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On overlapping variables and 
partial information

� Three main issues in statistical learning: estimation, 
computation and identification

� The link to Spirtes (2001): “An anytime algorithm for 
causal inference”

� The problem, then: estimating Markov equivalence classes 
when independence assessments stop at a particular order

� T&S can be seen as a generalization in some directions: from 
incomplete independence assessments to more general 
equivalence classes



Built-in robustness

“[It] has been suggested that causal discovery methods 
based solely on associations will find their greatest 
potential in longitudinal studies conducted under 
slightly varying conditions, where accidental 
independencies are destroyed and only structural 
independencies are preserved.” (Pearl, 2009, p.63)

� Incorrect decisions on qualitative information might be 
less likely by pooling data from different sources



On selection bias

� The assumption of common structure on separate 
studies also implies common selection bias

� T&S make the role of structural assumptions very clear, 
but the one concerning common selection bias structure 
might not be as believable depending on the domain
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Combining different interventional studies

� Structures might change given different interventional 
studies
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Beyond independence constraints

� Cudeck (2000): overlapping factor analysis, finding σ15
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Beyond independence constraints

� Less obvious: what should be done with, e.g.,  additive 
error functional constraints
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Dataset 1: X2 = f(X1, X5) + error

Dataset 1I: X2 = g(X1) + error?



The Bayesian approach

� Latent variable models might not be necessary, neither is 
the iid assumption. 
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First likelihood function:
L(θ1 | Dataset 1)

Second likelihood function:
L(θ2 | Dataset 1I)



Related problems: finding substructure by
generalizing penalized composite likelihood?

� With/without same parameters, a single score function

� S(θ | Data I, Data 2) = α1L(θ1 | Data1) + α2L(θ2 | Data2) + Ω
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First likelihood function:
L(θ | Dataset 1)

Second likelihood function:
L(θ | Dataset 1I)
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Other approaches: 
generalizing penalized composite likelihood?

� Enforcing constraints: link to constrained optimization 

Maximize S(θ | Data I, Data 2) = α1L(θ1 | Data1) + α2L(θ2 | Data2) + Ω
Subject to:

for the corresponding independent models IM on each subset

IM1(X1, X2, X3, X4) = IM2(X1, X2, X3, X4)


