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“I’d rather discover a single causal law 

than become the king of Persia.” 

Wikimedia 



We Will 

• Start with the very basics of causal inference 

 

• Provide some basic background in Bayesian 

networks/graphical models 

 

• Show how graphical models can be used in causal 

inference 

 

• Describe application scenarios and the practical 

difficulties 



What is a Causal Inference Problem? 

Let me give you two problems. 



Problem 1 

You are in charge of setting the price of life insurance for a 

person you know is a smoker, among other things. What is 

your approach and what do you need to know? 



Problem 2 

You are in charge of public policy on smoking incentives. 

You want to minimise health costs that may be due to 

smoking. What is your approach and what do you need to 

know? 



On Causation, Prediction and Explanation 

• There are tasks of prediction, control and explanation. 

 

• Prediction is bog-standard in machine learning, statistics, 

predictive analytics etc. 

 

• Control is about taking actions to achieve a particular 

outcome. 

 

• Explanation concerns what the outcome would be if you 

had seen different data. It involves actions that have not 

taken place. 



Causal Inference 

• Causal inference is essentially about control and 

explanation. 

 

• Good control should require good predictive models 

anyway. 

 

• Explanation is not about the future, but counterfactual 

events in the past. 

 

• How to solve these problems? 



Learning from Actions 



Experimental Design 



Experimental Design 

• Say you have a choice of treatments, in order to 
understand a particular outcome. 

 

• Along the line of Fisher’s examples, you could define as 
your outcome the productivity of a particular plantation 
field. 

 

• As treatments, different combinations of fertilizers at 
different dosages. 

 

• In the data, the choice of treatment is set by design, so 
we know how it was generated. 



Exploitation of Findings 

• Once we learn the relationship between treatment and 

outcome, we can use this information to come up with 

an optimal policy 

 

• For instance, pick combination of fertilizers/dosage that maximises 

expected crop productivity. 

 

• This is essentially the application of decision theory. 

 



Exploitation of Findings 

• An alternative use is to understand what would have 
happened to those outcomes had treatment been 
different. 
• For instance, a marketing campaign was followed by major losses. 

How can we assign blame or responsibility for these outcomes? 

• This is an in-sample, NOT an out-of-sample estimand. 

 

• This is essentially the application of counterfactual 
modelling. 

 

• Notice: counterfactual analysis is NOT about prediction 
and control, which is my focus. For the rest of this talk, I’ll 
have little to say about counterfactual learning. 



Interplay with Modelling 

• The number of possible experimental 

conditions may explode, and treatment 

(action) levels can be continuous. 

 

• All sorts of models (logistic regression, 

Gaussian processes etc.) can be used to 

map treatment to outcome. 

 

• In particular, analysis of variance 

(ANOVA) via Latin squares is one of the 

most classical and practically used 

methods in some industries. 

 

Gonville and  

Caius College,  

Cambridge 



Interplay with Inference 

• Traditional statistics techniques (power 

analysis, hypothesis testing, 

confidence intervals) are also used in 

experimental design. 

 

• Fisher’s “The Design of Experiments” 

was one of the sources responsible (to 

blame?) for the popularity of 

hypothesis testing. 

 
“0.05”  

(Not really. Fisher  

knew better than that.) 



Sidenote: A/B Testing and Bandits 

• A/B testing is the baby sibling of experimental design. 

 

 

• Bandit modelling is a sequential variation of experimental 

design, where we also care about our “rewards” as we 

collect data and perform actions. 

(http://research.microsoft.com/en-us/projects/bandits/) 



Seems Sensible so Far? (I hope) 

• Causal inference is not complicated per se, however it 

does require much attention to detail. 

 

• Crucially, we defined treatment as something “set by 

design”. What does that mean?  

 

• And isn’t the setting different, you know, when you are 

actually making decisions later on? How can we 

generalize? 

 

 

 



The Stuff Nightmares are Made Of 

The whole complication lies on the definition of “set by 

design”. We can’t actually formally define it without using 

causal concepts, and we can’t define causal concepts 

without the concept of “set by design”. 

 



Introducing: Observational Studies 

Compulsory XKCD strip 



Out of Control 

• In an observational study, the quantity we deem as the 

“treatment” is not under any designer’s control. 

 

• Case in point, smoking as treatment, lung cancer as 

outcome. 

 

• How would one apply the framework of experimental 

design to the smoking and lung cancer problem? 



Where Do Treatments Come From? 

Smoking Lung cancer 

Common 

causes 



Running a Controlled Trial 

Smoking Lung cancer 

Common 

causes Randomize Randomize 



Exploiting the Knowledge Learned from a 

Controlled Trial 

Smoking Lung cancer 

Common 

causes Policy Policy 



Exploiting the Knowledge Learned from a 

Controlled Trial 

Smoking Lung cancer 

Common 

causes 

Smoking 



But… We Can’t Randomize 

Smoking Lung cancer 

Genetic 

Profile? 



“Adjust” 

Smoking Lung cancer 

Genetic 

Profile 

? ? 



But… What If?... 

Smoking Lung cancer 

Genetic 

Profile 

“Sloppy 

Lifestyle”

? 



And So On 

Smoking Lung cancer 

Genetic 

Profile 
Aliens? 

“Sloppy 

Lifestyle” 



Observational Studies 

• The task of learning causal effects when we do not control 

the treatment, which instead comes in a “natural regime”, 

or “observational regime”. 

 

 

• The aim is to relate use the data in the observational 

regime to infer effects in the interventional regime. 



That Is 

We would like to infer 

P(Outcome | Treatment) in  

a “world” (regime) like this 

All we have is (lousy?) data for  

P(Outcome | Treatment) in  

a “world” (regime) like this instead 

Smoking 
Lung 

cancer 

Common 

causes 

Smoking Smoking 
Lung 

cancer 

Common 

causes 



A Historical Example 

• Cholera in Soho, 1850s 

 

• Miasma theory: brought by “bad air” 

• No germ theory at the time 

 

• In hindsight: water supply contaminated 

 

• Location was associated with outbreaks 



Enter John Snow, “father” of Epidemiology 

http://donboyes.com/2011/10/14/john-snow-

and-serendipity/pumps-and-deaths-drop/ 

Here to save the day 



Understanding it with Causal Diagrams 

• Based on common sense, location was a cause of 

disease 

• But this didn’t rule out miasma theory 

 

• In one sense, Snow was doing mediation analysis: 

 

• Location was irrelevant once given the direct cause, water – in 

particular, one major pump 

 



Understanding it with Causal Diagrams 

Location Cholera 

Location Cholera Location 

Location 
Contaminated 

Water Access 
Cholera 

Location 
Water 

Sources 
Cholera Location 

Contaminated 

Water Access 



Control, Revisited 

• Notice that, in order to maximize a “reward” (minimum 

expected number of cholera cases), we could have 

created a policy directly  by intervening on Location. 

 

• That is, if you think that “Evacuate Soho for good!” would 

be a popular policy. 

 

• Mediation matters in practice, and control is more than 

policy optimization: it is about what can be manipulated in 

practice or not. 



What Now? 

• The jump to causal conclusions from observational data 

requires some “smoothing” assumptions linking different 

regimes. 

Smoking 
Lung 

cancer 

Common 

causes 

Smoking Smoking 
Lung 

cancer 

Common 

causes 

Interventional Regime Observational Regime 



A Crude Analogy: Regression, or  

“Smooth Interpolation” 

http://www.gaussianprocess.org/gpml/code/matlab/doc/ 



What Now? 

• To do “smoothing” across regimes, we will rely on some 

modularity assumptions about the underlying causal 

processes. 

 

• We just have the perfect tool for the job: Bayesian 

networks (a.k.a graphical models). 



BAYESIAN NETWORKS:  

A PRIMER 



Graphical Models 

• Languages for decomposing probabilistic models. 

 

• Because we want sparsity as a means of facilitating 

estimation and computation. 

 

• But also modularity. We use a graph as a visual 

representation of a family of factorizations of a 

probabilistic model. 

 

• The graph itself is just a drawing: it is the system of constraints 

encoded by the drawing that is the essence of a graphical model 

• Vertices are the (random) variables of a probabilistic model 

 



Bayesian Networks 

• A model that follows the structure of a directed acyclic 

graph (DAG), traditionally for discrete variables. 

X1 

X2 

X4 

X3 

Task: represent P(X1, X2, X3, X4) 



Bayesian Networks 

• It is enough to encode the conditional probability of 

each vertex given its parents. 

X1 

X2 

X4 

X3 

P(X1 = x1, X2 = x2, X3 = x3, X4 = x4) = P(x1)P(x2)P(x3 | x1, x2)P(x4 | x2, x3) 

P(x1) 

P(x2) 

P(x3 | x1, x2) 

P(x4 | x2, x3) 



Example: The Alarm Network 

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring System: A Case Study with Two 

Probabilistic Inference Techniques for Belief Networks. In Proceedings of the 2nd European Conference on Artificial 

Intelligence in Medicine, pages 247-256. Springer-Verlag, 1989 



Detour: Before Proceeding 

• Two simple operations you will need to be familiar with. 

• Say you have some P(X1, X2, X3): 

P(X1 = x1, X2 = x2) =        P(X1 = x1, X2 = x2, X3 = x3)  
x3 

Marginalization (“sum rule”): 

P(X1 = x1 | X2 = x2) =   P(X1 = x1, X2 = x2)    P(X1 = x1, X2 = x2)  

Conditioning: 

P(X2 = x2) 

Important! This is NOT a distribution over X2! 



Continuing: Independence Constraints 

• Factorizations will imply independence constraints. Here, 

X4 is independent of X1 given X2 and X3 

X1 

X2 

X4 

X3 

P(X4 = x4 | X1 = x1, X2 = x2, X3 = x3)  P(x1)P(x2)P(x3 | x1, x2)P(x4 | x2, x3)  P(x4 | x2, x3) 

P(x1) 

P(x2) 

P(x3 | x1, x2) 

P(x4 | x2, x3) 

X4       X1 | {X2, X3} 



Independence Constraints are  

“Non-Monotonic” in a Bayes Net 

X1 

X2 

X4 

X3 

P(X1 = x1, X2 = x2) =      P(x1)P(x2)P(x3 | x1, x2)P(x4 | x2, x3) = P(x1)P(x2) 

P(x1) 

P(x2) 

P(x3 | x1, x2) 

P(x4 | x2, x3) 

X1       X2 

 
x3, x4 



Independence Constraints are  

“Non-Monotonic” in a Bayes Net 

X1 

X2 

X4 

X3 

P(X1 = x1, X2 = x2 | X3 = x3)  P(x1)P(x2)P(x3 | x1, x2)  g(x1)h(x2) 

P(x1) 

P(x2) 

P(x3 | x1, x2) 

P(x4 | x2, x3) 

X1       X2 | X3 



Independence Constraints are  

“Non-Monotonic” in a Bayes Net 

X1 

X2 

X4 

X3 

P(X1 = x1, X2 = x2 | X3 = x3)  P(x1)P(x2)P(x3 | x1, x2)  g(x1)h(x2) 

P(x1) 

P(x2) 

P(x3 | x1, x2) 

P(x4 | x2, x3) 

X1       X2 | X3 

It’s this guy’s fault 



Understanding This by “Explaining Away” 

Earthquake Burglary 

House 

Alarm 



Reading Off Independencies 

• The qualitative structure of the system (the graph) allows 

us to deduce dependencies/independencies which are 

entailed by it. 

Xi 

Xj 

Xk 

… 

… 

… … 

… 

Xp 



Reading Off Independencies 

• Conditioning on a “collider” (“v-structure”) activates a path 

Xi 

Xj 

Xk 

Conditioning on Xk  

“activates” Xi  Xk  Xj 



Reading Off Independencies 

• Conditioning on a “non-collider” de-activates (or blocks) 

a path 

Xi 

Xk 

Conditioning on Xk  

“blocks” Xi  Xk  Xp 

Xp 



In Our Example 

• X4 is independent of X1 given {X2, X3} because both paths 

from X1 to X4 are blocked by {X2, X3} 

X1 

X2 

X4 

X3 

X1 X3 X2 X4 

X1 X3 X4 



Non-Structural Independencies 

• It is possible for some independencies to follow not from 

the graph, but from particular parameter values. 

 

• This is easier to understand in linear systems. 

Xp1 

Xpk 

Xi 

… 

Xk = bi1Xp1 + … + bikXpk + ek 
bi1 

bik 



Non-Structural Independencies 

• Example 

Xp1 

Xp2 

Xi 
b 

c 

a 

Xp2 = aXp1 + ep2 

 

Xi = bXp1 + cXp2 + ei  

Xi = bXp1 + acXp1 + …  

If b = –ac, then Xi is independent of Xp1, even if this is not 

implied by the graph (and it doesn’t even hold when fixing Xp2) 

Xi       Xp1 Xi       Xp1 | Xp2 



What Next 

• The decomposition of a system as a graphical model will 

be the key step to link observational and interventional 

regimes in the sequel. 



FROM GRAPHS TO 

CAUSAL EFFECTS 



Task 

• Say you have some treatment X and some outcome Y. 

 

• Say you have some background variables Z you do 

observe in your data, and which may (or may not) block 

all paths along common causes of X and Y. 

 

• Find me a measure of how Y changes when I 

intervene on X at different levels. 

 

• But you only have observational data! 

 

 



Introducing Proper Notation 

• For instance, if Y and X are binary, I could be interested in 

this following average causal effect, 

 

 

 

 

• But wait! This notation can be very confusing. In the 

observational regime, X is random. In interventional 

regime, X is fixed by some “magical” agent external to the 

system. 

P(Y = 1 | X = 1) – P(Y = 1 | X = 0) under intervention 



Introducing Proper Notation 

The System 

X 

Y 

The external agent 

Variables ignored by the system 



Pearl’s “Do” Notation 

• We distinguish random Xs from “fixed” Xs by the notation 

“do(X)”. 

 

• Average causal effect: 

 

 

• As we say in statistics, this is the estimand. We may 

derive it from a model, and estimate it with an estimator. 

 

 

 

P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0)) 

TECHNICAL NOTE: it is still not ideal, as in traditional probability anything to 

the right of the conditioning bar should be a random variable observed at a 

particular value. A more kosher notation would be Pdo(X = x)(Y = 1) or  

P(Y = 1; do(X = x)), but now this has stuck. 



PLEASE! 

• If you learn one thing from today’s talk, 

talk, it should be: do not conflate 

estimand, with model, with 

estimator! 

 

• This is a MAJOR source of confusion, and one of the 

main reasons why people talk past each other in 

causal inference. 

 

• Most of my focus will be on clearly defining estimands 

and models. 



The Model 

• Now we need a way of deriving this estimand from the 

observational regime. 

 

• The whole game is to postulate a causal graph, to see 

how the estimand can be written as a function of it, and 

to check whether this function can be calculated from 

the observational regime. 



What is a Causal Graph? 

• A causal graph is a Bayesian network where the parents 

of each vertex are its direct causes. 

X1 

X2 

X4 

X3 



What is a Direct Cause? 

• The direct causes of Xi are the variables which will 

change the distribution of Xi as we vary them, as we 

perfectly intervene in the whole system. 

X1 

X2 

X4 

X3 

X1 

X2 

X4 

P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4))  

P(X3 = x3 | do(X1 = x1’), do(X2 = x2), do(X4 = x4)) 

P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4)) = 

P(X3 = x3 | do(X1 = x1), do(X2 = x2), do(X4 = x4’)) 



What is a Perfect Intervention? 

• A perfect intervention on some X is an independent cause 

of X that sets it to a particular value, all other things 

remain equal. 

• … 

 

 

 



What is a Perfect Intervention? 

• We won’t define it. We will take it as a primitive. 

 

• “I know it when I see it.” 

 

• Operationally, this just wipes out all edges into X and 

make it a constant, all other things remain equal. 

 

• How is it related to randomization? 

 



Relation to Randomization 

• Randomization is NOT a concept used 

in our definition of causal effect. Nor 

should it be. 

• Look at the estimand. It is there? No. 

• Randomization is a way of sampling 

data so that we get a estimator that 

will give a consistent answer. 

• Which is exactly what is missing in an 

observational study. 

• In practice, if you can do randomization you 

should. 

• Think of randomization in other contexts, 

such as estimating public opinion from 

surveys. 



Relation to Other Interventions 

• In some cases, we are interested in randomized actions 

(think of game-theoretical setups, for instance), and/or 

which might also depend on other variables. 

 

• This just moves the intervention index one level up. 

X Y 

Common 

causes 

X’ 

P(Y, X, Common Causes | do(X’ = x’), Z = z) 

Z 



Another Way of Looking at It 

• Graphically, it will be easier to find out what can be 

learned from observational data if we cast the regime 

indicator as a single variable, which can be “idle”. 

X Y 

Common 

causes 

Fx 

P(Y, X, Common Causes | do(X = x)) = P(Y, X, Common Causes | Fx = x) 

P(Y, X, Common Causes | X = x) = P(Y, X, Common Causes | Fx = idle) 



Another Way of Looking at It 

That is, we will read off independencies that will tell us 

whether it matters if Fx is “idle” or not. 



So, It Boils Down to This (Mostly) 

We will try to block pesky hidden common causes to our 

best. 

X Y 

Common 

causes 



So, It Boils Down to This (Mostly) 

That failing, we will try to exploit some direct causes of the 

treatment that do not directly affect the outcome. 

X Y 

Common 

causes 

W 



This is the Bread and Butter of Inferring 

Causality in Observational Studies 

etc. 



A Starting Example 

• Postulated causal graph 

X Y 

Z 



A Starting Example 

• do(X) regime: module P(X | Z) gets replaced by a 

constant, other modules, P(Z) and P(Y | X, Z), remain 

invariant. 

 

 

 

 

 

 

• Can the estimand be derived using observational data 

only? How? 

X Y 

Z 

X 



A Starting Example 

• Ceteris paribus: we have P(Y, Z | do(X)) = P(Z)P(Y | X, Z) 

• So, straight marginalization gives: 

 

 

 

 

 

 

X Y 

Z 

X 

 P(Y = 1 | do(X = x)) =          P(Y = 1 | X = x, Z = z)P(Z = z) 

z 



Learning from Data 

• Now comes the estimator. 

• We can fit a logistic regression to P(Y = 1 | X = x, Z = z) 

etc. We can fit some kernel density estimator for P(Z = z) 

etc. Then plug these estimates in. 

 

 

 

 

 

 

X Y 

Z 

X 

 P(Y = 1 | do(X = x)) =          P(Y = 1 | X = x, Z = z)P(Z = z) 

z 



Learning from Data 

• Alternatively, we can fit some P(X = x | Z = z) 

• We can then go through our data points {X(i), Y(i), Z(i)} and 

do the following. Since P(Y = 1 | do(X)) = E[Y | do(X)], 

 

 

 

 

 

 

• This is sometimes called a “model-free” estimator, as it 

doesn’t fully specify a model. 

I(X(i) = x)Y(i)   
i P(X(i) = x | Z(i) = z(i)) 

P(Y = 1 | do(X = x))   
1 

N 

N 



Learning from Data 

• Recall the sum rule 

        P(Y = 1 | X = x, Z = z)P(X = x | Z = z)P(Z = z) 
  

z 

I(X = x)Y 

P(X | Z) 
E[ ] = 

P(X = x | Z = z) 

 P(Y = 1 | do(X = x)) =          P(Y = 1 | X = x, Z = z)P(Z = z) 

z 



Learning from Data 

• So it boils down to good models for P(X | Z) or P(Y | X, Z) 

 

• Some methods combine both, so that it allows for some 

more robust estimation. 



Next Example 

X Y 

Z 

H 



Next Example 

• We will explicitly include the regime indicator Fx, such 

that P(X = x | Fx = idle, Z) = P(X = x | Z = z) and  

P(X = x | Fx = x, Z) = 1  

X Y 

Z 

H 

Fx 



Re-arranging It 

X Y 

Z 

H 

Fx 

P(Y | Fx = x) =      P(Y | Fx = x, Z = z)P(Z = z | Fx = x)  
z 



Re-arranging It 

X Y 

Z 

H 

Fx 

P(Y | Fx = x) =      P(Y | Fx = x, Z = z, X = x)P(Z = z)  
z 

By independence By redundancy 



Re-arranging It 

X Y 

Z 

H 

Fx 

P(Y | Fx = x) =      P(Y | Z = z, X = x)P(Z = z)  
z 

Identifiable! 



Back-door Adjustments 

That’s how these types of adjustments are known, and are 

essentially the backbone of more complex algorithms that 

can (graphically) answer any possible causal question for a 

given query. 



Next Example 

X Y 

Z H 



Next Example 

X Y 

Z H 

Fx 



Oh, Dear… 

X Y 

Z H 

Fx 

Y      Fx 

Y      Fx | Z 

Y      Fx | Z, X 

Y      Fx | X etc. 

We need to condition on H, 

but we don’t measure it (or aren’t  

even sure what it is). 



Bayes to the Rescue? 

Leave this with me and my friends. Gibbs,  

Metropolis, one of these guys will nail it! 



Chances are You Are Going to  

Screw it Up 

… 

More on that later. 



Shooting Down a Major Myth 

• In practice, researchers try to measure as many possible 

things that pass as common causes of X and Y as 

possible, adjust for them, hope for the best. 

 

• Not that I (or anyone) have a universal solution, but  

this in particular may be a very bad thing to do. 



Pearl’s M-bias Example 

X Y 

Z 

H2 
H1 



Shooting Down a Major Myth 

• Some researchers in causal inference say this is not very 

relevant in practice. 

 

• Such comments MIGHT be true-ish for many (which?) 

practical problems, but they are NOT based in hard 

evidence or any firm empirical causal knowledge. 

 

• Nobody said causal inference  

would be easy. 

 



Shooting Down a Major Myth 

• Some researchers in causal inference say this is not very 

relevant in practice. 

 

• Such comments MIGHT be true-ish for many (which?) 

practical problems, but they are NOT based in hard 

evidence or any firm empirical causal knowledge. 

 

• Nobody said causal inference  

would be easy. 

 

Told you! 



A Scary Example 

• In linear models with the causal graph below, you are 

guaranteed to do worse, possibly MUCH worse, by 

adjusting for Z instead of the empty set. 

X Y 

Z 

H 



So, What to Do with this Beast? 

• Give up, or 

• Try to measure “most” relevant common causes, cross 

fingers, or 

• Look for some external help… 

X Y 

Z H 

Fx 



Instrumental Variables 

• Say you want to estimate the average causal effect of flu 

vaccination on health 

 

• Remember: implicit on all examples is the notion your 

treatments and measurements are well defined.  

 

• “Vaccination” according to some physical process 

• “Health” as hospitalization in N months from vaccination intake with 

“flu symptoms” 

• “Flu symptoms” means etc. etc. 



In the Wild 

• You may have a previous randomized controlled trial 

(RCT), but the subjects there might differ from the actual 

population, or the inoculation process changed etc… 

Vaccination Health 

Here be 

dragons 



An Easier Process to Randomize 

• An encouragement design: randomize which physicians 

receive letters  

• Notice the absence of an edge from encouragement to 

health 

Vaccination Health 

Here be 

dragons 

Encouragement 



Where Does This Take Us to? 

• The absence of some edges limits the possible 

interventional distributions. 

 

• This gives us lower bounds and upper bounds on the 

causal effect, which may or may not be useful. 

 

• In linear systems it is possible to get the causal effect. 



Example: Linear Systems 

X Y 

H 

W 

• With randomized W, we assume W and X are correlated. 

 

 

 

 

 

 

 

 

• (Cheeky comment :this is basically “all” of Econometrics) 

a b 

Cov(W, X) = a  Var(W) 

Cov(W, Y) = a  b  Var(W) 

So we can get “b” out of observational data! 



Non-Linear Systems: Trying to Bayes 

Your Way Out of It 
• Can we get “the” causal effect by latent variable 

modelling? 

• For example, it is not uncommon to conjure latent classes 

as a way of modelling confounding. 

Vaccination Health 

Compliance 

Behaviour 

Encouragement 

Reaction  

Profile 



Motivation 

Bayesian inference is well-defined even in 

unidentifiable models, so why not? 



Do That at Your Own Risk 

• Inference is EXTREMELY sensitive to priors. 

• Example: binary synthetic data, discrete hidden variable, 

training data with 1,000,000 points and three different 

priors. 

• Simulation results in next slide. 

X Y 

H 

W 



Silva and Evans (JMLR, to appear) 



Alternative Bayesian Inference 

OK, alternatively we can define a likelihood 

function that refers only to observable  

constraints. 



Alternative Bayesian Inference 

We can also separate what is identifiable 

from what is not identifiable for higher 

transparency. 



Example of Analysis: Flu Data 

Silva and Evans (NIPS, 2015; JMLR, to appear) 



Instrumental Variables and  

“Broken Experiments” 
• Even randomized controlled trials might not be enough. 

• Another reason why the machinery of observational 

studies can be so important. 

• Consider the non-compliance problem more generally. 

Drug taken Health 

Here be 

dragons 

Drug 

assignment 



Intention-to-Treat and Policy Making 

• From the RCT, we can indeed get the intention-to-treat 

effect. 

 

• From the point of view of policy making, would that be 

enough? 

Smoking 
Lung 

Cancer 

“Risk taking 

attitude” 

Nasty pictures 

in cigarette 

packages 



A Modern Example 

• What is the social influence of an individual or 

organization? 

 

• It is pointless to define it without causal modelling. 

• Orwellian frame: “If we control the source, we control the followers.” 

 

• Much social influence analysis out there is not necessarily 

wrong, but it may certainly be naïve. 

 

• Time ordering is very far from enough. 

• Time of measurement is not the same as time of occurrence! 

• What are the common causes? 



Broken Experiments of Social Influence 

I “like” a 

particular 

page 

My friend Anna 

“likes” it a 

week later 

External 

media 

exposure 



What Facebook-like Companies Would 

Love to Do 

I “like” a 

particular 

page 

My friend Anna 

“likes” it a 

week later 

External 

media 

exposure 

I “like” a particular 

page 



What They Can Actually Do 

I “like” a 

particular 

page 

My friend Anna 

“likes” it a 

week later 

External 

media 

exposure 

Expose Ricardo to 

that Particular Page 



Wait, It Gets Worse 

I “like” a 

particular 

page 

My friend Anna 

“likes” it a 

week later 

External 

media 

exposure 

Anna and I are 

friends 

Ricardo’s 

personality 

traits 

Anna’s 

personality 

traits 



Network Data: Possible Solutions 

• On top of everything, we need to “de-confound” 

associations due to the network structure. 

 

• We can of course still try to measure covariates that block 

back-doors to latent traits. 

 

• Moreover, another compromise is to infer latent variables 

(stochastic block-models and others), cross fingers, hope 

for the best. 

 



FROM DATA TO GRAPHS 
Adjustments, Causal Systems and Beyond 



Those Back-door Adjustments 

• Can we get some proof or certificate we are doing the 

right thing using data, not only background knowledge? 

X Y 

Z 

H 



Structure Learning 

• Inferring graphs from testable observations 

X Y 

Graph Data 

X    Y 



Structure Learning 

• Inferring graphs from testable observations 

X Y 

Graph Data 

X    Y 



Structure Learning 

• Inferring graphs from testable observations 

X Y 

Graphs (Equivalence class) Data 

X    Y 

X    Y | Z 

Z 

X Y Z 

X Y Z 



Equivalence Class? 

• Just life effect identification, graph identification might not 

be possible. It will depend on which assumptions we are 

willing to make. 

 

• For instance, 

• Partial ordering 

• Parametric relationships, like linear effects 



Main Assumption: Faithfulness 

• “Non-structural independencies do not happen.” 

Z 

X 

Y 
– ac 

c 

a 

Y    Z 

Y    Z | X 

Truth Inference 

Z 

X 

Y 

c 

a 

Y    Z 

Y    Z | X 



Faithfulness: A User’s Guide 

• Although in theory “path cancellations” are exceptions, in 

practice they might be hard to detect. 

 

• However, faithfulness can be a very useful tool for 

generating models compatible with the data that you 

actually have. Taking other people’s theoretical graphs at 

face value is unnecessary. 

 

• Other default alternatives, like “adjust for everything”, are 

not really justifiable. You should really try a whole set of 

different tools. 



Example 

• W not caused by Y nor Y, assume ordering X  Y 

• W     X, W    Y | X + Faithfulness. Conclusion? 

 

 

 

 

• Naïve estimation works: 

Causal effect = P(Y = 1 | X = 1) – P(Y = 1 | X = 0) 

 

• This super-simple nugget of causal information has found 

some practical uses on large-scale problems. 

 

X Y 

W U 
No unmeasured confounding 



Application 

• Consider “the genotype at a 

fixed locus L is a random 

variable, whose random 

outcome occurs before and 

independently from the 

subsequently measured 

expression values” 

 

• Find genes Ti, Tj such that  

L  Ti  Tj 

 
Chen, Emmert-Streib and Storey (2007) 

Genome Biology, 8:R219 



Validating or Discovering 

Back-door Adjustments 

• Entner, Hoyer and Spirtes (2013) AISTATS: two simple 

rules based on finding a witness W for a correct 

admissible background set Z. 
• Generalizes “chain models” W  X  Y 

 



Illustration 

X Y 

Z W 

X Y 

Z W 

X Y 

Z W 

U 

• Notice the link to instrumental variables. 

 



System-Wide Causal Discovery 

• Finding the graph for a whole system of variables 

X1 

X2 

X4 

X3 



System-Wide Causal Discovery 

• Equivalence class: one edge fully unveiled. 

X1 

X2 

X4 

X3 

Spirtes et al. (2000) Causation, Prediction and Search. MIT Press. 



Combining Experimental and 

Observational Data 

Sachs et al. (2005). “Causal Protein-Signaling Networks Derived from 

Multiparameter Single-Cell Data”. Science. 



AVOIDING MINE TRAPS 
Think through your problem, don’t just bigdata a 

solution out of it. 



Don’t Take Your Measurements  

and Interventions for Granted 

Gender Hiring 

Common 

Causes 



What Does That Mean? 

Gender Hiring 

Common 

Causes 

Gender 



What About This? 

Gender Hiring 

Common 

Causes 

Blind 

auditions 

http://www.theguardian.com/women-in-leadership/2013/oct/14/blind-auditions-orchestras-gender-bias 



I’d Settle on This 

Gender 

Perception 
Hiring 

Common 

Causes 

Blind 

auditions 

Gender 



More Controversially, What about Innate 

Effects in the Example? 

Gender 

Perception 
Hiring 

Common 

Causes 

Blind 

auditions 

Gender 

• I’d appeal to Faithfulness and see how Gender and Hiring 

can be made independent by Gender Perception and 

other covariates. 



But What Does That Mean??? 

Gender 

Perception 
Hiring 

Common 

Causes 

Blind 

auditions 

Gender Gender 



Ideal Interventions, Again 

• Some researchers believe that if there is no physically well-
defined mechanism of intervention, then the causal question 
should not be asked. 

 

• I believe the above is non-sense.  
 

• Do genders have different effects on particular diseases?  
 

• What about disentangling whether being male leads to higher rates of 
heart attacks, or whether this is just confounded by behavioural effects 
or other genes. Why wouldn’t we want to ask these questions? 

 

• See Pearl (2009) for more on that, which is a primary defence 
of ideal interventions. But this is NOT a license for not paying 
attention to what your variables mean. 



Regression and Causation 

• It has been trendy for a while to fit big regression models 

and try to say something about “variable importance”. 

• Again, what does that mean? 

• If you want to make causal claims, say it, don’t pretend 

this is not your goal. 

Y 

X1 X2 

H2 

H1 

Y 

X1 X2 

Fantasy Reality? 



Conditioning and/or Intervening:  

What is that that You Want? 

P(E | F, C) < P(E | F, C) 

P(E | F, C) < P(E | F, C) 

P(E | C) > P(E | C) 

The “paradox”: 

Which table to use?  

(i.e., condition on gender or not?) 

(Pearl, 2000) 



Some Possible Causal Graphs 



Dissolving a Paradox Using Explicit 

Causal Modelling 

• Let our population have some subpopulations 
• Say, F and F 

 

• Let our treatment C not cause changes in the distribution 
of the subpopulations 
 
• P(F | do(C)) = P(F | do(C)) = P(F) 

 

• Then for outcome E it is impossible that we have, 
simultaneously, 
 
• P(E | do(C), F) < P(E | do(C), F) 

• P(E | do(C), F) < P(E | do(C), F) 

• P(E | do(C)) > P(E | do(C)) 

 



Proof 



CONCLUSIONS 



Yes, It is Hard, But: 

• Pretending the problems don’t exist won’t make them go 

away. 

 

• There is a world out there to better explored by combining 

experimental and observational data. 

 

• In particular, how to “design experimental design”. 

 

• The upside of many causal inference problems is that 

getting lower bounds and relative effects instead of 

absolute effects might be good enough. 

 



Main Advice 

Don’t rely on a single tool. If you can derive similar 

causal effects from different sets of assumptions, great. If 

they contradict each other, this is useful to know too. Make 

use of your background knowledge to disentangle the 

mess. 



Textbooks 

Hernán MA, Robins JM (2016). Causal 

Inference. Boca Raton: Chapman & 

Hall/CRC, forthcoming. 

 

http://www.hsph.harvard.edu/miguel-

hernan/causal-inference-book/ 

Shalizi, C. (2015?). Advanced Data 

Analysis from an Elementary Point of 

View. Cambridge University Press. 

 

http://www.stat.cmu.edu/~cshalizi/ADAfa

EPoV/ 

In press (soonish): 

Excellent, but be warned: verbose 



Classics For Researchers 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-

43/lib/photoz/.g/scottd/fullbook.pdf 

http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf 



Let us Let Fisher Have the Last Word 

The Planning of Observational Studies of Human Populations  

W. G. Cochran and S. Paul Chambers  

Journal of the Royal Statistical Society. Series A (General)  

Vol. 128, No. 2 (1965), pp. 234-266  

 



Or Maybe Not. Thank You 

“I’d rather have 

another beer now than 

be Fisher.” 


