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Learning Latent Structure
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» Difficulty on computing scores or tests

» ldentifiability: theoretical issues and implications to
optimization



Leveraging Domain Structure

» Exploiting “main” factors

YOUR JOB AND ORGANISATION

7. To what extent do you agree or disagree with the
following statements about your immediate
manager?

My immediate manager. ..

a. ._encourages those who work for her/him to work as
a team.

b. .._.can be counted on to help me with a difficult task at
wark.

c. ..gives me clear feedback on my work.

d. ._asks for my opinion before making decisions that
affect my work.

e __is supportive in a personal crisis.

12. To what extent do you agree or disagree with the
following statements?

a. | often think about leaving this Trust.

b. | will probably look for a job at a new organisation in
the next 12 months.

c. Assoonas | can find another job, | will leave this
Trust.
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(NHS Staff Survey, 2009)




The “Structured Canonical Correlation”
Structural Space

O, OlllccoR

(
SOO35S

» Set of pre-specified latent variables X, observations Y

Each Y in Y has a pre-specified single parent in X
» Set of unknown latent variables X_ 1L X
Each Y in Y can have potentially infinite parents in X

» “Canonical correlation” in the sense of modeling
dependencies within a partition of observed variables



The “Structured Canonical Correlation”:
Learning Task

X X,

» Assume a partition structure of Y according to X is known

» Define the mixed graph projection of a graph over (X, Y) by
a bi-directed edge Y; « Y; if they share a common
ancestor in X,

» Practical assumption: bi-directed substructure is sparse

» Goal: learn bi-directed structure (and parameters) so that
one can estimate functionals of P(X | Y)



Parametric Formulation

» X ~N(0,2), 2 positive definite

lgnore possibility of causal/sparse structure in X for simplicity

» For a fixed graph G, parametrize the conditional cumulative
distribution function (CDF) of Y given X according to bi-
directed structure:

» Fly [ x) =P(Y sy | X=x) =[] P(Y; <y | Xy = xp)
Each set Y; forms a bi-directed clique in G, X}; being the
corresponding parents in X of the set Y,

In this paper we assume each Y is binary for simplicity
(Further details: Silva et al. 2011, Huang and Frey, 2011)



Parametric Formulation

» In order to calculate the likelihood function, one should
convert from the (conditional) CDF to the probability
mass function (PMF)

P(y,x) = {AF(y | x)} P(x)

Where AF(y | x) represents a difference operator. For
p-dimensional binary (unconditional) F(y) this boils down to

1 1
PY=y)=> Y (-)=="F(y —z)

z1=0 z,=0

» Message passing formulation — Example:

reduces to “



Learning with Marginal Likelihoods

» For X parent of Y; in X:

» Let

» Marginal likelihood:
P(’D ‘ gm. {7’11 )’3{]} E) —

/P(D. XN 9| Gm, B.%) dXEN a6

» Pick graph G, that maximizes the marginal likelihood
(maximizing also with respect to 2 and [3), where 6
parameterizes local conditional CDFs F(y; | xg;)



Computational Considerations

» Intractable, of course

Including possible large tree-width of bi-directed component

» First option: marginal bivariate composite likelihood

Algorithm 1 Pairwise Structured CCA Learning

CL(0;D) = H Ly (6;D)"* 1: procedure LEARNSTRUCTUREDCCA-I(S.,D)
ke K 0L {Y,Xs,Gm} + GETDAG(S)

3 {5.X} + INITPARAMETERS(G,,,, D)

4 repeat

PCL(Gm, 8,%) = FL™ + log n(Gm), 5 {8,%} + argmaxq, g,y PCL(Gm, 5, %)
" 6: Gm < arg Max g/ PCL(Gy. B, 5)

7 until G,,, has not changed.

8 return G,,

9: end procedure

FEH =3 1og P(YEY, YFN | Gm, B, 5)

1<j

Integrates €, and X*N with a crude quadrature G,,"" is the space of graphs that differ
method from G,, by at most one bi-directed edge




Beyond Pairwise Models

» Wanted: to include terms that account for more than
pairwise interactions

Gets expensive really fast

» An indirect compromise:
Still only pairwise terms just like PCL

However, integrate 6, not over the prior, but over some
posterior that depends on more than on Y;'"N,Y;I'N:
Key idea: collect evidence from p(& | Ys'™), {i,j} U'S, plug it into the
expected log of marginal likelihood P(Y!™. Y | G,.3.%) .This
corresponds to bounding each term of the log-composite likelihood
score with different distributions for 6

Pz'j(Y.__,;l:N._le-:N~ iz | G 8, 20)

Z / qij(0i5) log 267 007) d 6;;

i<j




Beyond Pairwise Models
» New score function

g el = 3 % /q.mn(eij)logP{Y}”",Yj”‘"|gm,5,z,aij)d9ﬁ+

m<nY;ES,, Y;ES, °
|S]

y: yj y: /\qmﬂ(gfj)log‘p(Y'}:N?Y}:N i gﬂl?ﬁrzﬁg‘ij)d gij

m=1nzm {V;,Y;}CSm

1
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S,: observed children of X, in X

Notice: multiple copies of likelihood for 8; when Y; and Y; have
the same latent parent

» Use this function to optimize parameters {[3, 2}

(but not necessarily structure)



Algorithm 2

» g,,, comes from
conditioning on all

Algorithm 2 Modified Pairwise Structured CCA Learning
1: procedure LEARNSTRUCTUREDCCA-II(S,D)

22 {Y.Xs.Gn} ¢+ GETDAG(S) variables that share a

3: {B8.X} < INITPARAMETERS(G, D) .

4:; repeat Parent with YI and Yj

5: for 1 <m < n<|S|do ] ]

6 Gunls) = PO | YEN . 8,5, Gn) Laplace approximation

end for

& {3,} « arg;111z1x(Qﬁ‘QE)Q(gilz’{q”’”(')}) » In PraCtlce, we use PCL

9: Om < arg max( G/ PCL(Gu,B,%) h . ..

10: until G, has not changed. when OPtImIZIng structure
I E return G,,

EM issues with discrete
optimization: model
without edge has an
advantage, sometimes
bad saddlepoint

12: end procedure




Experiments: Synthetic Data

» 20 networks of 4 latent variables with 4 children per
latent variable

Average number of bi-directed edges: ~18

» Evaluation criteria:

Mean-squared error of estimate of slope [3 for each observed
variable

Edge omission error (false negatives)

Edge commission error (false positives)

» Comparison against “‘single-shot” learning

Fit model without bi-directed edges, add edge Y; « Y; if implied
pairwise distribution P(Y;, Y)) doesn’t fit the data

Essentially a single iteration of Algorithm |



Experiments: Synthetic Data

» Quantify results by taking the difference between number
of times Algorithm 2 does better than Algorithm | and 0
(“single-shot” learning)

1000 5000 10000

Slope I 0 I 0 I 0

number 13 6 17 15 15 13
p-value 022 0.25 0.06

Omission I 0 I 0 I 0

number 11 18 6 14 6 9
p-value 0.17 082 * 062 022

Commision I 0 I 0 I 0

number 5 2 15 16 16 3
p-value 0.28

The number of times where the difference is positive with the
corresponding p-values for a Wilcoxon signed rank test (stars indicate
numbers less than 0.05)



Experiments: NHS Data

» Fit model with 9 factors and 50 variables on the NHS
data, using questionnaire as the partition structure

100,000 points in training set, about 40 edges discovered
» Evaluation:

Test contribution of bi-directed edge dependencies to P(X |
Y): compare against model without bi-directed edges

Comparison by predictive ability: find embedding for each X
given Y@ by maximizing

Yo e P T, 20 2 5,5,6.)
Test on independent 50,000 points by evaluating how well we

can predict other || answers based on latent representation
using logistic regression



Experiments: NHS Data

» MCCA: mixed graph structured canonical correlation
model

» SCCA: null model (without bi-directed edges)

» Table contains AUC scores for each of the | | binary
prediction problems using estimated X as covariates:

MCCA SCCA MCCA SCCA
QI 0.71 0.71 | Q7 0.80 0.79
Q2 0.75 0.75 | Q8 0.82 0.81
Q3 0.86 0.82 | Q9 0.86 0.83

Q4 0.90 0.82 | Q10 0.69 0.69
Q5 0.79 0.80 | Q11 0.78 0.75
Q6 0.73 0.72




Conclusion

» Marginal composite likelihood and mixed graph models
are a good match

Still requires some choices of approximations for posteriors
over parameters, and numerical methods for integration
» Future work:

Theoretical properties of the alternative marginal composite
likelihood estimator

|dentifiability issues
Reduction on the number of evaluations of q,,
Non-binary data

Which families could avoid multiple passes over data!?



