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Abstract

In this Supplementary Material, we discuss: i. a detailed explanation of our
synthetic data generation protocol; ii. a detailed explanation of our preprocessing
of the Infant Health and Development Program dataset; iii. an illustration of active
learning using our approach; iv. an illustrative comparison of our method against
existing methods for deep Gaussian processes in the literature; v. details of the
Gibbs sampler.

1 Synthetic Data Generator

We generate data from a multivariate distribution where X is the treatment, Y is the outcome, and Z
are covariates that cause X and Y . The model for the covariates is

Z ∼ N (0,ΣZ),

where ΣZ is a correlation matrix with every off-diagonal entry equal to 0.5.

The model for X given Z is

X =

p∑
i=1

fxi
(zi) + eX ,

where p = |Z| and eX ∼ N(0, σ2
x). Each function fxi

(·) is first sampled at the realized values of Zi
from a zero-mean Gaussian process prior with covariance function k(zi, z

′
i) ≡ exp(−(zi − z′i)2/4),

then divided by
√
p so that the variance of the function generation process does not grow with p. We

then calculate the empirical variance vfx of
∑
i fxi

(Zi) in the sample generated, and set σ2
x = b×vfx ,

where b ∼ U(0.2, 0.4), the uniform distribution in the interval [0.2, 0.4]. In this way, causes of X
that are not causes of Y (that is, eX ) contribute to the variance of X with approximately 20% to 40%
of the variance contributed by the common causes.

The next step is to generate

θi ∼ N
(

0,
1

p+ 1

)
,

for 0 ≤ i ≤ p, and
βi ∝ N (0, 1)I(|βi| > 0.2),

i ∈ {0, 1, 2} and I(·) the indicator function. That is, each βi comes from a standard Gaussian
restricted to the space |βi| > 0.2. We then define

Zy ≡ θ0 + θ>1:pZ
fyz ≡ β2Z

2
y + β1Zy + β0

fyze ≡ fyz + eY
eY ∼ N (0, σ2

y).

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Quantity fyze is the contribution of “all other causes” of Y but X . Analogously to σ2
x, we set

σ2
y = b′ × vfyz

, where b′ ∼ U(0.2, 0.4) and vfyz
is the empirical variance of the sampled values of

fyz . What is left is the contribution of X according to

Y = fyx(X) + fyze,

in a way we can control (up to some point) how much X contributes to the variability of Y . Function
fyx(·) is set to be a polynomial of degree d. In our experiments, we set d = 2 and d = 3.

Let α be a number between 0 and 0.5. Let Rα and R1−α be the corresponding empirical quantiles
of fyze. Define R ≡ R1−α − Rα. In our experiments, we choose either α = 0.1 or α = 0.25. We
constraint our fyze to be within a range of length R as follows. For any realization x of X , define x̂
as the standardization of x according to the empirical mean and variance of the sampled values of
X . That is, given the empirical mean m̂ of the sampled values of X and the empirical variance v̂,
x̂ ≡ (x− m̂)/

√
v̂. Both m̂ and v̂ become extra parameters of fyx(·). Given a degree d, we set

λ′i ∝ N (0, 1)I(|λi| > 0.2)

f ′yx(x) ≡
d∑
i=0

λ′ix̂
i,

R′ ≡ max f ′yx(x̂)−min f ′yx(x̂)

λi ≡ α′i ×
R

R′

fyx(x) ≡
d∑
i=0

λix̂
i.

In the third line of the above, the maximum and minimum operations are taken over the empirical
samples of X . The end result is a function that first linearly transforms X to a more standard scale
and location, then passes it to a polynomial function with a range is approximately of the same length
as the difference between the 1− α and α quantiles of the realizations of fyze. Setting α to values
close to 0.5 would make the signal due to X to be mostly constant, its variability almost undetectable
compared to the variability of the other causes of Y . Finally, we reject this model and redo the model
generating process if the absolute value of the empirical rank correlation between the samples of X
and fyz is less than 0.2, so that a minimal degree of confounding is enforced.

Notice that the motivation for setting Z ∼ N (0,ΣZ), and fyz(Z) to a quadratic function, is to allow
us to analytically calculate E[fyz(Z)]. This is important, since

E[Y | do(X = x)] = fyx(x) + E[fyz(Z)],

the value of which is necessary for a precise calculation of the estimation error.

As part of the Supplementary Material, we provide MATLAB code to reconstruct the experiments.
This is done via the function generate_problems.m, which can also make use of a file that provides
the seed to reconstruct the synthetic models and data exactly.

To complement the results in the main text, Table 1 shows further comparisons. Method IV is the one
obtained by just fitting the observational data for treatment and outcome, assuming no confounding
(that is, no back-door adjustment is done). It provides a sense of the difficulty of the generated
problems. Method V is yet another sensitivity analysis, now for the role of a. This is done by
effectively dropping a from the mapping between fobs and f (that is, the generation of f is defined
as f(X ) ≡ fobs(X ) + b(X )). It differs from Method III in the main text by giving b a non-stationary
covariance function derived from Dobs, as opposed to the off-the-shelf squared exponential used by
Method III. It is clear that although the a component does not seem to help (or hurt) the decrease of
the absolute error, it makes a significant difference in terms of modeling the posterior uncertainty.
Differences are more prominent under the ADVERSARIAL regime, which can be partially explained
by the heavy-tailed, non-Gaussian nature of the product a� fobs. We emphasize that our measure
LV is per point x ∈ X , and that even a difference of 0.05 in average log-likelihood means a ratio
of densities of 2.7 in the original scale, for |X | = 20, and a ratio of approximately 20, 000 for a
difference of 0.50.
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Table 1: A table analogous to the one found in the main text, Section 4. Here, method IV is just
the dose-response obtained by fitting the observational data only without any back-door adjustment.
Method V is the method where we set a ≡ 1, inferring b only.

Q50% RANDOM Q50% ADV Q80% RANDOM Q80% ADV
40 100 200 40 100 200 40 100 200 40 100 200

EIV 0.41 0.45 0.47 0.36 0.41 0.44 0.30 0.34 0.37 0.28 0.33 0.36
EV -0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01
LV -0.01 0.04 0.08 0.31 0.47 0.55 0.01 0.07 0.08 0.21 0.32 0.37

C50% RANDOM C50% ADV C80% RANDOM C80% ADV
40 100 200 40 100 200 40 100 200 40 100 200

EIV 0.30 0.32 0.35 0.27 0.30 0.33 0.30 0.34 0.37 0.28 0.33 0.36
EV 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01
LV -0.02 0.01 0.04 0.19 0.25 0.36 0.06 0.14 0.30 0.22 0.40 0.50
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Figure 1: Example of synthetic data sampled from the three models (stratified by mother’s education,
and then combined). The amount of variability around each response is similar to the one found
around the observational regression curve. Curve represents the synthetic dose-response curve fitted
to each scenario based on an observational sample of size 347.

2 Preprocessing of the Infant Health and Development Program Data

The original Infant Health and Development Program (IHDP) data can be downloaded from
http://www.icpsr.umich.edu/icpsrweb/HMCA/studies/9795. We start instead from the pre-
processed version done by [3] and available1 at http://www.tandfonline.com/doi/suppl/10.
1198/jcgs.2010.08162. This data contains 985 individuals, or which 377 were given treatment.
30 individuals had missing outcome data. We discarded them to obtain a final sample size of 347. We
applied further preprocessing to this data, to remove variables which we believed would be less rele-
vant to our simulation (for instance, the home site of the family at the start of the intervention). Some
variables were binarized, as we were concerned about the sample size. This includes some originally
discrete, non-binary, variables, such as race. A detailed R script that loads the original file provided
by [3] and performs the further processing is provided with this supplement (process_ihdp.R).

This resulted in a dataset with 21 columns. We fit a nonparametric model for the regression function
g(x, z) using a Gaussian process prior and Gaussian likelihood. The prior is the same as all other
experiments, a Matérn 3/2 covariance function with automatic relevance determination priors [5]. We
fit all hyperparameters by marginal maximum likelihood using the GPML2 package for MATLAB.
The range of days of treatment in the treated IHDP subgroup varied from 0 to 468. We defined our
set X of interventional levels at 0, 25, 50, . . . , 450.

To build a simulator for outcome variable Y , IQ score at age 3 (standardized by centering and scaling
it according the the empirical mean and standard deviation of the observational data), we build a
mean function f(x) and error variance σ2

f from the fitted response function evaluated at the empirical

1The corresponding file name in the supplement provided by Hill is example.dat, a R binary file.
2http://www.gaussianprocess.org/gpml/code/matlab/doc/
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observational distribution,

f(x) ≡ 1

347

347∑
i=1

ĝ(x, z(i)), x ∈ X .

Less straightforward is deciding on a realistic choice of σ2
f . First, it should be pointed out that as

implied by the fitted observational model as ground truth,
Y | do(x), z ∼ N (ĝ(x, z), σ̂2

Y ),

where σ̂2
Y is given by GPML, that Y | do(x) will in general have heteroscedastic variance (if ĝ(x, z)

is not additive in X), or even be non-Gaussian distributed. To deal with that, we calculate the
empirical variance of {ĝ(x, z(1)), . . . , ĝ(x, z(347))} for each x ∈ X , and set σ2

f to be the average
of these quantities plus the error variance of the regression of Y on X and Z. Normality is used
as a convenient approximation for the resulting model Y | do(x). Heteroscedastic regression can
be adopted by our framework without any conceptual changes, but we ignore it for convenience of
presentation.

3 Active Learning Illustration

The probabilistic formulation of our dose-response model leads to Bayesian active learning schemes
where observational data Dobs is fixed and new measurements are continuously added to interven-
tional dataset Dint. In this Section, we provide an illustration on how to use our model with the
simplest design scheme: the “D-optimal” design where the next dose level x to be picked is the
one corresponding to target f(x) of highest entropy. A classical review of the motivations and
shortcomings of several designs from a Bayesian perspective is given by [4].

To approximate the entropy of a given f(x), we merely compute its estimated variance from the
current MCMC samples as we observe that in the posterior the marginal distributions of each f(x)
are not too dissimilar from Gaussians, or at least can be ranked based on variances alone. Use of the
variance can be formally justified by standard second-order approximations [4] even if we still rely
on MCMC samples.

We applied this idea to our IHDP problem, where we initialize the model by sampling one outcome
for each dose level x ∈ X . We then are given a budget of 5× |X | = 95 trials to spend. For every
new dose level selected, we “run the intervention” using our simulated model, and collect a new data
point. We update the distribution of the latent variables at every new point collected, but to save
time we update the distribution of the hyperparameters only after 5 new points have been collected.
The budget of 95 points is shared across the two strata. In our provided MATLAB code, function
dose_response_learning_stratified.m implements this scheme.

In Figure 2, we show how treatments were allocated to each stratum, and how they were distributed.
As expected, most of the doses were given at the endpoints of X . Stratum “high school” was allocated
31 of the 95 (simulated) trials, with the remaining 64 given to the “college” stratum. We compare it
against the policy of allocating an equal number (6) of trials to each of the 19 levels of X . Figure 3
illustrates the posterior distributions for the samplers given one actively selected set and one uniformly
selected set. While the differences are not major, it is clear that the active scheme does better or at
least as well even in regions were no more than two datapoints have been collected, with a clear
advantage in regions where the prior was not able to capture the true curve (lower levels of stratum
“high school”).

4 A Note on Generic Deep Gaussian Processes

The transformation given by a and b is not identifiable: like a deep Gaussian process prior [2], its
usefulness comes from providing an adequate prior distribution for f that we evaluated at length
through a series of comparisons and sensitivity analyzes.

In any case, this raises the question of directly adopting the generic transformation of fobs(X ),
f(x) = u(fobs(x)), x ∈ X ,

where u(X ) is a function that is given a Gaussian process prior. One appropriate choice of mean
for this process is the identity function, µu(fobs(x)) = fobs(x), with the covariance matrix Ku
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Figure 2: Histogram of the allocation of 114 experiments (initial 19 followed by adaptively selected
95 further trials) in two different conditions according to our simple active learning criteria.

0 50 100 150 200 250 300 350 400 450
60

70

80

90

100

110

120

Treatment  X

O
ut

co
m

e 
 Y

Posterior on dose−response (high school)

0 50 100 150 200 250 300 350 400 450
70

80

90

100

110

120

130

Treatment  X

O
ut

co
m

e 
 Y

Posterior on dose−response (college)

0 50 100 150 200 250 300 350 400 450
60

70

80

90

100

110

120

Treatment  X

O
ut

co
m

e 
 Y

Posterior from uniform (high school)

0 50 100 150 200 250 300 350 400 450
70

80

90

100

110

120

130

140

Treatment  X

O
ut

co
m

e 
 Y

Posterior from uniform (college)

Figure 3: Corresponding models learned from this data. The red curve corresponds to the expected
dose-response according to the collected sample, while the blue curve is the result of our procedure
with a given set of 133 uniformly sampled at our X grid of 19 dose levels. The top row illustrates
samples from the posterior learned from the active selection, the bottom row are samples from the
posterior learned from the uniform selection. In general, there is a slight advantage for the active
selection at this sample size, as the posterior typically allocates higher probability to the true curve.

constructed from smooth covariance functions, as we want to bias this prior toward the (unknown)
observational curve fobs(X ).

It is not clear, however, why this generic construction would have advantages over our pointwise
affine prior. The original motivation for deep learning is to combine signals from a high-dimensional
space, and here our treatment is a scalar dosage. Our goal in this section is just to provide a simple
illustration that, for a dose-response curve where the signal is just a scalar, there is no obvious reason
to use more complicated models.

Sampling fobs(·) in this “deep” setup is difficult due to its appearance on Ku. We illustrate the
advantages of our pointwise affine prior with a simple experiment, once again based on the IHDP
data. We define Ku with a squared exponential covariance function,

ku(fobs(x), fobs(x
′)) ≡ λu × exp

(
−1

2

(fobs(x)− fobs(x′))2

σu

)
+ δ(fobs(x)− fobs(x′))10−5
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Figure 4: A comparison of results for the IHDP data using a more standard deep Gaussian process
prior against our affine transformation prior. For the more standard deep CP, Hamiltonian MCMC
was used. Each plot show 200 sampled dose-response curves. In the affine case, these correspond to
thinning a run of 2000 iterations by skipping 10 samples from every sample held.

with priors log(λu) ∼ N (0, 0.5) and log(σu) ∼ N (0, 0.1). Moreover, we rescale the covariance
matrix of fobs(X ) so that the largest entry of its diagonal is now 1. This is to give the standard deep
GP an extra help, as exploring the posterior of fobs(·) and the hyperparameters would be even harder
with a more concentrated prior. We also enforce no parameter sharing of any kind among the different
strata. In what follows, we do not claim that this prior is optimal for learning the dose-response curve,
but as a convenient way of facilitating sampling for this model.

In Figure 4, we show posterior samples for the standard Gaussian process prior using the default
Hamiltonian MCMC (HMC) methods implemented in Stan [1]. The dataset given contains 10 points
per dose level of X in each of the three scenarios (190 per study, in total). Due to the high cost of
performing sampling even in these modest datasets, we run HMC only for 220 iterations, discarding
the first 20 iterations as burn-in. We run the off-the-shelf Gibbs with the slice sampling algorithm
for our affine model. In Figure 4, we show the corresponding output obtained by running it for 2200
iterations, discarding the first 200, and then uniformly thinning the remaining 2000 iterations to
obtain 200 samples.

It is clear that in Figure 4 that the affine prior performs substantially better. However, we do not
want to make overgeneralized claims of inferential superiority, but to merely illustrate that we see no
evidence that a standard deep Gaussian process prior would present any advantage. This is even more
evident from the computational cost of both procedures. The HMC execution, even in the highly
optimized Stan code, took approximately 1200 seconds in a 5-year old Xeon workstation, while
inference with the factorized prior took two orders of magnitude less, 54 seconds. While powerful
approximation algorithms can be applied to standard deep Gaussian processes [2], we recommend
avoiding them, as in causal inference we are interested in parameter learning instead of merely
predictive performance and the more precise calculation of credible intervals provided by MCMC is
preferred to a variational approximation that will underestimate uncertainty.

5 MCMC Updates

In this Section, we present the updates for the MCMC algorithm from Section 3.3 of the main paper.
Recall that the model is given by
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fobs(X ) ∼ N (µobs,Kobs)
a(X ) ∼ N (1,Ka)
b(X ) ∼ N (0,Kb)
f(X ) = a(X )� fobs(X ) + b(X )

Y
(i)
int ∼ N (f(x

(i)
int), σ

2
int), 1 ≤ i ≤M.

As we take several measurements per position x, it is possible that x(i) = x(j) for i 6= j. Given
interventional dataset Dint, let Y be the M -dimensional vector that collects all interventional
outcomes, and let A be the M × T binary matrix such that Aik = 1 if and only if x(i) = xk, the k-th
entry of X . Finally, for convenience we will write vectors f(X ), a(X ) and b(X ) as f , a and b. That
is,

Y | {a,b, f} ∼ N (A(a� f + b), σ2
intIM ),

where IM is the M ×M identity matrix. The conditional density of f given everything else is a
Gaussian with covariance matrix ΣDint

f ,

(ΣDint

f )−1 = K−1obs +
IaA

>AIa
σ2
int

,

where Ia is the diagonal matrix having a as the diagonal. The posterior mean µDint

f is given by

µDint

f = ΣDint

f

(
K−1obsµobs +

IaA
>(Y −Ab)

σ2
int

)
.

The posterior for a is also Gaussian with an analogous shape,

(ΣDint
a )−1 = K−1a +

IfA
>AIf
σ2
int

,

µDint
a = ΣDint

a

(
K−1a 1 +

IfA
>(Y −Ab)

σ2
int

)
.

Finally, the posterior for b is also Gaussian with covariance matrix and mean given by

(ΣDint

b )−1 = K−1b +
A>A

σ2
int

,

µDint

b = ΣDint

b

(
A>(Y −A(a� f))

σ2
int

)
.

The posterior for σ2
int and the hyperparameters of Ka, Kb has no special shape. We just apply slice

sampling to each of these hyperparameters separately.
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