and effect by restricting the function class (e.g., [Hoyer et al., 2009]).

The proposed causal discovery method, CURE, is based on the principle of independence of causal mecha-
nisms [Janzing and Schölkopf, 2010]. For the case of only two variables, it states that the marginal distribution
of the cause, say P (X), and the conditional of the effect given the cause P (Y |X) are “independent”, in the sense
that they do not contain information about each other (informally P (X) “⊥⊥” P (Y |X)). This independence can
be violated in the backward direction: the distribution of the effect P (Y ) and the conditional P (X|Y ) may con-
tain information about each other because each of them inherits properties from both P (X) and P (Y |X), hence
introducing an asymmetry between cause and effect. For deterministic causal relations (Y = f(X)), all the
information about the conditional P (Y |X) is contained in the function f , so independence boils down to P (X)
“⊥⊥” f . Previous work formalizes the independence principle by specifying what is meant by independence. For
deterministic non-linear relations, Janzing et al. [2012] and Daniusis et al. [2010] define independence as un-
correlatedness between logf ′ and the density of P (X), both viewed as random variables. For non-deterministic
relations, it is not obvious how to explicitly formalize independence between P (X) and P (Y |X). Instead, we
propose an implicit notion of independence, namely that pY |X cannot be estimated based on pX (lower case
denotes density). However, it may be possible to estimate pX|Y based on the density of the effect, pY .

In practice, we are given empirical data x ∈ RN , y ∈ RN from P (X,Y ) and estimate pX|Y based on y
(intentionally hiding x). The relationship between the observed y and the latent xu ∈ RN is modeled by a
Gaussian Process (GP): p(y|xu,θ) = N (y;0,Kxu,xu +σ

2
nIN ) (this can be alternatively seen as a single output

GP-LVM). Then, the required conditional pX|Y is estimated as p̂yXu|Y : (xu, y) 7→ p(xu|y,y), with p(xu|y,y)
estimated by marginalizing out the latent xu and θ (GP hyperparameters).

CURE infers the causal direction by using the procedure above two times: one to estimate pX|Y based only
on y and another to estimate pY |X based only on x. If the first estimation is better, X → Y is inferred.
Otherwise, Y → X . CURE was evaluated on synthetic and real data and often outperformed existing methods.
On the downside, its computational cost is comparably high. This work was recently published at AISTATS
2015 [Sgouritsa et al., 2015].
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