BAYESIAN NETWORKS AND THE SEARCH FOR CAUSALITY

Ricardo Silva ricardo@stats.ucl.ac.uk

Department of Statistical Science Centre for Computational Statistics and Machine Learning

University College London

"I'd rather discover a single causal law than become the king of Persia."

Wikimedia

We Will

- Start with the very basics of causal inference
- Provide some basic background in Bayesian networks/graphical models
- Show how graphical models can be used in causal inference
- Describe application scenarios and the practical difficulties

What is a Causal Inference Problem?

Let me give you two problems.

Problem 1

You are in charge of setting the price of life insurance for a person you know is a smoker, among other things. What is your approach and what do you need to know?

Problem 2

You are in charge of public policy on smoking incentives. You want to minimise health costs that may be due to smoking. What is your approach and what do you need to know?

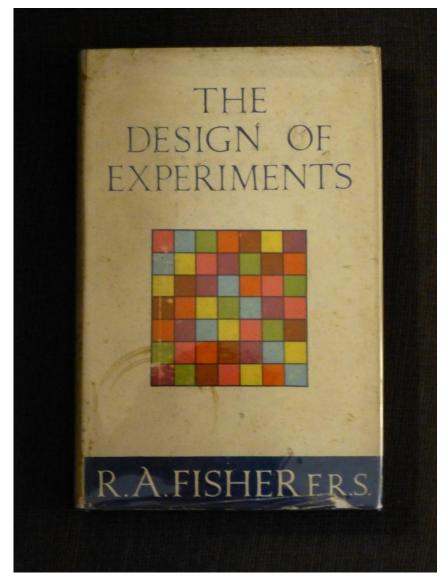
On Causation, Prediction and Explanation

- There are tasks of **prediction**, **control** and **explanation**.
- Prediction is bog-standard in machine learning, statistics, predictive analytics etc.
- Control is about taking actions to achieve a particular outcome.
- Explanation concerns what the outcome would be if you had seen different data. It involves actions that have not taken place.

Causal Inference

- Causal inference is essentially about control and explanation.
- Good control should require good predictive models anyway.
- Explanation is not about the future, but counterfactual events in the past.
- How to solve these problems?

Learning from Actions



Experimental Design

WW.CSMI.U

IV AN AGRICULTURAL EXPERIMENT RANDOMISED BLOCKS

or the and potatoes, are to be to 22. Description of the Experiment mental yields; the central portion IN pursuance of the principles indicated by area, are to be harvested, and a IN pursuance of the previous chapters we may how the second secon discussions in the previous we may now an example from agricultural experimentation an example from agric which these principles branch of the subject the developed, and in the subject is a solution of the subject which in the solution of the subject which is a solution of the subject so far been most explicitly and in which advantages and disadvantages of the different men advantages and disadvantages of most clearly disadvantages of the under method open to the experimenter may be most clearly discussed open to the experiment is designed. en to the experimentee our experiment is designed We will suppose that our experiment is designed We will suppose that only or yield, of five differences test the relative productivity, or yield, of five differences for farm crop; and that a decision has a

any particular plot of g test the relative producer and that a decision has already varieties of a farm crop ; and that a decision has already is to use a pack of can varieties of a farm crop, what produce shall be regard been arrived at as to what crops, for example to arrange them in ra been arrived at as to when produce shall be regard as yield. In the case of cereal crops, for example The varieties are th as yield. In the case of the yield as total grain, or may decide to measure the yield as total grain, or card such as nur may decide to measure not to pass a specified sieve grain sufficiently large not to pass a specified sieve correspond to a grain sufficiently large mud together at predetermine as grain and straw valued together at predetermine by 5 this num as grain and straw values of may be deemed ave divisible by prices, or in whatever meet the experiment. Our day, priate for the purposes of the experiment. Our day, The order o priate for the purposed on the soil or in the days determine ermine where by the test, any of the varies after the han others, and, if so, to evaluate a ing to

DESCRIPTION OF THE EXPERIM side, making forty plots in differences in variety to be

or, if preferred, measured in some

In each block the five plots are of the five varieties under test, and

of the at random. This does not a

made a writes down the names of

standing for them, in any order standing he carries out a phy

of randomisation, using me

each variety has an equa

in th

different uniform agricultural

have edges about a foot in

or the and potatoes a toy in

Experimental Design

- Say you have a choice of treatments, in order to understand a particular outcome.
- Along the line of Fisher's examples, you could define as your **outcome** the productivity of a particular plantation field.
- As treatments, different combinations of fertilizers at different dosages.
- In the data, the choice of treatment is set by design, so we know how it was generated.

Exploitation of Findings

- Once we learn the relationship between treatment and outcome, we can use this information to come up with an optimal policy
 - For instance, pick combination of fertilizers/dosage that maximises expected crop productivity.
- This is essentially the application of **decision theory**.

Exploitation of Findings

- An alternative use is to understand what would have happened to those outcomes had treatment been different.
 - For instance, a marketing campaign was followed by major losses. How can we assign blame or responsibility for these outcomes?
 - This is an **in-sample**, NOT an **out-of-sample** estimand.
- This is essentially the application of counterfactual modelling.
- Notice: counterfactual analysis is NOT about prediction and control, which is my focus. For the rest of this talk, I'll have little to say about counterfactual learning.

Interplay with Modelling

- The number of possible experimental conditions may explode, and treatment (action) levels can be continuous.
- All sorts of models (logistic regression, Gaussian processes etc.) can be used to map treatment to outcome.
- In particular, analysis of variance (ANOVA) via Latin squares is one of the most classical and practically used methods in some industries.

Gonville and Caius College, Cambridge

Interplay with Inference

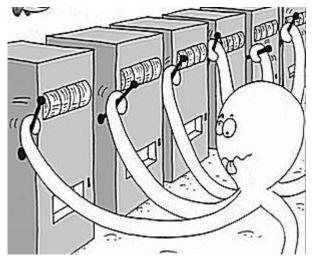
- Traditional statistics techniques (power analysis, hypothesis testing, confidence intervals) are also used in experimental design.
- Fisher's "The Design of Experiments" was one of the sources responsible (to blame?) for the popularity of hypothesis testing.

"0.05" (Not really. Fisher knew better than that.)

Sidenote: A/B Testing and Bandits

• A/B testing is the baby sibling of experimental design.

 Bandit modelling is a sequential variation of experimental design, where we also care about our "rewards" as we collect data and perform actions.



(http://research.microsoft.com/en-us/projects/bandits/)

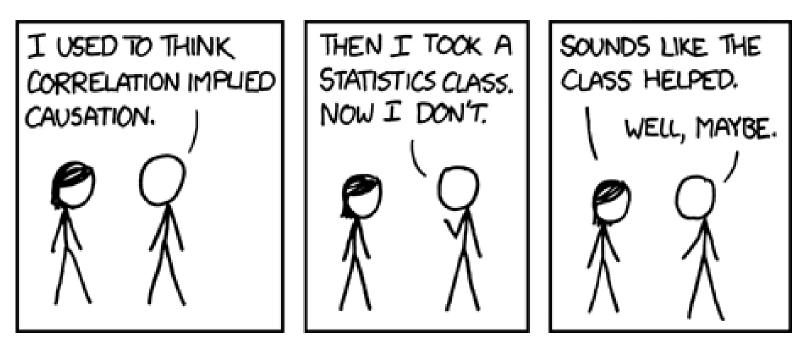
Seems Sensible so Far? (I hope)

- Causal inference is not complicated per se, however it does require much attention to detail.
- Crucially, we defined treatment as something "set by design". What does that mean?
- And isn't the setting different, you know, when you are actually making decisions later on? How can we generalize?

The Stuff Nightmares are Made Of

The whole complication lies on the definition of "set by design". We can't actually formally define it without using causal concepts, and we can't define causal concepts without the concept of "set by design".

Introducing: Observational Studies

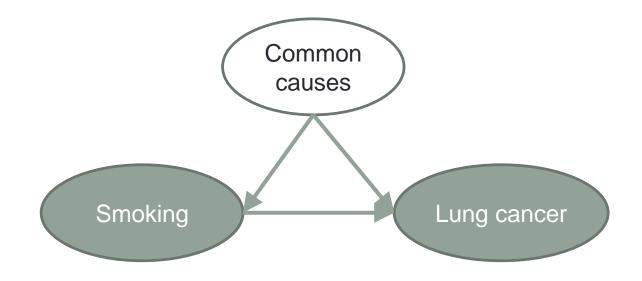


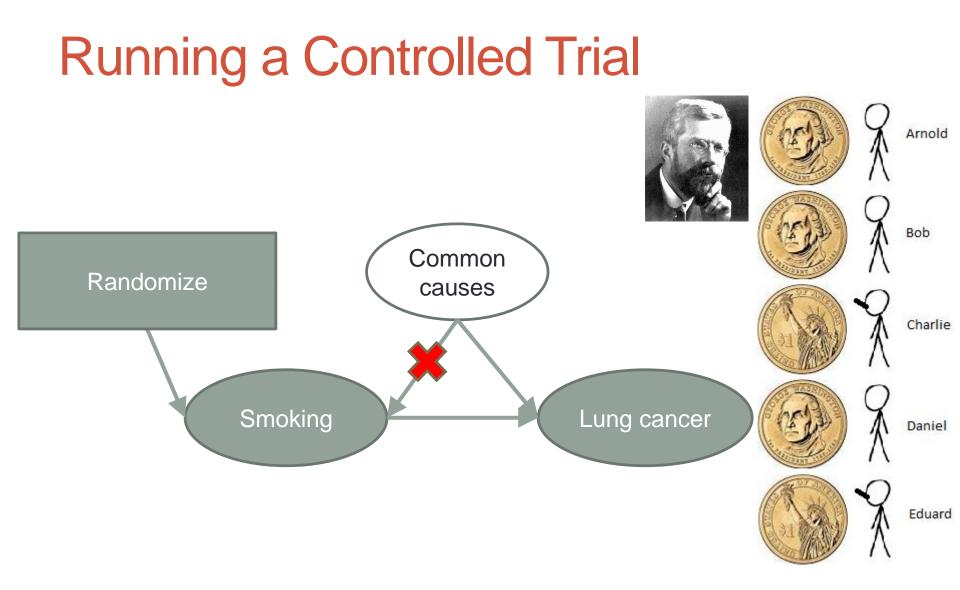
Compulsory XKCD strip

Out of Control

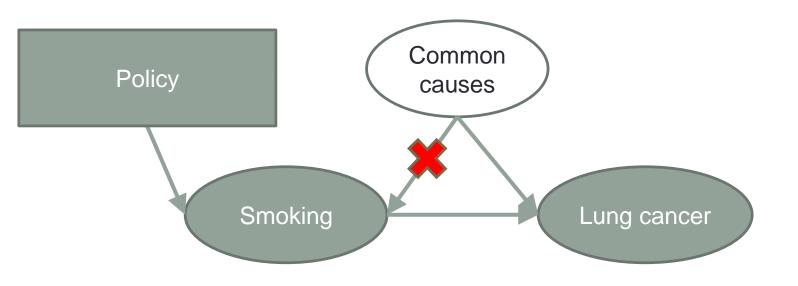
- In an observational study, the quantity we deem as the "treatment" is not under any designer's control.
- Case in point, smoking as treatment, lung cancer as outcome.
- How would one apply the framework of experimental design to the smoking and lung cancer problem?

Where Do Treatments Come From?

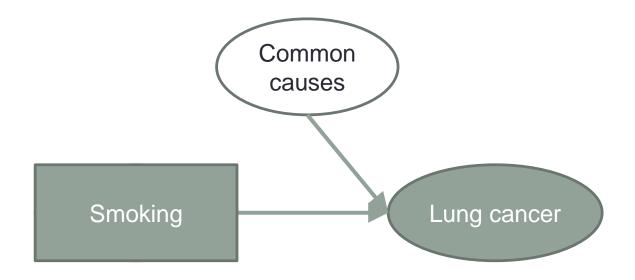




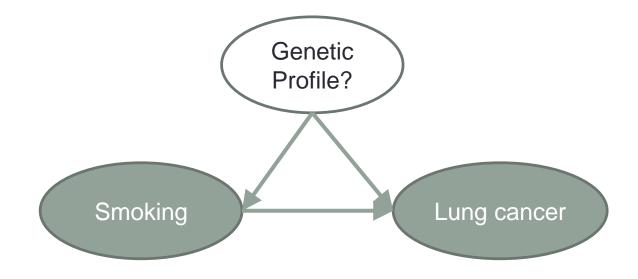
Exploiting the Knowledge Learned from a Controlled Trial



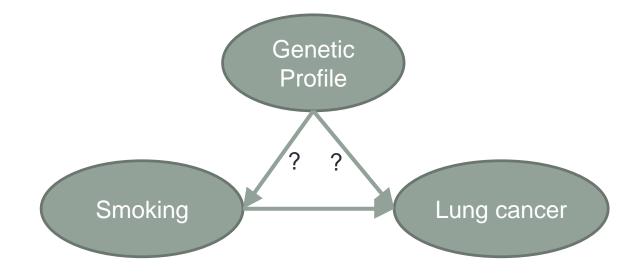
Exploiting the Knowledge Learned from a Controlled Trial



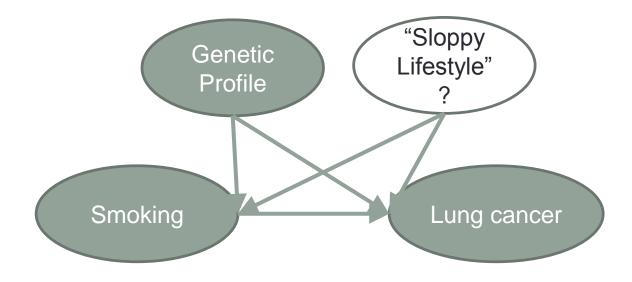
But... We Can't Randomize



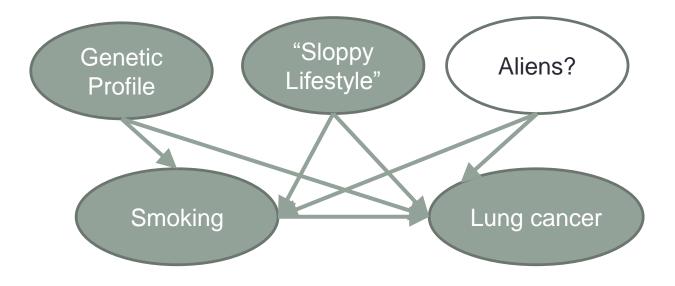
"Adjust"



But... What If?...



And So On



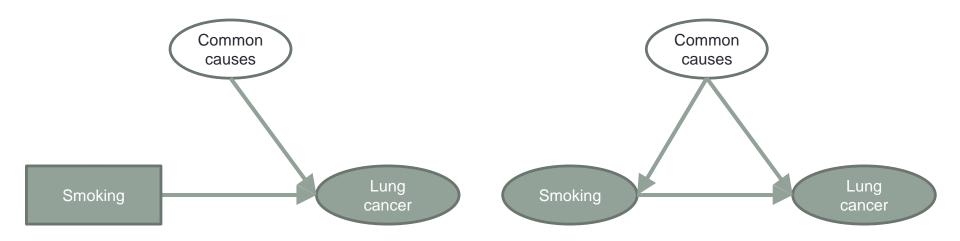
Observational Studies

 The task of learning causal effects when we do not control the treatment, which instead comes in a "natural regime", or "observational regime".

• The aim is to relate use the data in the observational regime to infer effects in the **interventional regime**.

That Is

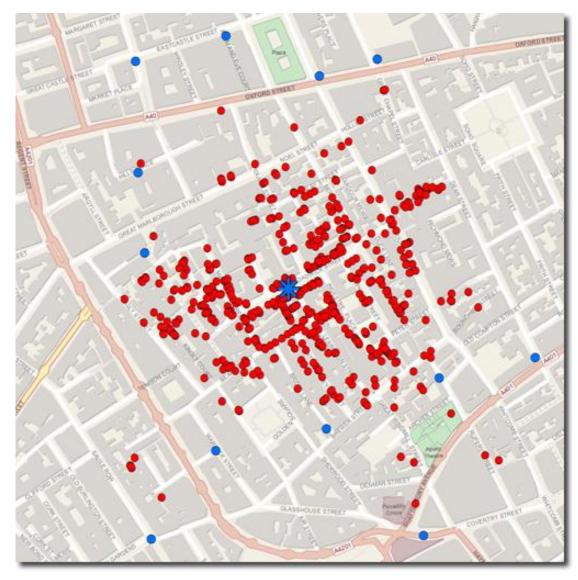
We would like to infer P(Outcome | Treatment) in a "world" (regime) like this All we have is (lousy?) data for P(Outcome | Treatment) in a "world" (regime) like this instead



A Historical Example

- Cholera in Soho, 1850s
- Miasma theory: brought by "bad air"
 - No germ theory at the time
- In hindsight: water supply contaminated
- Location was associated with outbreaks

Enter John Snow, "father" of Epidemiology



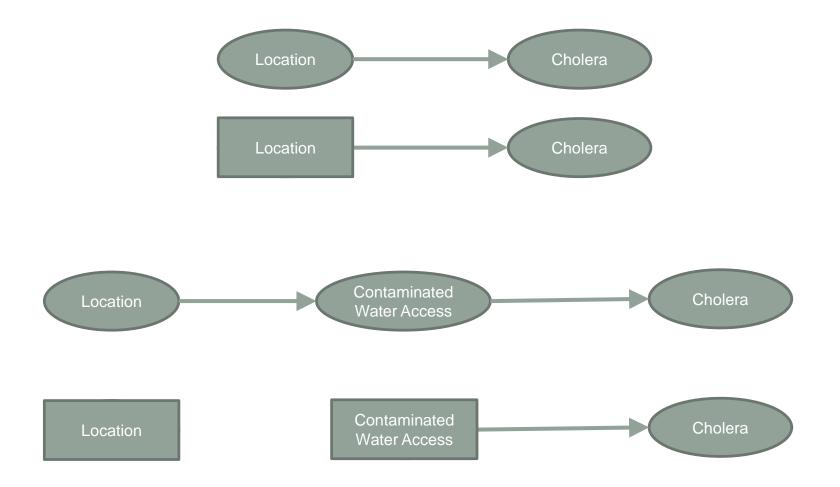
Here to save the day

http://donboyes.com/2011/10/14/john-snowand-serendipity/pumps-and-deaths-drop/

Understanding it with Causal Diagrams

- Based on common sense, location was a cause of disease
 - But this didn't rule out miasma theory
- In one sense, Snow was doing mediation analysis:
 - Location was irrelevant once given the direct cause, water in particular, one major pump

Understanding it with Causal Diagrams

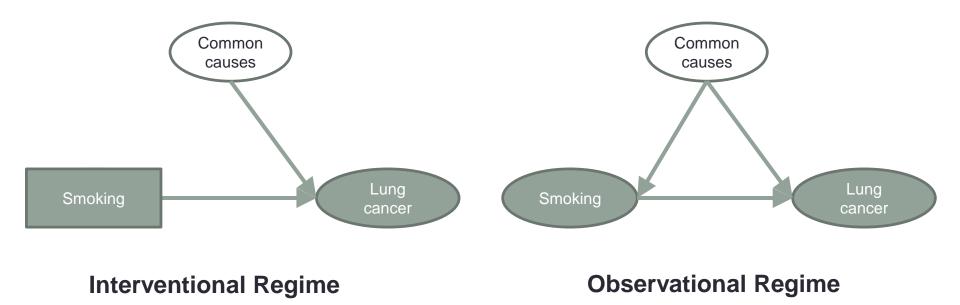


Control, Revisited

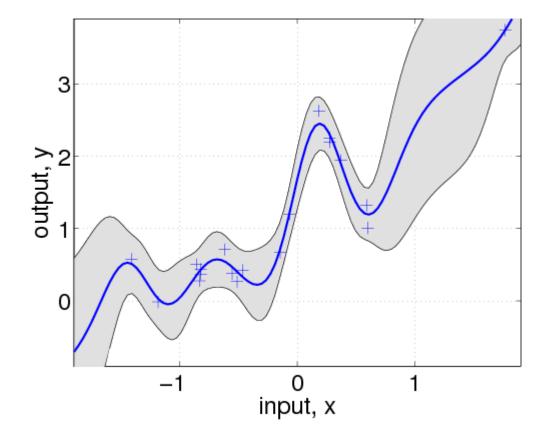
- Notice that, in order to maximize a "reward" (minimum expected number of cholera cases), we could have created a policy directly by intervening on Location.
- That is, if you think that "Evacuate Soho for good!" would be a popular policy.
- Mediation matters in practice, and control is more than policy optimization: it is about what can be manipulated in practice or not.

What Now?

 The jump to causal conclusions from observational data requires some "smoothing" assumptions linking different regimes.



A Crude Analogy: Regression, or "Smooth Interpolation"



http://www.gaussianprocess.org/gpml/code/matlab/doc/

What Now?

- To do "smoothing" across regimes, we will rely on some modularity assumptions about the underlying causal processes.
- We just have the perfect tool for the job: Bayesian networks (a.k.a graphical models).

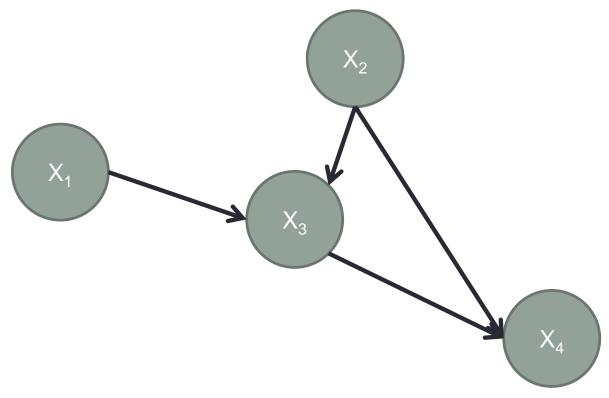
BAYESIAN NETWORKS: A PRIMER

Graphical Models

- Languages for decomposing probabilistic models.
- Because we want sparsity as a means of facilitating estimation and computation.
- But also modularity. We use a graph as a visual representation of a family of factorizations of a probabilistic model.
 - The graph itself is just a drawing: it is the system of constraints encoded by the drawing that is the essence of a graphical model
 - Vertices are the (random) variables of a probabilistic model

Bayesian Networks

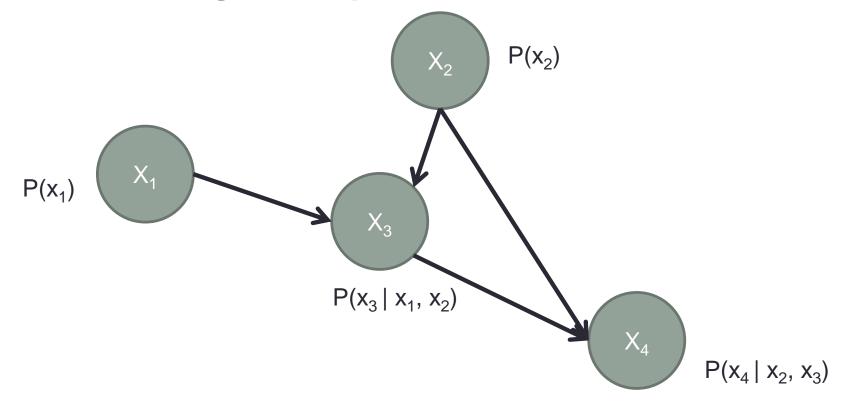
 A model that follows the structure of a directed acyclic graph (DAG), traditionally for discrete variables.



Task: represent $P(X_1, X_2, X_3, X_4)$

Bayesian Networks

 It is enough to encode the conditional probability of each vertex given its parents.



 $\mathsf{P}(\mathsf{X}_1 = \mathsf{x}_1, \, \mathsf{X}_2 = \mathsf{x}_2, \, \mathsf{X}_3 = \mathsf{x}_3, \, \mathsf{X}_4 = \mathsf{x}_4) = \mathsf{P}(\mathsf{x}_1)\mathsf{P}(\mathsf{x}_2)\mathsf{P}(\mathsf{x}_3 \mid \mathsf{x}_1, \, \mathsf{x}_2)\mathsf{P}(\mathsf{x}_4 \mid \mathsf{x}_2, \, \mathsf{x}_3)$

Example: The Alarm Network

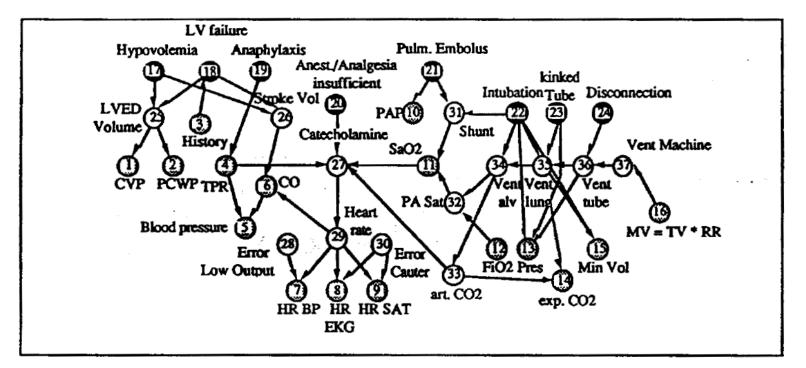
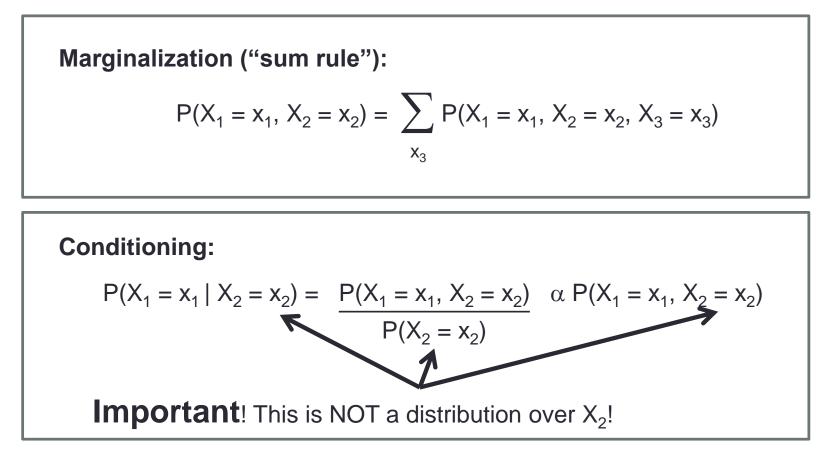


Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (●), intermediate (O) and measurement (④) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular enddiastolic volume, LV failure: left ventricular failure, MV: minute ventilation, PA Sat: pulmonary artery oxygen saturation, PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: respiratory rate, TPR: total peripheral resistance, TV: tidal volume

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, pages 247-256. Springer-Verlag, 1989

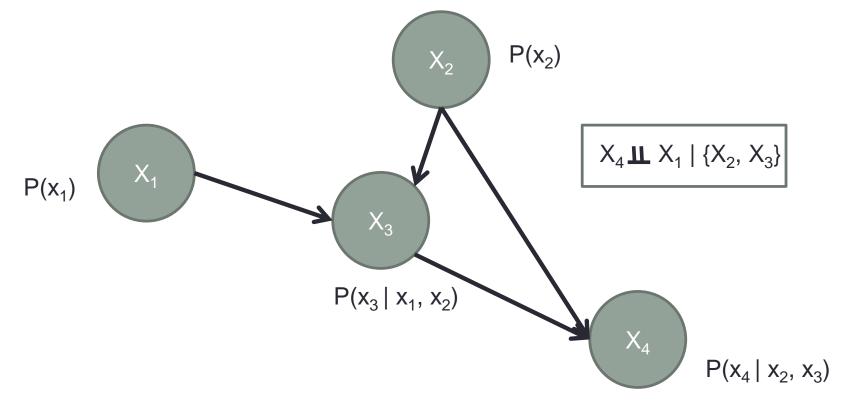
Detour: Before Proceeding

- Two simple operations you will need to be familiar with.
- Say you have some $P(X_1, X_2, X_3)$:



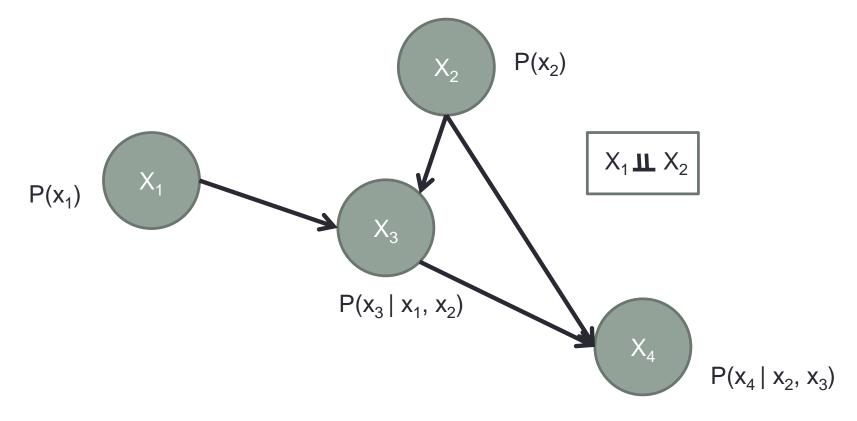
Continuing: Independence Constraints

Factorizations will imply independence constraints. Here,
 X₄ is independent of X₁ given X₂ and X₃



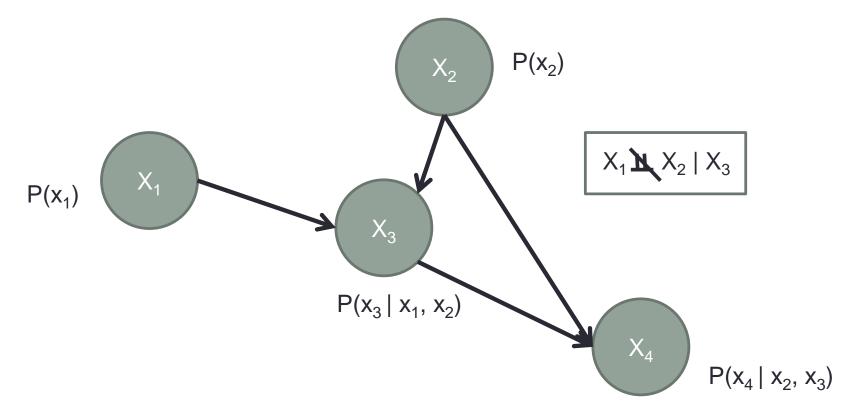
 $\mathsf{P}(\mathsf{X}_4 = \mathsf{x}_4 \mid \mathsf{X}_1 = \mathsf{x}_1, \, \mathsf{X}_2 = \mathsf{x}_2, \, \mathsf{X}_3 = \mathsf{x}_3) \; \alpha \; \mathsf{P}(\mathsf{x}_1) \mathsf{P}(\mathsf{x}_2) \mathsf{P}(\mathsf{x}_3 \mid \mathsf{x}_1, \, \mathsf{x}_2) \mathsf{P}(\mathsf{x}_4 \mid \mathsf{x}_2, \, \mathsf{x}_3) \; \alpha \; \mathsf{P}(\mathsf{x}_4 \mid \mathsf{x}_2, \, \mathsf{x}_3)$

Independence Constraints are "Non-Monotonic" in a Bayes Net



$$P(X_1 = x_1, X_2 = x_2) = \sum_{x_3, x_4} P(x_1)P(x_2)P(x_3 \mid x_1, x_2)P(x_4 \mid x_2, x_3) = P(x_1)P(x_2)$$

Independence Constraints are "Non-Monotonic" in a Bayes Net

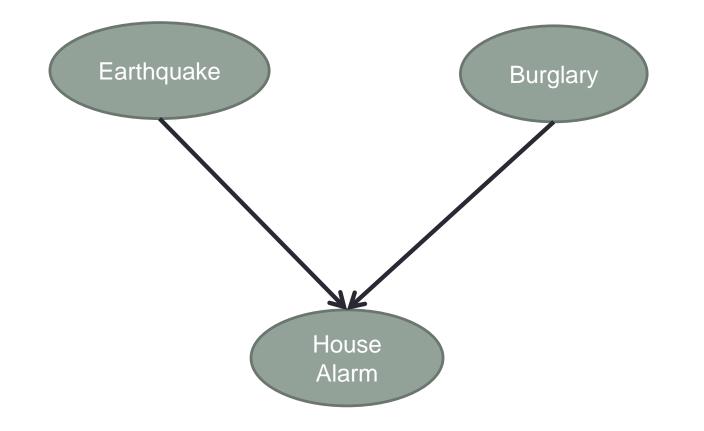


 $\mathsf{P}(\mathsf{X}_1 = \mathsf{x}_1, \, \mathsf{X}_2 = \mathsf{x}_2 \mid \mathsf{X}_3 = \mathsf{x}_3) \; \alpha \; \mathsf{P}(\mathsf{x}_1)\mathsf{P}(\mathsf{x}_2)\mathsf{P}(\mathsf{x}_3 \mid \mathsf{x}_1, \, \mathsf{x}_2) \neq \mathsf{g}(\mathsf{x}_1)\mathsf{h}(\mathsf{x}_2)$

Independence Constraints are "Non-Monotonic" in a Bayes Net

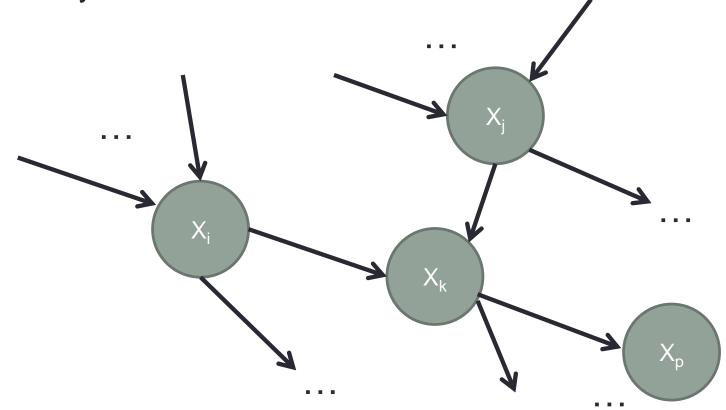


Understanding This by "Explaining Away"



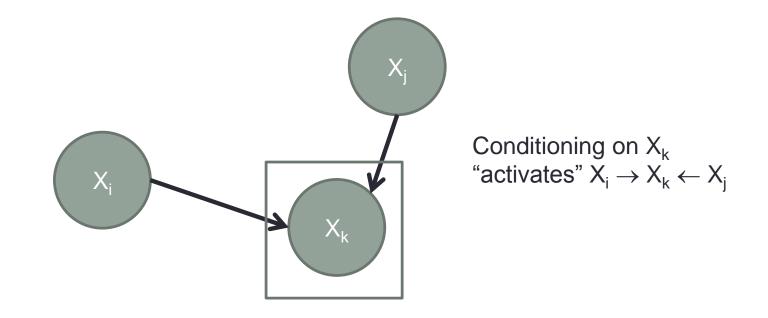
Reading Off Independencies

 The qualitative structure of the system (the graph) allows us to deduce dependencies/independencies which are entailed by it.



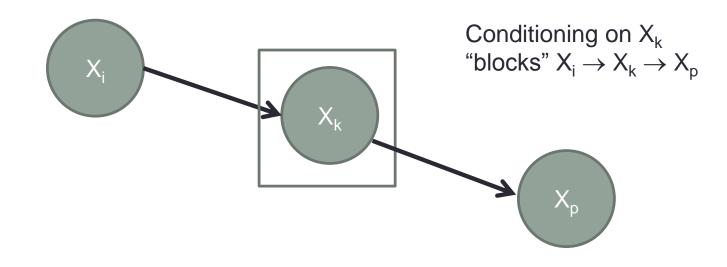
Reading Off Independencies

Conditioning on a "collider" ("v-structure") activates a path



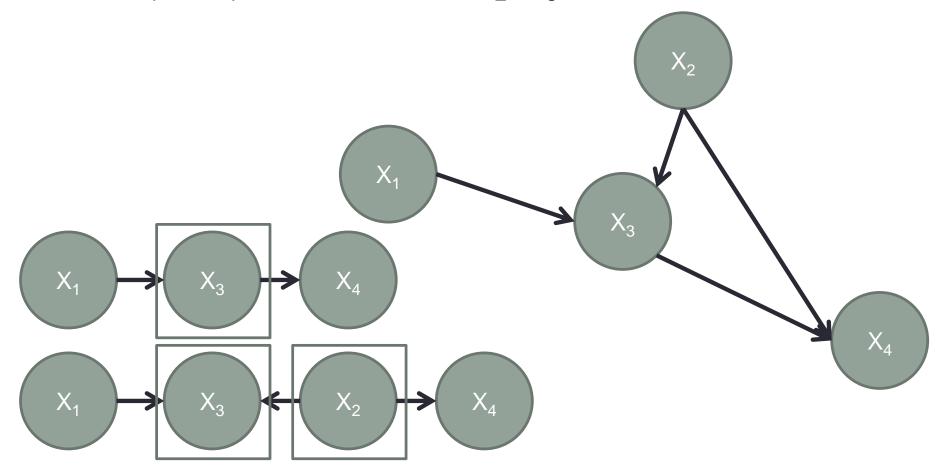
Reading Off Independencies

 Conditioning on a "non-collider" de-activates (or blocks) a path



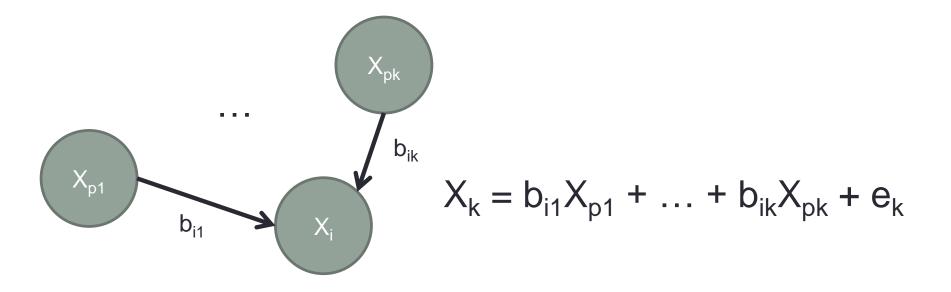
In Our Example

 X₄ is independent of X₁ given {X₂, X₃} because both paths from X₁ to X₄ are blocked by {X₂, X₃}



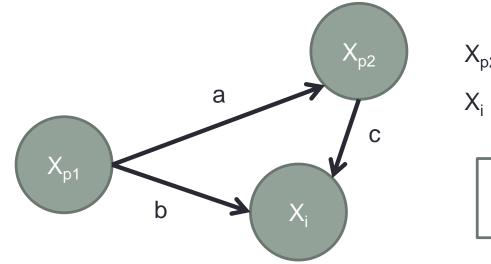
Non-Structural Independencies

- It is possible for some independencies to follow not from the graph, but from particular parameter values.
- This is easier to understand in linear systems.



Non-Structural Independencies

Example



$$X_{p2} = aX_{p1} + e_{p2}$$

 $X_i = bX_{p1} + cX_{p2} + e_i$

$$X_i = bX_{p1} + acX_{p1} + \dots$$

If b = -ac, then X_i is independent of X_{p1} , even if this is not implied by the graph (and it doesn't even hold when fixing X_{p2})

What Next

 The decomposition of a system as a graphical model will be the key step to link observational and interventional regimes in the sequel.

FROM GRAPHS TO CAUSAL EFFECTS

Task

- Say you have some treatment X and some outcome Y.
- Say you have some background variables Z you do observe in your data, and which may (or may not) block all paths along common causes of X and Y.
- Find me a measure of how Y changes when I intervene on X at different levels.
- But you only have observational data!

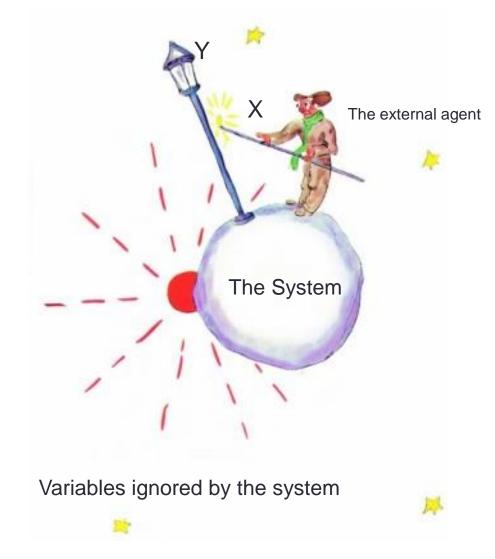
Introducing Proper Notation

 For instance, if Y and X are binary, I could be interested in this following average causal effect,

P(Y = 1 | X = 1) - P(Y = 1 | X = 0) under intervention

 But wait! This notation can be very confusing. In the observational regime, X is random. In interventional regime, X is fixed by some "magical" agent external to the system.

Introducing Proper Notation



Pearl's "Do" Notation

- We distinguish random Xs from "fixed" Xs by the notation "do(X)".
- Average causal effect:

$$P(Y = 1 | do(X = 1)) - P(Y = 1 | do(X = 0))$$

• As we say in statistics, this is the **estimand**. We may derive it from a **model**, and estimate it with an **estimator**.

TECHNICAL NOTE: it is still not ideal, as in traditional probability anything to the right of the conditioning bar should be a random variable observed at a particular value. A more kosher notation would be $P_{do(X = x)}(Y = 1)$ or P(Y = 1; do(X = x)), but now this has stuck.

PLEASE!

 If you learn one thing from today's talk, it should be: do not conflate estimand, with model, with estimator!

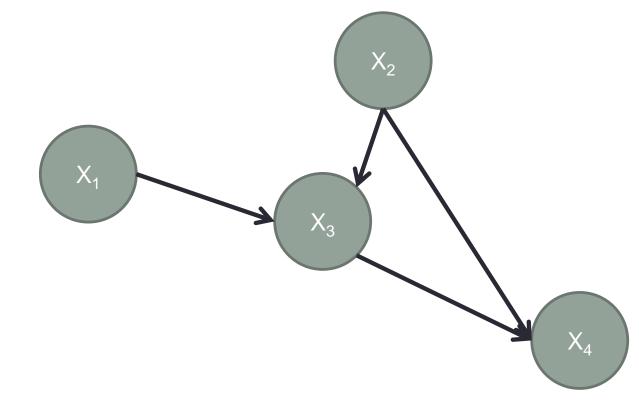
- This is a MAJOR source of confusion, and one of the main reasons why people talk past each other in causal inference.
- Most of my focus will be on clearly defining estimands and models.

The Model

- Now we need a way of deriving this estimand from the observational regime.
- The whole game is to postulate a causal graph, to see how the estimand can be written as a function of it, and to check whether this function can be calculated from the observational regime.

What is a Causal Graph?

 A causal graph is a Bayesian network where the parents of each vertex are its **direct causes**.



What is a Direct Cause?

 The direct causes of X_i are the variables which will change the distribution of X_i as we vary them, as we perfectly intervene in the whole system.

$$X_1$$

$$P(X_3 = x_3 | do(X_1 = x_1), do(X_2 = x_2), do(X_4 = x_4)) \neq P(X_3 = x_3 | do(X_1 = x_1'), do(X_2 = x_2), do(X_4 = x_4))$$

$$P(X_3 = x_3 | do(X_1 = x_1), do(X_2 = x_2), do(X_4 = x_4)) = P(X_3 = x_3 | do(X_1 = x_1), do(X_2 = x_2), do(X_4 = x_4'))$$

What is a Perfect Intervention?

 A perfect intervention on some X is an independent cause of X that sets it to a particular value, all other things remain equal.

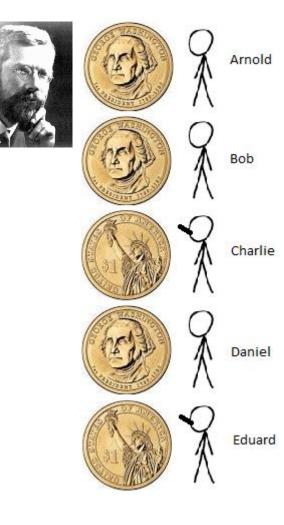
• • • •

What is a Perfect Intervention?

- We won't define it. We will take it as a primitive.
- "I know it when I see it."
- Operationally, this just wipes out all edges into X and make it a constant, **all other things remain equal**.
- How is it related to randomization?

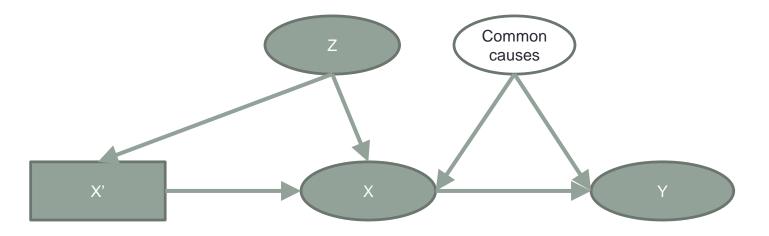
Relation to Randomization

- Randomization is NOT a concept used in our definition of causal effect. Nor should it be.
 - Look at the estimand. It is there? No.
- Randomization is a way of sampling data so that we get a estimator that will give a consistent answer.
 - Which is exactly what is missing in an observational study.
 - In practice, if you can do randomization you should.
 - Think of randomization in other contexts, such as estimating public opinion from surveys.



Relation to Other Interventions

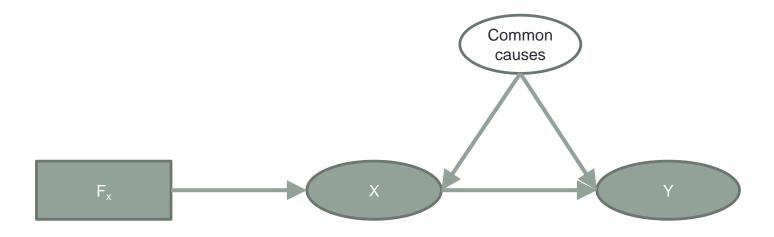
- In some cases, we are interested in randomized actions (think of game-theoretical setups, for instance), and/or which might also depend on other variables.
- This just moves the intervention index one level up.



P(Y, X, Common Causes | do(X' = x'), Z = z)

Another Way of Looking at It

 Graphically, it will be easier to find out what can be learned from observational data if we cast the regime indicator as a single variable, which can be "idle".



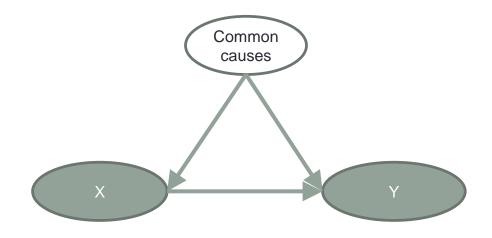
P(Y, X, Common Causes | do(X = x)) = P(Y, X, Common Causes | $F_x = x$) P(Y, X, Common Causes | X = x) = P(Y, X, Common Causes | $F_x = idle$)

Another Way of Looking at It

That is, we will read off independencies that will tell us whether it matters if F_x is "idle" or not.

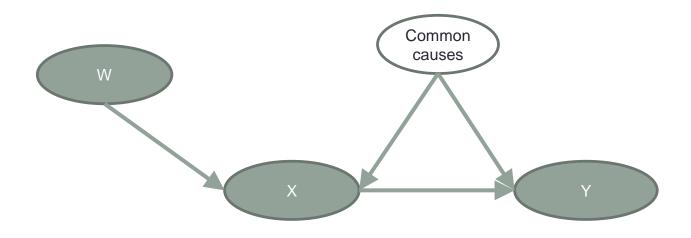
So, It Boils Down to This (Mostly)

We will try to block pesky hidden common causes to our best.

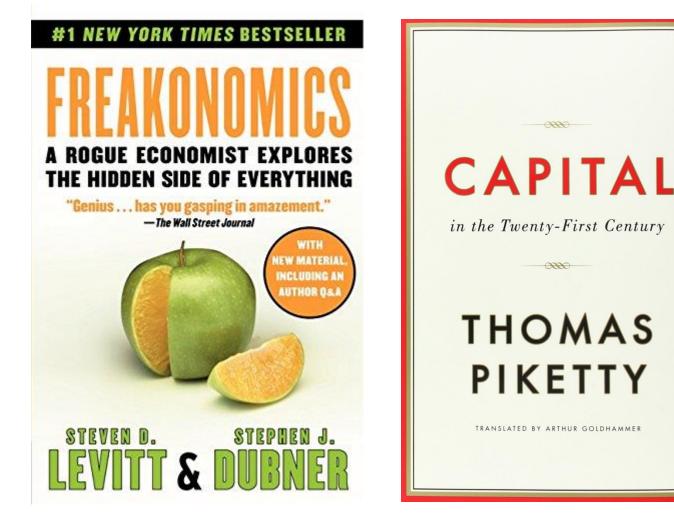


So, It Boils Down to This (Mostly)

That failing, we will try to exploit some direct causes of the treatment that do not directly affect the outcome.



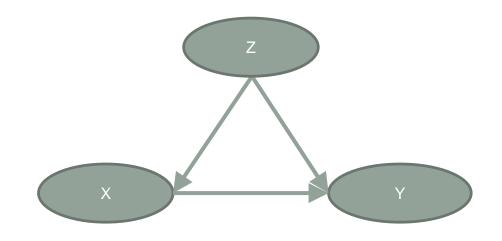
This is the Bread and Butter of Inferring Causality in Observational Studies



etc.

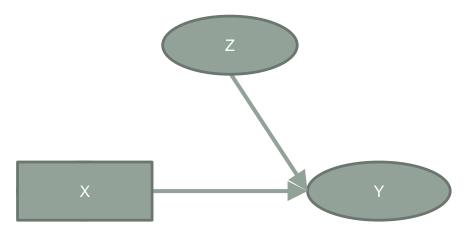
A Starting Example

Postulated causal graph



A Starting Example

do(X) regime: module P(X | Z) gets replaced by a constant, other modules, P(Z) and P(Y | X, Z), remain invariant.

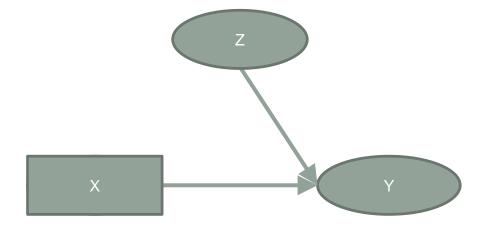


 Can the estimand be derived using observational data only? How?

A Starting Example

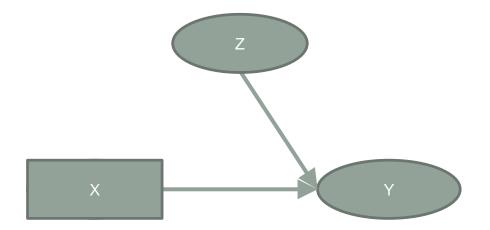
- Ceteris paribus: we have P(Y, Z | do(X)) = P(Z)P(Y | X, Z)
- So, straight marginalization gives:

$$P(Y = 1 | do(X = x)) = \sum_{Z} P(Y = 1 | X = x, Z = z)P(Z = z)$$



$$P(Y = 1 | do(X = x)) = \sum_{z} P(Y = 1 | X = x, Z = z)P(Z = z)$$

- Now comes the estimator.
- We can fit a logistic regression to P(Y = 1 | X = x, Z = z) etc. We can fit some kernel density estimator for P(Z = z) etc. Then plug these estimates in.



- Alternatively, we can fit some P(X = x | Z = z)
- We can then go through our data points {X⁽ⁱ⁾, Y⁽ⁱ⁾, Z⁽ⁱ⁾} and do the following. Since P(Y = 1 | do(X)) = E[Y | do(X)],

$$P(Y = 1 \mid do(X = x)) \approx \frac{1}{N} \sum_{i}^{N} \frac{I(X^{(i)} = x)Y^{(i)}}{P(X^{(i)} = x \mid Z^{(i)} = z^{(i)})}$$

 This is sometimes called a "model-free" estimator, as it doesn't fully specify a model.

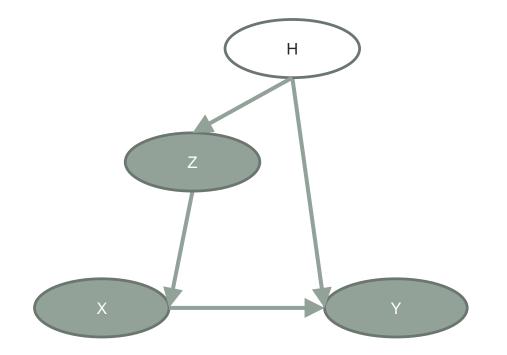
Recall the sum rule

$$E\left[\frac{I(X = x)Y}{P(X \mid Z)}\right] = \sum_{z} \frac{P(Y = 1 \mid X = x, Z = z)P(X = x + Z = z)P(Z = z)}{P(X = x + Z = z)}$$

$$P(Y = 1 | do(X = x)) = \sum_{Z} P(Y = 1 | X = x, Z = z)P(Z = z)$$

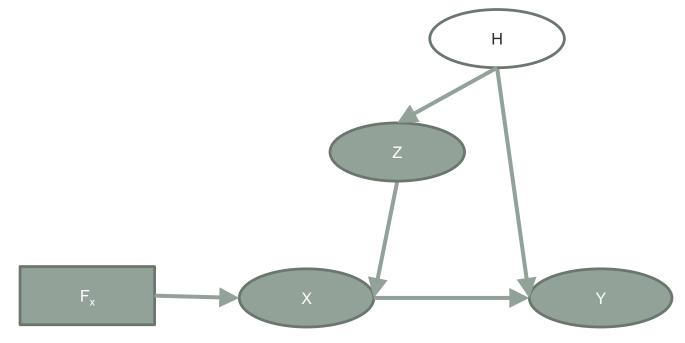
- So it boils down to good models for P(X | Z) or P(Y | X, Z)
- Some methods combine both, so that it allows for some more robust estimation.

Next Example

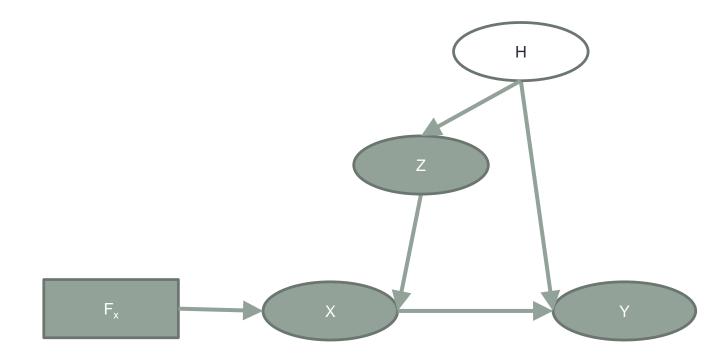


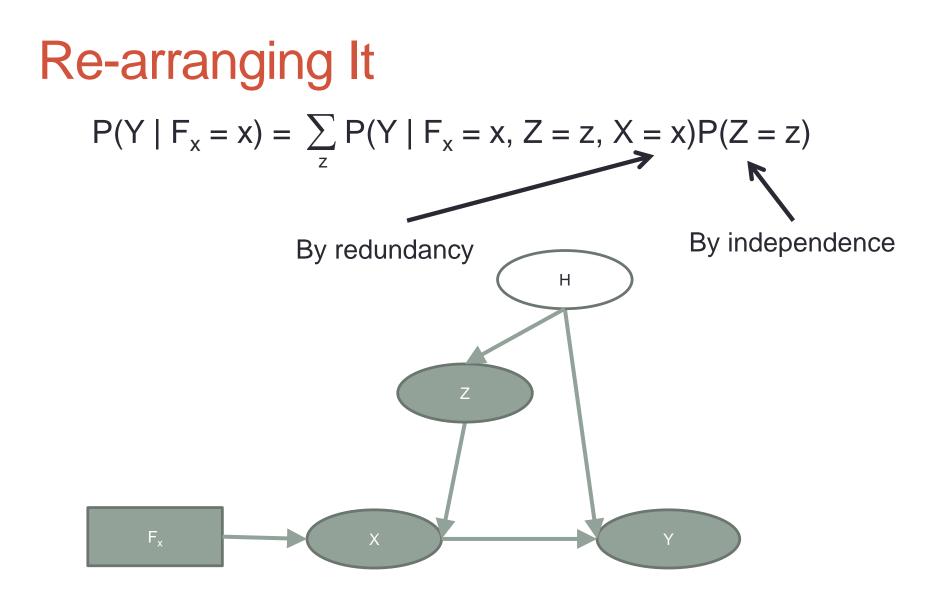
Next Example

• We will explicitly include the **regime indicator** F_x , such that $P(X = x | F_x = idle, Z) = P(X = x | Z = z)$ and $P(X = x | F_x = x, Z) = 1$



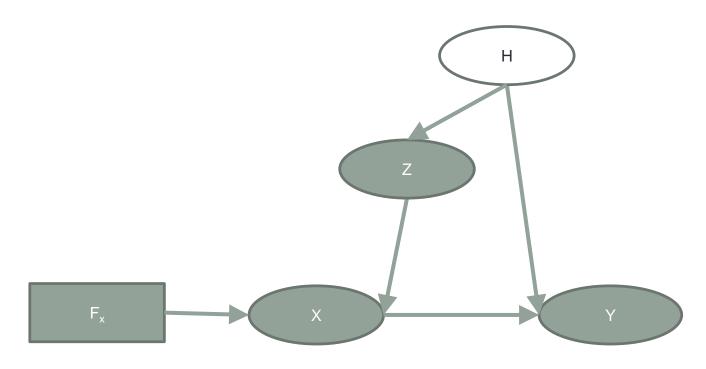
Re-arranging It $P(Y | F_x = x) = \sum_{z} P(Y | F_x = x, Z = z)P(Z = z | F_x = x)$





Re-arranging It $P(Y | F_x = x) = \sum_{z} P(Y | Z = z, X = x)P(Z = z)$

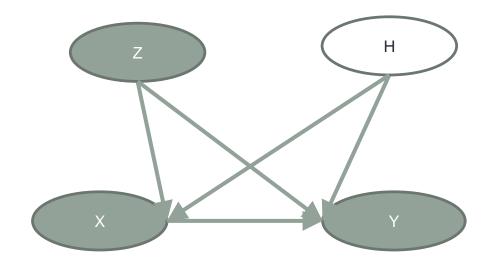
Identifiable!



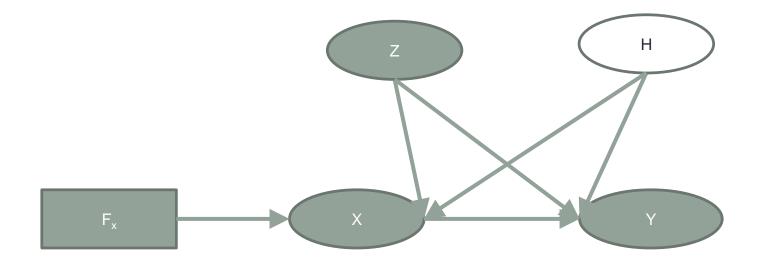
Back-door Adjustments

That's how these types of adjustments are known, and are essentially the backbone of more complex algorithms that can (graphically) answer any possible causal question for a given query.

Next Example

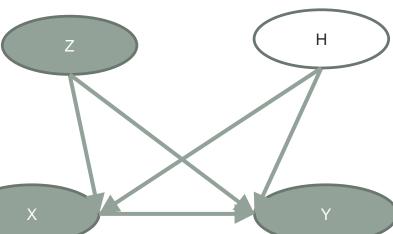


Next Example



Oh, Dear...

We need to condition on H, but we don't measure it (or aren't even sure what it is).

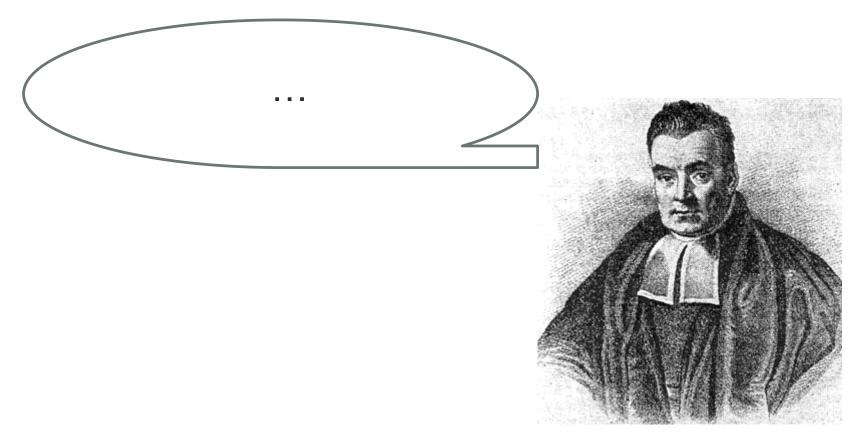


Bayes to the Rescue?

Leave this with me and my friends. Gibbs, Metropolis, one of these guys will nail it!

Chances are You Are Going to Screw it Up

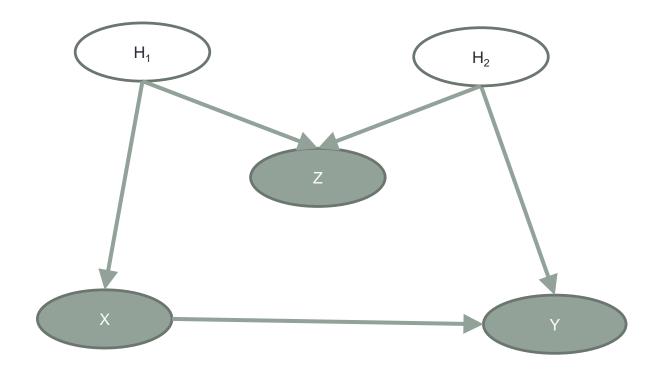
More on that later.



Shooting Down a Major Myth

- In practice, researchers try to measure as many possible things that pass as common causes of X and Y as possible, adjust for them, hope for the best.
- Not that I (or anyone) have a universal solution, but this in particular may be a very bad thing to do.

Pearl's M-bias Example



Shooting Down a Major Myth

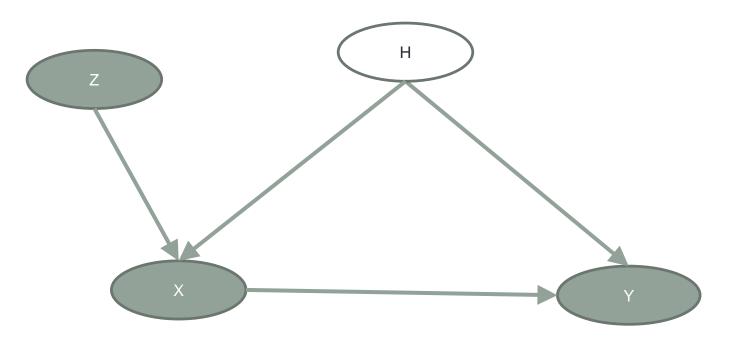
- Some researchers in causal inference say this is not very relevant in practice.
- Such comments MIGHT be true-ish for many (which?) practical problems, but they are NOT based in hard evidence or any firm empirical causal knowledge.
- Nobody said causal inference would be easy.

Shooting Down a Major Myth

- Some researchers in causal inference say this is not very relevant in practice.
- Such comments MIGHT be true-ish for many (which?) practical problems, but they are NOT based in hard evidence or any firm empirical causal knowledge.
- Nobody said causal inference would be easy.

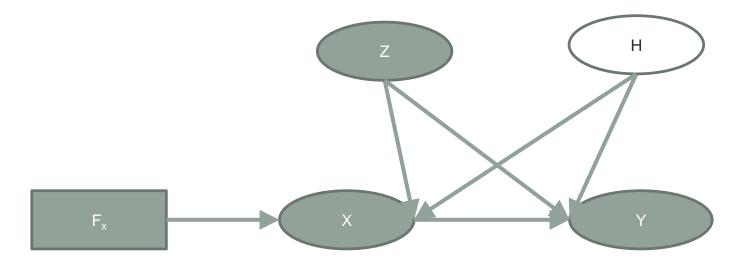
A Scary Example

 In linear models with the causal graph below, you are guaranteed to do worse, possibly MUCH worse, by adjusting for Z instead of the empty set.



So, What to Do with this Beast?

- Give up, or
- Try to measure "most" relevant common causes, cross fingers, or
- Look for some external help...

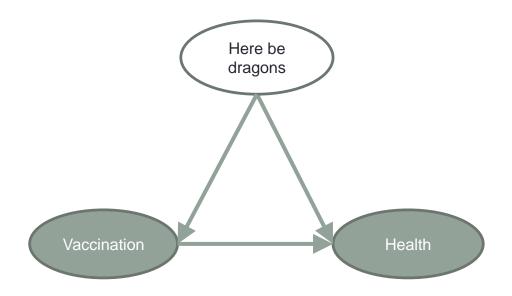


Instrumental Variables

- Say you want to estimate the average causal effect of flu vaccination on health
- Remember: implicit on all examples is the notion your treatments and measurements are well defined.
 - "Vaccination" according to some physical process
 - "Health" as hospitalization in *N* months from vaccination intake with "flu symptoms"
 - "Flu symptoms" means etc. etc.

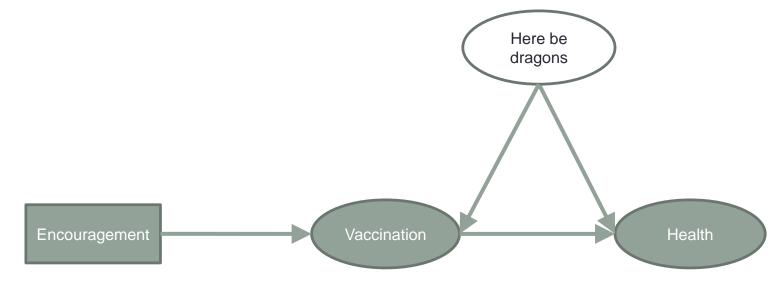
In the Wild

 You may have a previous randomized controlled trial (RCT), but the subjects there might differ from the actual population, or the inoculation process changed etc...



An Easier Process to Randomize

- An encouragement design: randomize which physicians receive letters
- Notice the absence of an edge from encouragement to health

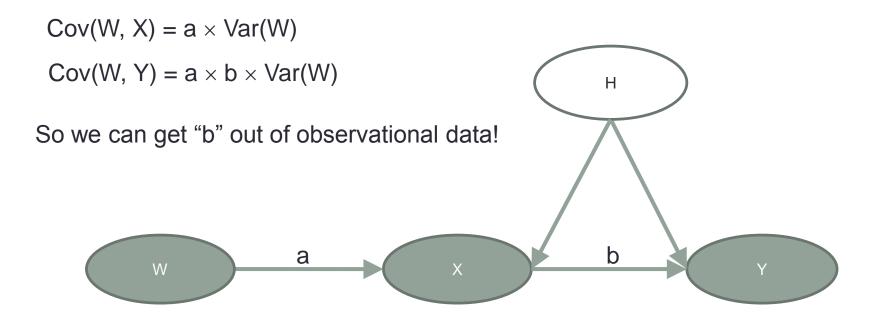


Where Does This Take Us to?

- The absence of some edges limits the possible interventional distributions.
- This gives us lower bounds and upper bounds on the causal effect, which may or may not be useful.
- In linear systems it is possible to get the causal effect.

Example: Linear Systems

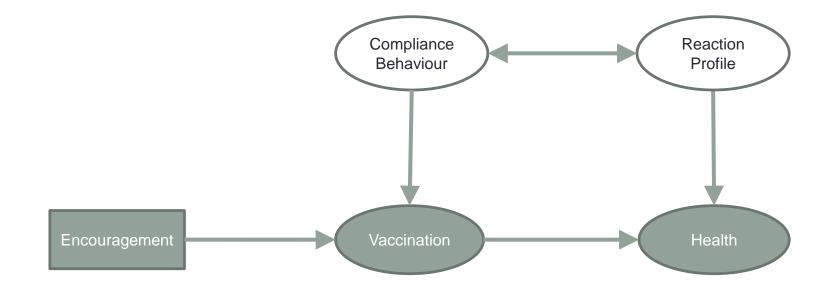
• With randomized W, we assume W and X are correlated.



(Cheeky comment :this is basically "all" of Econometrics)

Non-Linear Systems: Trying to Bayes Your Way Out of It

- Can we get "the" causal effect by latent variable modelling?
- For example, it is not uncommon to conjure latent classes as a way of modelling confounding.

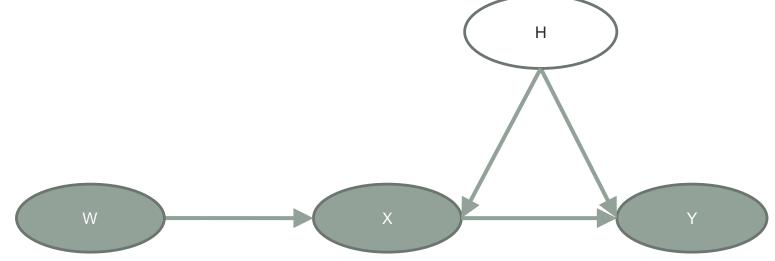


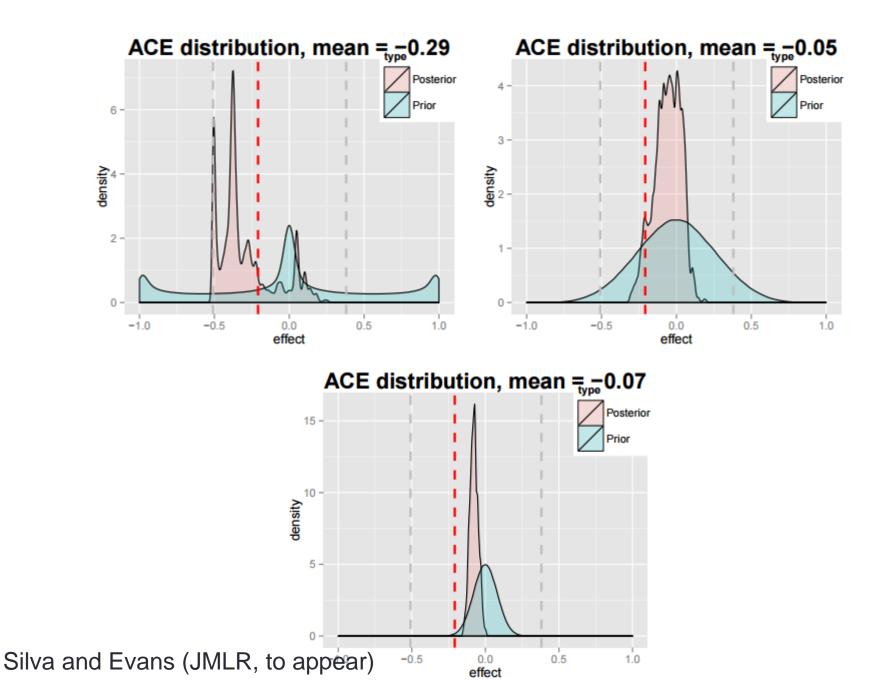
Motivation

Bayesian inference is well-defined even in unidentifiable models, so why not?

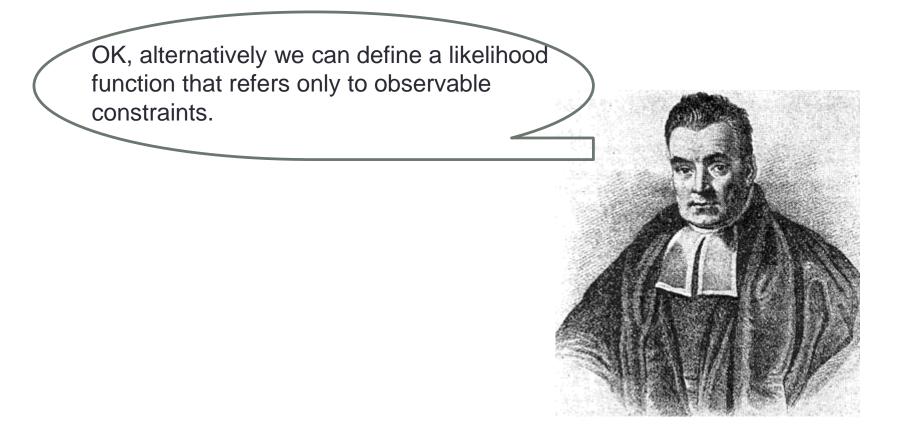
Do That at Your Own Risk

- Inference is EXTREMELY sensitive to priors.
- Example: binary synthetic data, discrete hidden variable, training data with 1,000,000 points and three different priors.
- Simulation results in next slide.

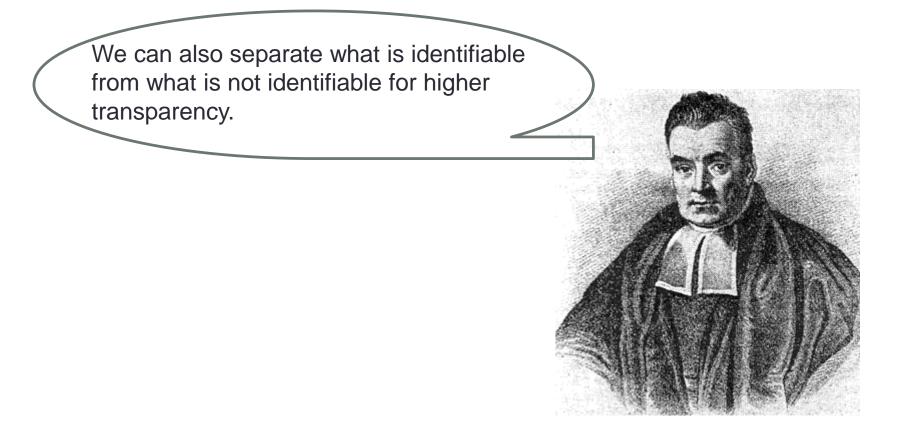




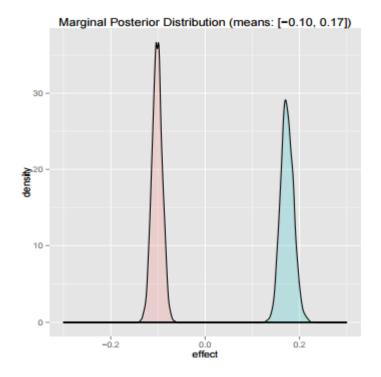
Alternative Bayesian Inference

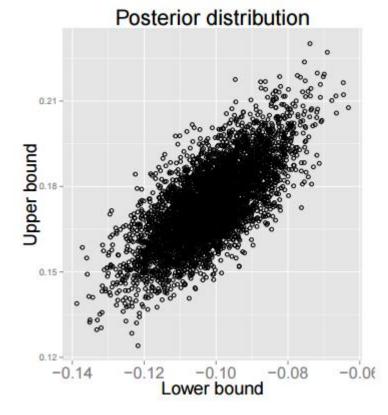


Alternative Bayesian Inference



Example of Analysis: Flu Data

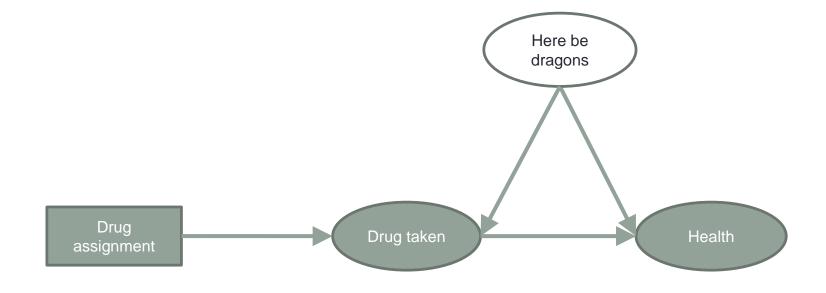




Silva and Evans (NIPS, 2015; JMLR, to appear)

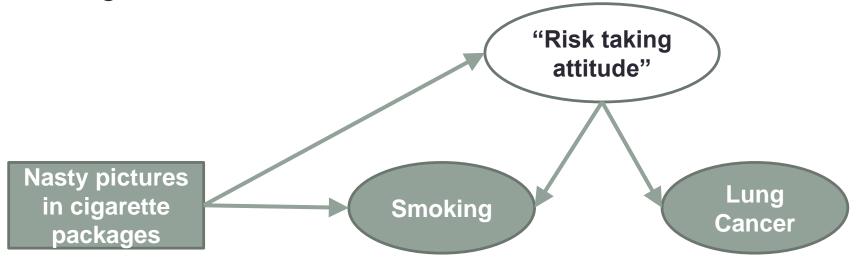
Instrumental Variables and "Broken Experiments"

- Even randomized controlled trials might not be enough.
- Another reason why the machinery of observational studies can be so important.
- Consider the **non-compliance problem** more generally.



Intention-to-Treat and Policy Making

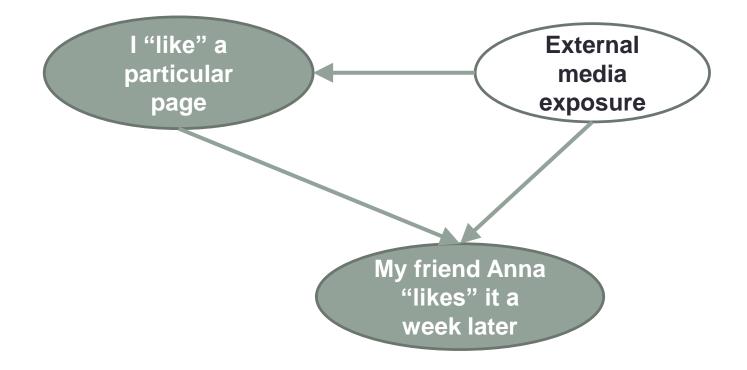
- From the RCT, we can indeed get the **intention-to-treat** effect.
- From the point of view of policy making, would that be enough?



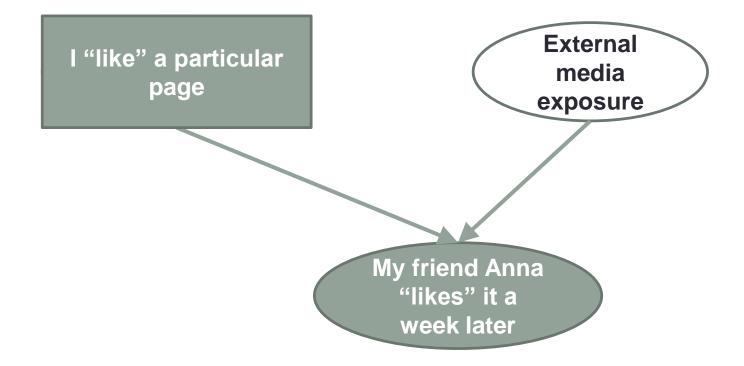
A Modern Example

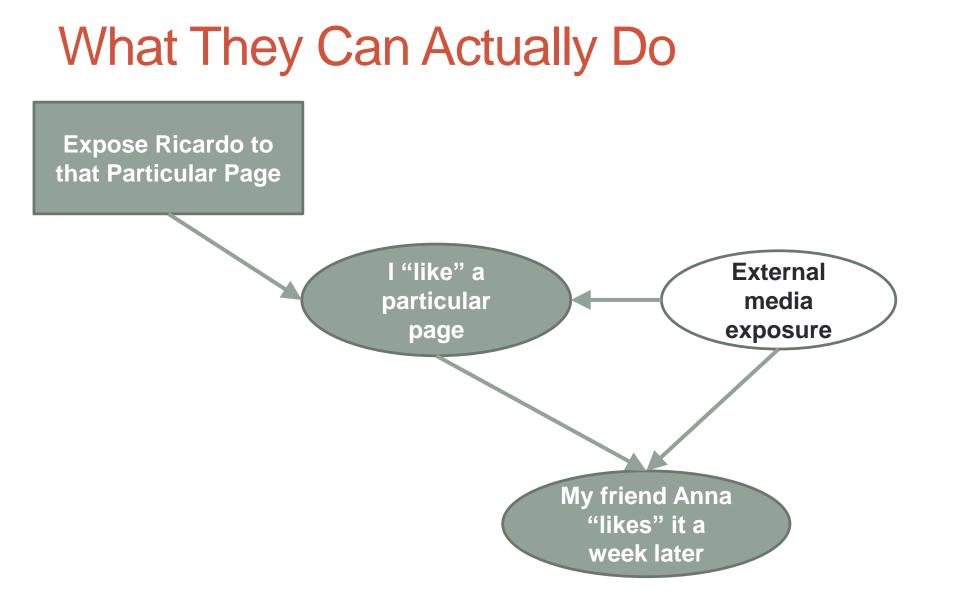
- What is the social influence of an individual or organization?
- It is pointless to define it without causal modelling.
 - Orwellian frame: "If we control the source, we control the followers."
- Much social influence analysis out there is not necessarily wrong, but it may certainly be naïve.
- Time ordering is very far from enough.
 - Time of measurement is not the same as time of occurrence!
 - What are the common causes?

Broken Experiments of Social Influence

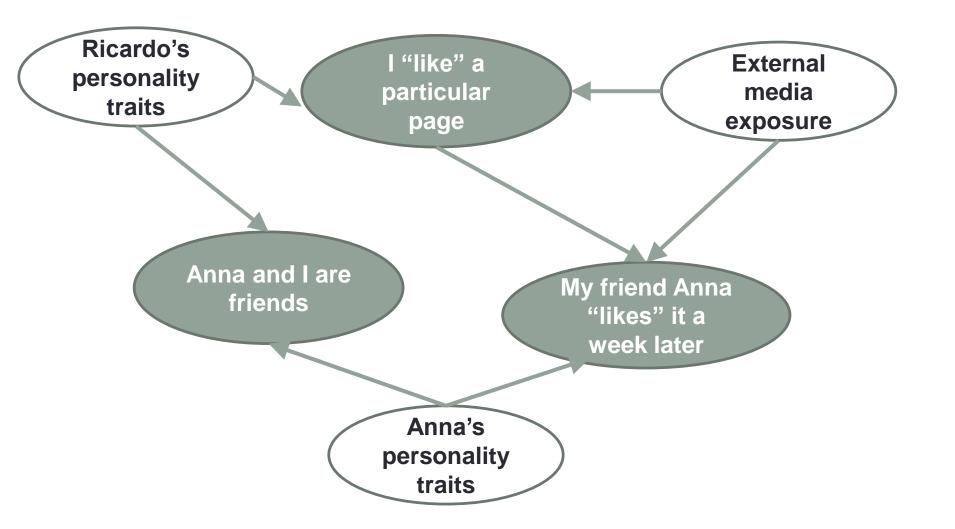


What Facebook-like Companies Would Love to Do





Wait, It Gets Worse



Network Data: Possible Solutions

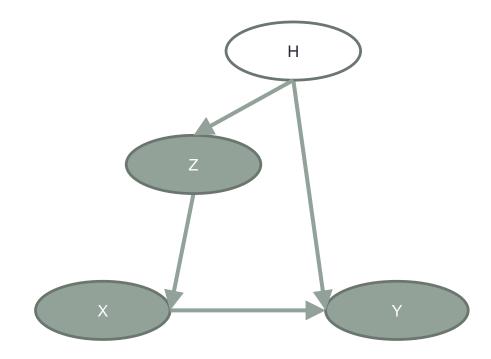
- On top of everything, we need to "de-confound" associations due to the network structure.
- We can of course still try to measure covariates that block back-doors to latent traits.
- Moreover, another compromise is to infer latent variables (stochastic block-models and others), cross fingers, hope for the best.

FROM DATA TO GRAPHS

Adjustments, Causal Systems and Beyond

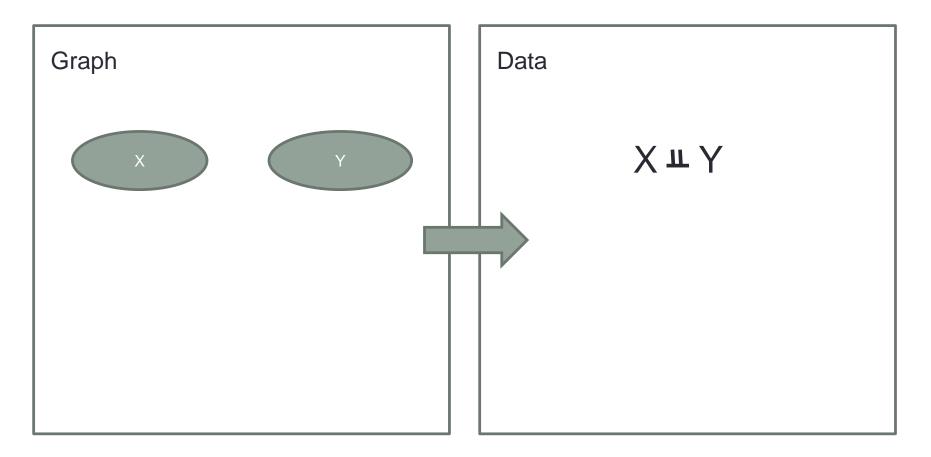
Those Back-door Adjustments

• Can we get some **proof** or **certificate** we are doing the right thing using data, not only background knowledge?



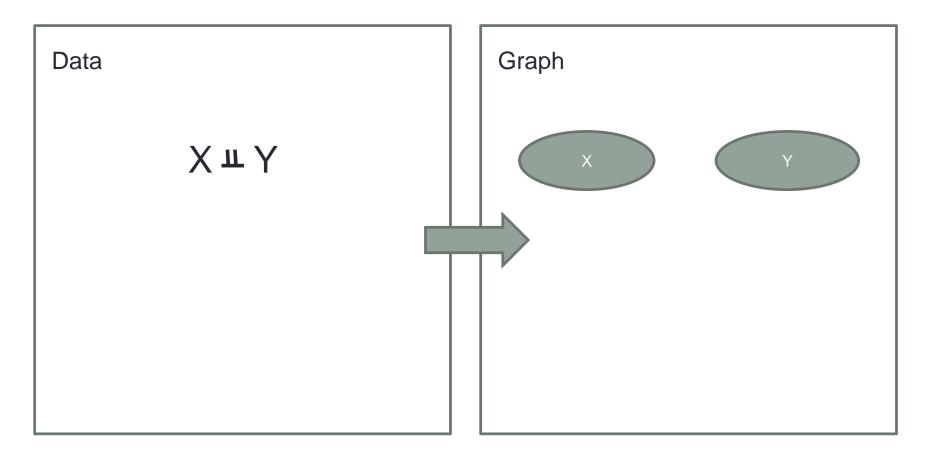
Structure Learning

Inferring graphs from testable observations



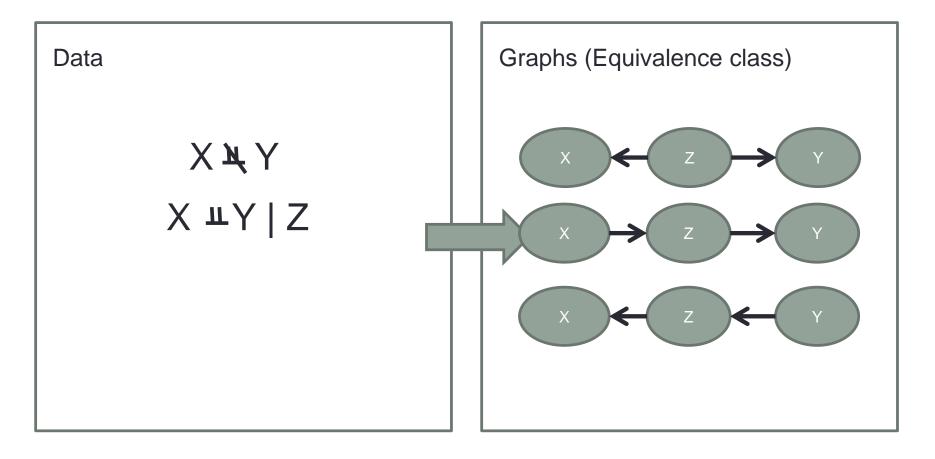
Structure Learning

Inferring graphs from testable observations



Structure Learning

Inferring graphs from testable observations

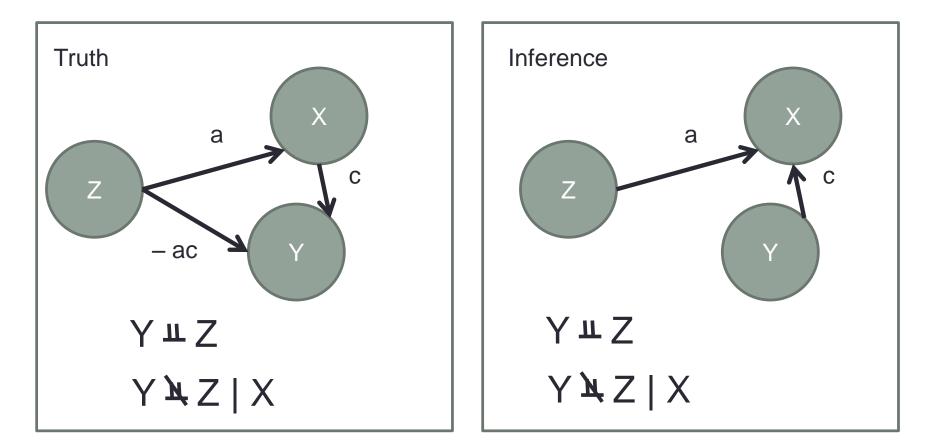


Equivalence Class?

- Just life effect identification, graph identification might not be possible. It will depend on which assumptions we are willing to make.
- For instance,
 - Partial ordering
 - Parametric relationships, like linear effects

Main Assumption: Faithfulness

"Non-structural independencies do not happen."

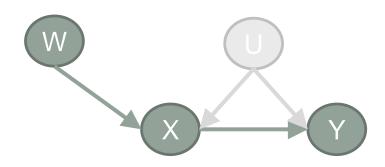


Faithfulness: A User's Guide

- Although in theory "path cancellations" are exceptions, in practice they might be hard to detect.
- However, faithfulness can be a very useful tool for generating models compatible with the data that you actually have. Taking other people's theoretical graphs at face value is unnecessary.
- Other default alternatives, like "adjust for everything", are not really justifiable. You should really try a whole set of different tools.

Example

- W not caused by Y nor Y, assume ordering $X \rightarrow Y$
- $W \ge X, W = Y | X + Faithfulness. Conclusion?$



No unmeasured confounding

- Naïve estimation works:
 Causal effect = P(Y = 1 | X = 1) P(Y = 1 | X = 0)
- This super-simple nugget of causal information has found some practical uses on large-scale problems.

Application

- Consider "the genotype at a fixed locus *L* is a random variable, whose random outcome occurs before and independently from the subsequently measured expression values"
- Find genes T_i , T_j such that $L \rightarrow T_i \rightarrow T_j$

Chen, Emmert-Streib and Storey (2007) Genome Biology, 8:R219

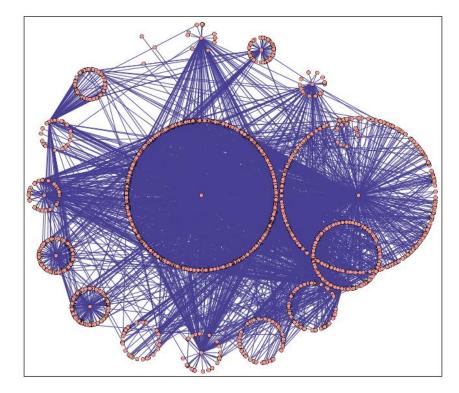


Figure 2

A transcriptional regulatory network drawn from a Trigger probability threshold of 90%. The network consists of 4,394 genes, 2,145 causal relationships, and 127 causal genes. Genes are represented by orange circles and causal relationships are represented by directed edges with black arrows.

Validating or Discovering Back-door Adjustments

 Entner, Hoyer and Spirtes (2013) AISTATS: two simple rules based on finding a witness W for a correct admissible background set Z.

- Generalizes "chain models" $W \to X \to Y$

R1: If there exists a variable $w \in \mathcal{W}$ and a set $\mathcal{Z} \subseteq \mathcal{W} \setminus \{w\}$ such that

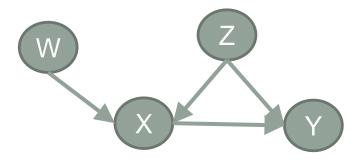
(i) $w \not\perp y \mid \mathcal{Z}$, and (ii) $w \perp y \mid \mathcal{Z} \cup \{x\}$

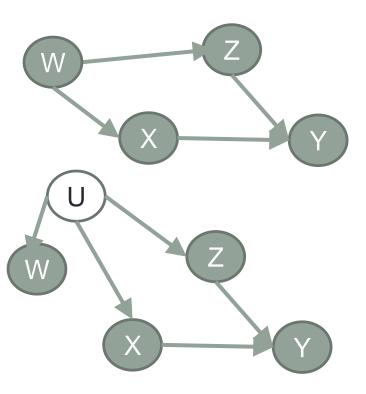
then infer '+' and give \mathcal{Z} as an admissible set.

Illustration

- R1: If there exists a variable $w \in \mathcal{W}$ and a set $\mathcal{Z} \subseteq \mathcal{W} \setminus \{w\}$ such that
 - (i) $w \not\perp y \mid \mathcal{Z}$, and
 - (ii) $w \perp \!\!\!\perp y \mid \mathcal{Z} \cup \{x\}$

then infer ' \pm ' and give \mathcal{Z} as an admissible set.

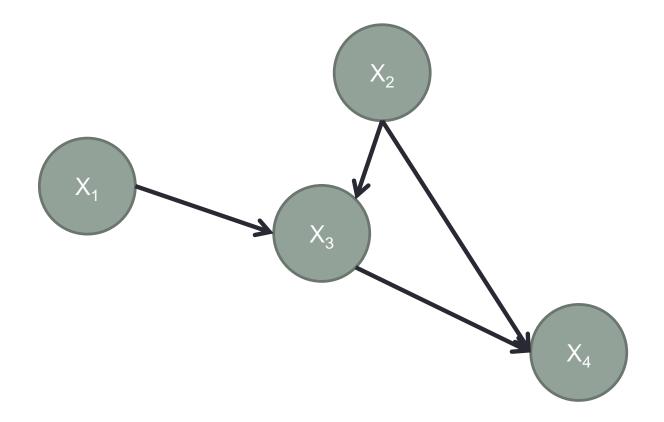




Notice the link to instrumental variables.

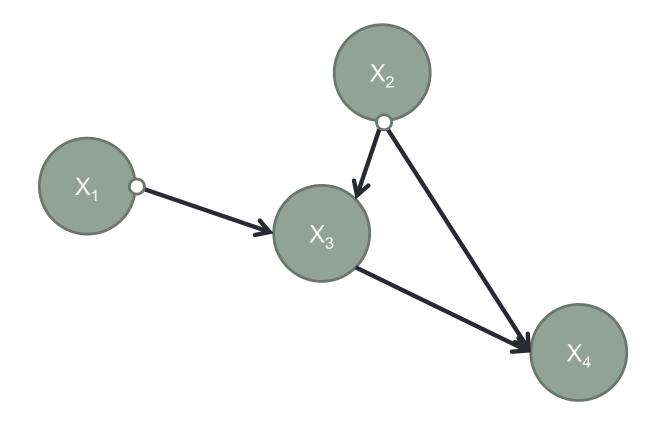
System-Wide Causal Discovery

Finding the graph for a whole system of variables



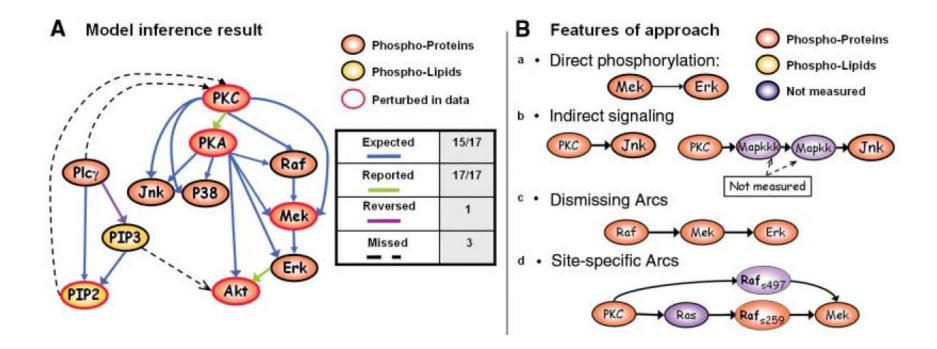
System-Wide Causal Discovery

• Equivalence class: one edge fully unveiled.



Spirtes et al. (2000) Causation, Prediction and Search. MIT Press.

Combining Experimental and Observational Data

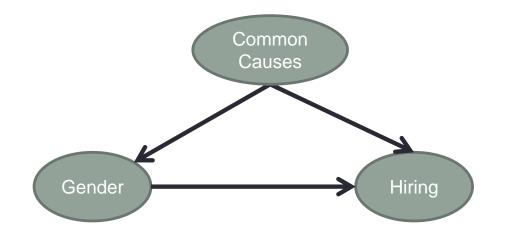


Sachs et al. (2005). "Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data". Science.

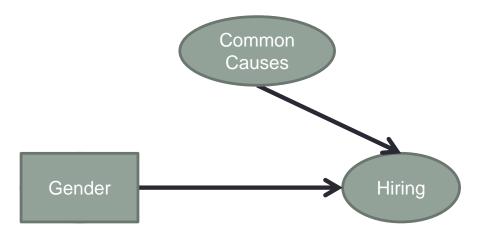
AVOIDING MINE TRAPS

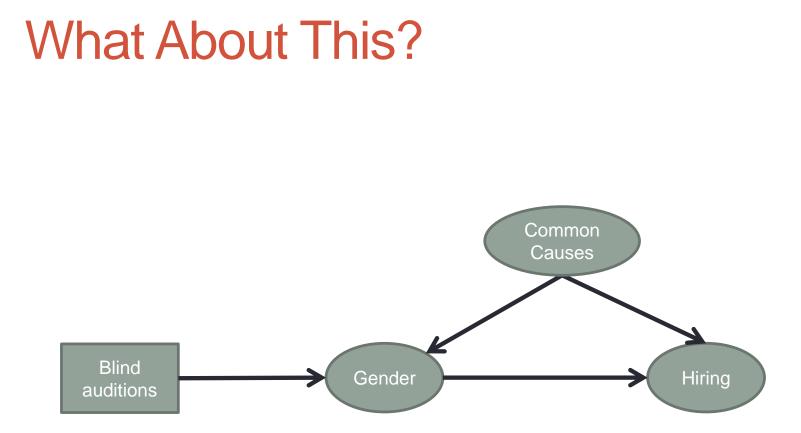
Think through your problem, don't just bigdata a solution out of it.

Don't Take Your Measurements and Interventions for Granted

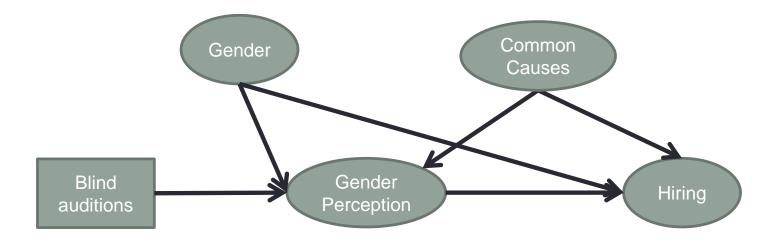


What Does That Mean?



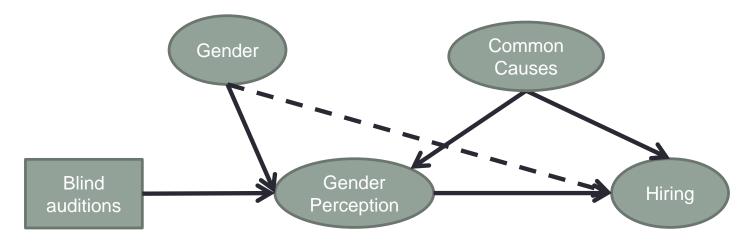


http://www.theguardian.com/women-in-leadership/2013/oct/14/blind-auditions-orchestras-gender-bias

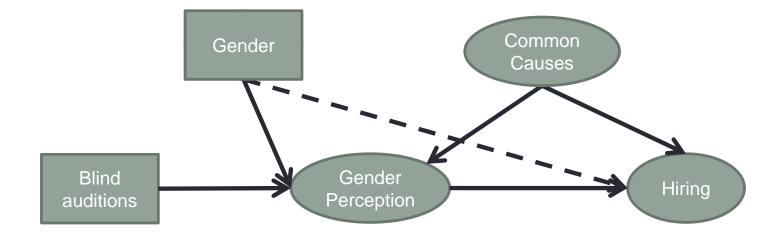


More Controversially, What about Innate Effects in the Example?

 I'd appeal to Faithfulness and see how Gender and Hiring can be made independent by Gender Perception and other covariates.



But What Does That Mean???

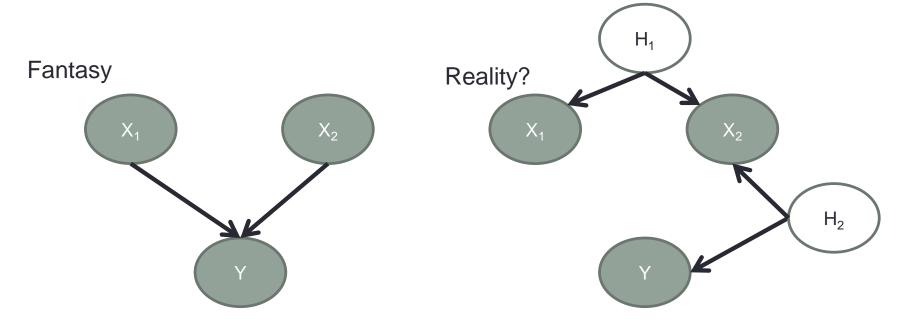


Ideal Interventions, Again

- Some researchers believe that if there is no physically welldefined mechanism of intervention, then the causal question should not be asked.
- I believe the above is non-sense.
 - Do genders have different effects on particular diseases?
 - What about disentangling whether being male leads to higher rates of heart attacks, or whether this is just confounded by behavioural effects or other genes. Why wouldn't we want to ask these questions?
- See Pearl (2009) for more on that, which is a primary defence of ideal interventions. But this is NOT a license for not paying attention to what your variables mean.

Regression and Causation

- It has been trendy for a while to fit big regression models and try to say something about "variable importance".
- Again, what does that mean?
- If you want to make causal claims, say it, don't pretend this is not your goal.

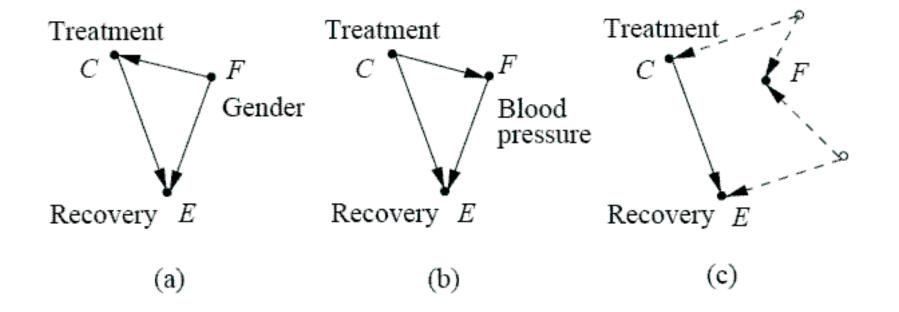


Conditioning and/or Intervening: What is that that You Want?

Combined	E	$\neg E$		Recovery Rate	
drug (C)	20	20	40	50%	-
no-drug $(\neg C)$	16	24	40	40%	The "paradox":
	36	44	80		
Males	E	$\neg E$		Recovery Rate	P(E F, C) < P(E F, ~C)
drug (C)	18	12	30	60%	P(E ~F, C) < P(E ~F, ~C)
no-drug $(\neg C)$	$\overline{7}$	3	10	70%	
	25	15	40		$P(E C) > P(E \sim C)$
Females	E	$\neg E$		Recovery Rate	
drug (C)	2	8	10	20%	-
no-drug $(\neg C)$	9	21	30	30%	
	11	29	40		Which table to use? (i.e., condition on gender or not?)

(Pearl, 2000)

Some Possible Causal Graphs



Dissolving a Paradox Using Explicit Causal Modelling

- Let our population have some subpopulations
 Say, F and ~F
- Let our treatment C not cause changes in the distribution of the subpopulations
 - $P(F \mid do(C)) = P(F \mid do(\sim C)) = P(F)$
- Then for outcome E it is impossible that we have, simultaneously,
 - P(E | do(C), F) < P(E | do(∼C), F)
 - P(E | do(C), ~F) < P(E | do(~C), ~F)
 - $P(E \mid do(C)) > P(E \mid do(\sim C))$

$P(E|do(C)) < P(E|do(\neg C)),$

$$P(E|do(\neg C)) = P(E|do(\neg C), F)P(F) + P(E|do(\neg C))P(\neg F)$$

P(E|do(C)) = P(E|do(C), F)P(F|do(C))+P(E|do(C), \negaF)P(\negaF|do(C)) = P(E|do(C), F)P(F) + P(E|do(C), \negaF)P(\negaF).

Proof

CONCLUSIONS

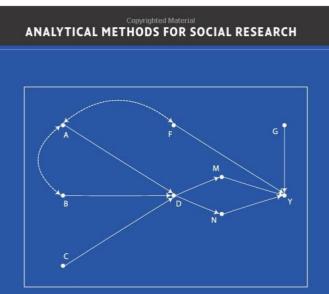
Yes, It is Hard, But:

- Pretending the problems don't exist won't make them go away.
- There is a world out there to better explored by combining experimental and observational data.
- In particular, how to "design experimental design".
- The upside of many causal inference problems is that getting lower bounds and relative effects instead of absolute effects might be good enough.

Main Advice

Don't rely on a single tool. If you can derive similar causal effects from different sets of assumptions, great. If they contradict each other, this is useful to know too. Make use of your background knowledge to disentangle the mess.

Textbooks



Counterfactuals and Causal Inference

Methods and Principles for Social Research

SECOND EDITION

STEPHEN L. MORGAN CHRISTOPHER WINSHIP In press (soonish):

Hernán MA, Robins JM (2016). **Causal Inference**. Boca Raton: Chapman & Hall/CRC, forthcoming.

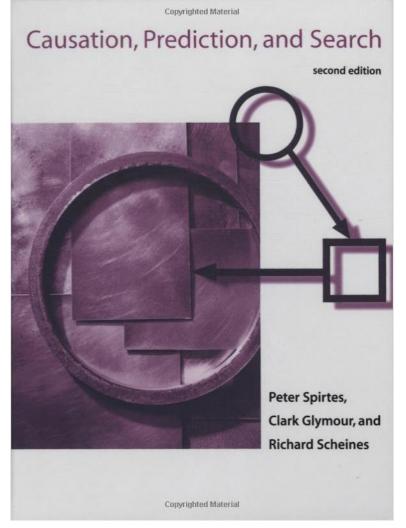
http://www.hsph.harvard.edu/miguelhernan/causal-inference-book/

Shalizi, C. (2015?). Advanced Data Analysis from an Elementary Point of View. Cambridge University Press.

http://www.stat.cmu.edu/~cshalizi/ADAfa EPoV/

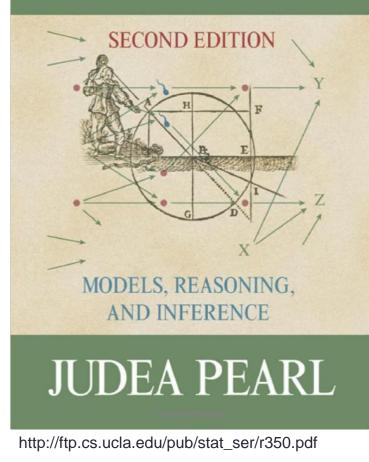
Excellent, but be warned: verbose

Classics For Researchers



http://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/lib/photoz/.g/scottd/fullbook.pdf

CAUSALITY



Let us Let Fisher Have the Last Word

5. The Step from Association to Causation

This issue is naturally of great concern to workers in observational research and has received much discussion in individual subject-matter fields. I shall confine myself to a few comments on statistical aspects of the problem.

First, as regards planning. About 20 years ago, when asked in a meeting what can be done in observational studies to clarify the step from association to causation, Sir Ronald Fisher replied: "Make your theories elaborate". The reply puzzled me at first, since by Occam's razor the advice usually given is to make theories as simple as is consistent with the known data. What Sir Ronald meant, as the subsequent discussion showed, was that when constructing a causal hypothesis one should envisage as many *different* consequences of its truth as possible, and plan observational studies to discover whether each of these consequences is found to hold. If a

The Planning of Observational Studies of Human Populations

W. G. Cochran and S. Paul Chambers Journal of the Royal Statistical Society. Series A (General) Vol. 128, No. 2 (1965), pp. 234-266

Or Maybe Not. Thank You

"I'd rather have another beer now than be Fisher."