Mixed Cumulative Distribution Networks

Ricardo Silva, Charles Blundell and Yee Whye Teh University College London

AISTATS 2011 – Fort Lauderdale, FL

Directed Graphical Models

 $X_2 \coprod X_4$ $X_2 \coprod X_4 \mid X_3$ $X_2 \coprod X_4 \mid \{X_3, U\}$

Marginalization

$$X_{2} \coprod X_{4}$$
$$X_{2} \coprod X_{4} | X_{3}$$
$$\xrightarrow{} X_{2} \coprod X_{4} | \{X_{3}, U\}$$
...

Marginalization

Þ

$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)$ No: $X_1 \perp X_3 \mid X_2$

The Acyclic Directed Mixed Graph (ADMG)

- "Mixed" as in directed + bi-directed
- "Directed" for obvious reasons
 - See also: chain graphs
- "Acyclic" for the usual reasons
- Independence model is
 - Closed under marginalization (generalize DAGs)
 - Different from chain graphs/undirected graphs
 - Analogous inference calculus as DAGs: m-separation

(Richardson and Spirtes, 2002; Richardson, 2003)

Why do we care?

(Bollen, 1989)

- I like latent variables. Why not latent variables everywhere, everytime, latent variables in my cereal, no questions asked?
 - ADMG models open up new ways of parameterizing distributions
 - New ways of computing estimators
 - Theoretical advantages in some important cases (Richardson and Spirtes, 2002)

The talk in a nutshell

• The challenge:

- How to specify families of distributions that respect the ADMG independence model, requires no explicit latent variable formulation
- How NOT to do it: make everybody independent!
- Needed: rich families. How rich?

Contribution:

- a new construction that is fairly general, easy to use, and complements the state-of-the-art
- First, a review:
 - current parameterizations, the good and bad issues
- For fun and profit: a simple demonstration on how to do Bayesianish parameter learning in these models

The Gaussian bi-directed model

The Gaussian bi-directed case

(Drton and Richardson, 2003)

Binary bi-directed case: the constrained Moebius parameterization

 $P(X_A = 0, X_{V \setminus A} = 1) = \sum_{B:A \subseteq B} (-1)^{|B \setminus A|} q_B$

(Drton and Richardson, 2008)

Binary bi-directed case: the constrained Moebius parameterization

 Disconnected sets are marginally independent. Hence, define q_A for connected sets only

(However, notice there is a parameter q_{1234})

Binary bi-directed case: the constrained Moebius parameterization

• The good:

- this parameterization is complete. Every single binary bi-directed model can be represented with it
- The bad:
 - Moebius inverse is intractable, and number of connected sets can grow exponentially even for trees

The Cumulative Distribution Network (CDN) approach

- Parameterizing cumulative distribution functions (CDFs) by a product of functions defined over subsets
 - Sufficient condition: each factor is a CDF itself
 - Independence model: the "same" as the bi-directed graph... but with extra constraints

Relationship

CDN: the resulting PMF (usual CDF2PMF transform)

$$\sum_{z_1=0}^{1} \cdots \sum_{z_d=0}^{1} (-1)^{z_1+z_2+\dots+z_d} F(x_1-z_1,\dots,x_d-z_d)$$

Moebius: the resulting PMF is equivalent

$$P(X_A = 0, X_{V \setminus A} = 1) = \sum_{B:A \subseteq B} (-1)^{|B \setminus A|} q_B$$

- Notice: $q_B = P(X_B = 0) = P(X_{\setminus B} \le 1, X_{\setminus B} \le 0)$
- However, in a CDN, parameters further factorize over cliques $q_{1234} = q_{12}q_{13}q_{24}q_{34}$

Relationship

- In the binary case, CDN models are a strict subset of Moebius models
- Moebius should still be the approach of choice for small networks where independence constraints are the main target
 - E.g., jointly testing the implication of independence assumptions
- But...
 - CDN models have a reasonable number of parameters, they are flexible, for small treewidths any fitting criterion is tractable, and learning is trivially tractable anyway by marginal composite likelihood estimation

Take-home message: a still flexible bi-directed graph model with no need for latent variables to make fitting "tractable"

The Mixed CDN model (MCDN)

• How to construct a distribution Markov to this?

- The binary ADMG parameterization by Richardson (2009) is complete, but with the same computational shortcomings
 - And how to easily extend it to non-Gaussian, infinite discrete cases, etc.?

Step 1: The high-level factorization

- A district is a maximal set of vertices connected by bidirected edges
- For an ADMG G with vertex set X_V and districts {D_i}, define

$$P(X_V) = \prod_{i=1}^{K} P_i(X_{D_i} \mid pa_{\mathcal{G}}(X_{D_i}) \setminus X_{D_i})$$

where $P(\cdot)$ is a density/mass function and $pa_G(\cdot)$ are parent of the given set in G

Step 1: The high-level factorization

- Also, assume that each $P_i(\cdot | \cdot)$ is Markov with respect to subgraph G_i the graph we obtain from the corresponding subset
- We can show the resulting distribution is Markov with respect to the ADMG

Step 1: The high-level factorization

• Despite the seemingly "cyclic" appearance, this factorization always gives a valid $P(\cdot)$ for any choice of $P_i(\cdot \mid \cdot)$

$$P(X_{134}) = \Sigma_{x2}P(X_1, x_2 \mid X_4)P(X_3, X_4 \mid X_1)$$
$$\equiv P(X_1 \mid X_4)P(X_3, X_4 \mid X_1)$$

$$P(X_{13}) = \sum_{x4} P(X_1 | x_4) P(X_3, x_4 | X_1)$$
$$= \sum_{x4} P(X_1) P(X_3, x_4 | X_1)$$
$$\equiv P(X_1) P(X_3 | X_1)$$

Step 2: Parameterizing P_i (barren case)
D_i is a "barren" district is there is no directed edge within it

Step 2: Parameterizing P_i (barren case)

For a district D_i with a clique set C_i (with respect bidirected structure), start with a product of conditional CDFs

 $F_i(x_{D_i} \mid pa_{\mathcal{G}}(X_{D_i})) \equiv \prod_{X_S \in \mathcal{C}_i} F_S(x_S \mid pa_{\mathcal{G}}(X_{D_i}))$

- Each factor $F_S(x_S | x_P)$ is a conditional CDF function, $P(X_S \le x_S | X_P = x_P)$. (They have to be transformed back to PMFs/PDFs when writing the full likelihood function.)
- On top of that, each F_s(x_s | x_p) is defined to be Markov with respect to the corresponding G_i
- We show that the corresponding product is Markov with respect to G_i

- Implementing the local factor restriction could be potentially complicated, but the problem can be easily approached by adopting a *copula* formulation
- A copula function is just a CDF with uniform [0, 1] marginals
- Main point: to provide a parameterization of a joint distribution that unties the parameters from the marginals from the remaining parameters of the joint

Gaussian latent variable analogy:

Copula idea: start from

$$F(X_1, X_2) = F(F_1^{-1}(F_1(X_1)), F_2^{-1}(F_2(X_2)))$$

then define $H(Y_a, Y_b)$ accordingly, where $0 \le Y_* \le I$

$$H(Y_a, Y_b) \equiv F(F_1^{-1}(Y_a), F_2^{-1}(Y_b))$$

- $H(\cdot, \cdot)$ will be a CDF with uniform [0, 1] marginals
- For any $F_i(\cdot)$ of choice, $U_i \equiv F_i(X_i)$ gives an uniform [0, 1]
- We mix-and-match any marginals we want with any copula function we want

- The idea is to use a conditional marginal $F_i(X_i | pa(X_i))$ within a copula
- Example

Check:

$$P(X_2 \le x_2 \mid x_1, x_4) = H(U_2(x_1), 1) = H(U_2(x_1))$$

= $U_2(x_1) = P_2(X_2 \le x_2 \mid x_1)$

Not done yet! We need this

 $F_i(x_{D_i} \mid pa_{\mathcal{G}}(X_{D_i})) \equiv \prod_{X_S \in \mathcal{C}_i} F_S(x_S \mid pa_{\mathcal{G}}(X_{D_i}))$

- Product of copulas is not a copula
- However, results in the literature are helpful here. It can be shown that plugging in $U_i^{1/d(i)}$, instead of U_i will turn the product into a copula
 - where d(i) is the number of bi-directed cliques containing X_i

Step 3: The non-barren case

What should we do in this case?

D

Step 3: The non-barren case

Step 3: The non-barren case

$$P_v^\star(X_v^\star = x \mid X_v = x) = 1$$

$$P(X_V, X_V^{\star}) = \prod_{i=1}^K P_i(X_{D_i} \mid pa_{\mathcal{G}^{\star}}(X_{D_i}) \setminus X_{D_i})$$

$$\times \prod_{X_v \in X_V} P_v^{\star}(X_v^{\star} \mid X_v)$$

Parameter learning

For the purposes of illustration, assume a finite mixture of experts for the conditional marginals for continuous data

$$f_{v}(x_{v} \mid pa_{\mathcal{G}}(X_{v})) = \sum_{z=1}^{K} \pi_{z;v} \mathcal{N}(x_{v}; \ \mu_{z;v}, \sigma_{z;v}^{2})$$
$$\mu_{z;v}(pa_{\mathcal{G}}(X_{v})) = \theta_{v0} + \theta_{v}^{\mathsf{T}} pa_{\mathcal{G}}(X_{v})$$
$$\pi_{z;v}(pa_{\mathcal{G}}(X_{v})) \propto \exp(w_{v0} + w_{v}^{\mathsf{T}} pa_{\mathcal{G}}(X_{v}))$$

For discrete data, just use the standard CPT formulation found in Bayesian networks

Parameter learning

- Copulas: we use a bi-variate formulation only (so we take products "over edges" instead of "over cliques").
- In the experiments: Frank copula

$$C_F(u_i, u_j; \alpha) = -\frac{1}{\alpha} \ln \left(1 + \frac{(e^{-\alpha u_i} - 1)(e^{-\alpha u_j} - 1)}{e^{-\alpha} - 1} \right)$$

Parameter learning

Suggestion: two-stage quasiBayesian learning

- Analogous to other approaches in the copula literature
- Fit marginal parameters using the posterior expected value of the parameter for each individual mixture of experts
- Plug those in the model, then do MCMC on the copula parameters
- Relatively efficient, decent mixing even with random walk proposals
 - Nothing stopping you from using a fully Bayesian approach, but mixing might be bad without some smarter proposals
- Notice: needs constant CDF-to-PDF/PMF transformations!

Experiments

Data set	Data type	#V	# D	$\mathbb{E}[\mbox{ \#} \leftrightarrow]$	$\mathbb{E}[\ extsf{\#} ightarrow]$
SPECT	Binary	23	267	4.1	25.6
Breast cancer wisconsin	Ordinal	10	683	5.1	16.3
Soybean (large)	Ordinal	33	266	9.3	39.8
Parkinsons	Continuous	15	5875	8.9	18.2
Ionosphere	Continuous	32	351	12.4	32.8
Wine quality (red)	Continuous	11	1599	5.7	7.5
Wine quality (white)	Continuous	11	4898	7.3	14.5

Experiments

Data set	Gaussian/probit	Copula MCDN	Difference
SPECT	-11.32	-11.11	0.21 ± 0.06 \star
Breast cancer wisconsin	-12.60	-12.77	-0.17 ± 0.11
Soybean (large)	-20.17	-17.71	2.46 ± 0.20 \star
Parkinsons	-11.65	-3.48	8.17 ± 0.28 \star
Ionosphere	-41.10	-27.45	13.64 ± 0.67 \star
Wine quality (red)	-13.72	-11.25	2.47 ± 0.10 \star
Wine quality (white)	-13.76	-12.11	1.65 ± 0.09 \star

Conclusion

- General toolbox for construction for ADMG models
- Alternative estimators would be welcome:
 - Bayesian inference is still "doubly-intractable" (Murray et al., 2006), but district size might be small enough even if one has many variables
 - Either way, composite likelihood still simple. Combined with the Huang + Frey dynamic programming method, it could go a long way
- Structure learning: how would this parameterization help?
- Empirical applications in problems with extreme value issues, exploring non-independence constraints, relations to effect models in the potential outcome framework etc.

Acknowledgements

Thanks to Thomas Richardson for several useful discussions

Thank you

Appendix: Limitations of the Factorization

Consider the following network

 $P(X_{1234}) = P(X_2, X_4 | X_1, X_3)P(X_3 | X_2)P(X_1)$

 $\Sigma_{x2} P(X_{1234}) / (P(X_3 | X_2) P(X_1)) = \Sigma_{x2} P(X_2, X_4 | X_1, X_3)$

 $\Sigma_{\times 2} \mathsf{P}(X_{1234}) / (\mathsf{P}(X_3 \mid X_2) \mathsf{P}(X_1)) = f(X_3, X_4)$

