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Abstract

In previous work, we have developed a prin-
cipled way of learning the causal structure
of linear latent variable models (Silva et al.,
2006). However, we have considered the case
for models with pure measures only. Pure
measures are observed variables that measure
no more than one latent variable. This pa-
per presents theoretical extensions that jus-
tify the selection of some types of impure
measures, allowing us to discover hidden vari-
ables that could not be identified in the pre-
vious case.

1 CONTRIBUTION

Linear latent variable models are graphical mod-
els where the distribution is Markov with respect
to a directed acyclic graph (DAG), and each vari-
able Xi is a linear combination of its parents
{Xi(1), Xi(2), . . . , Xi(pi)} with additive noise:

Xi = λi1Xi(1) + λi2Xi(2) + · · · + λi(pi)Xi(p) + ǫi (1)

We will consider as parameters the set of linear coef-
ficients {λ} and the covariance matrix of error terms
{ǫ}, which are assumed to have mean zero. In this
work, we do not make use of higher-order moments for
the error terms (which would not be informative any-
way in the case of Gaussian variables). This is particu-
larly relevant if sample sizes are small and higher-order
moments cannot be estimated reliably.

These models, under a causal interpretation, allow for
the prediction of effects of interventions (Spirtes et al.,
2000). In particular, we consider the case where no ob-
served variable is a cause of any latent variable. Bollen
(1989) provides numerous examples of problems of this
kind. Because of this assumption, we can define the
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Figure 1: A latent variable graph. Hidden variables
are enclosed in circles. The bi-directed edge denotes
the presence of other hidden common causes for X3

and X5 (Silva et al., 2006; Richardson, 2003). X3, X5

and X7 are impure because they measure more than
one hidden variable in this system.

measurement model of the latent variable graph as the
subgraph that indicates which observed variables mea-
sure (i.e., are children of) which hidden variables. Fig-
ure 1 depicts a latent variable graph. The measure-
ment model can be interpreted as the graph obtained
when we ignore edges between hidden variables.

Our causal inference problem consists on discover-
ing graphical structure that explains the observational
data. Although we assume that the true model is a
linear latent variable model where no observed vari-
able is a cause of a latent variable, we do not want
to require any other knowledge concerning the under-
lying structure (i.e., which hidden variables exist and
which observed variables measure which latents). Such
knowledge is certainly helpful, if available, but it is not
desirable to make it mandatory.

In causal discovery, a fundamental challenge is the
identification problem: given observational data for the
observable variables only, how to reconstruct the set of
causal models that could have generated this data? In
latent variable modeling, the potential number of mod-
els is infinite in the worst-case (Spirtes et al., 2000).
However, some problems will have partially identifi-
able structure. Figure 2 illustrates a case where the
subgraph with L1 and a few of its measures is identi-
fiable.
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Figure 2: If our data is generated by a causal graph as
the one above, there will be multiple choices of pa-
rameter values corresponding to the same marginal
distribution for {X1, . . . , X9}. Such parameters could
be explained by many different structures. We could,
however, discover identifiable structure for a submodel
containing, for instance, {L1, X1, X2, X3, X4}.

In previous work (Silva et al., 2006), we presented an
algorithm, consistent with probability 1 in the limit
of infinite data, which is able to recover substructures
where: i. each latent has at least three observed mea-
sures (children); ii. each measure is pure, in the sense
that they measure no more than one latent in the re-
sulting structure. For example, in Figure 1, X3, X5

and X7 are not pure measures, since they measure
more than one latent1. All other observed variables
are pure measures.

This means there are problems where hidden variables
cannot be discovered by such an approach, because
they fail to have three pure measures. Figure 3 illus-
trates one such case. If we choose to include features
X1, X2, X3 in our model, then L1 can be identified,
but not L2: X5 cannot be selected, since this would
imply both X3 and X5 being impure, which means
not enough pure measures would be left to measure
L2 (only X4, X6).

It is hard to avoid the need for at least three mea-
sures for each latent variable using no more than the
second moments of the data. A treatment of such a
condition is beyond the scope of this paper. However,
the need for at least three pure measures can be re-
laxed, as hinted at the conclusion of Silva et al. (2006).
Principled ways for learning impure structures is the
contribution of this paper.

This feature selection problem is a problem of includ-
ing impure measures (and the respective latents they
measure) in a model by identifying its causal connec-
tions to other variables, as well the causal connections
of their latent parents. An impure measure Xi will
only be included in our learned graphical structure if
it fulfills the following desiderata:

1. an impure measure Xi can be selected only if it is

1We only count latents with more than one observed
child among the variables present in the submodel.
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Figure 3: Although in the model above there is no
pure measurement model for both L1 and L2 with at
least three measures per latent, the impure model is
still identifiable, and so is the linear coefficient corre-
sponding to edge L1 → L2.

possible to characterize all causal models that ex-
plain the correlation of Xi and the other selected
measures;

2. an impure measure Xi can be selected only if it
can be used to obtain a consistent estimate of the
covariance matrix of the latent variables in the
discovered model;

This second desideratum is necessary if one wants to
learn the causal model among latent variables. For
instance, one should not include all observed variables
of Figure 2, because the causal effect of L2 into L3

cannot be identified (Silva et al., 2006)2.

2 MAIN RESULTS

We describe theoretical results for identification of
causal structure with impure measures. These results
are testable conditions that can be verified with the
observable data3.

First, a piece of notation. For a given set of four ran-
dom variables, {W, X, Y, Z}, we say that the predicate
T (W, X, Y, Z) is true if and only if:

σWXσY Z = σWY σXZ = σWZσXY

σWX × σY Z × σWY × σXZ × σWZ × σXY 6= 0

where σXY is the covariance of variables X and Y .
These type of constraints are also known as tetrad con-
straints. Standard statistical tests for such constraints
exist (Spirtes et al., 2000; Silva et al., 2006).

Although not intuitive, this result implies the existence
of one variable L conditioned on which {W, X, Y, Z}
are independent (Silva et al., 2006, Lemma 9). If there

2In fact, only L1 can be identified by our procedure,
resulting in a measurement model for one latent variable
only.

3We also assume the faithfulness condition, common to
other methods for inferring causal structure (Spirtes et al.,
2000).



is no observed variable with this property, which can
be tested with partial correlation constraints (Spirtes
et al., 2000), then L has to be a latent variable. For
the rest of this paper, we will assume that variables
corresponding to constraints T (·, ·, ·, ·) are all hidden
variables.

For example, T (X1, X2, X3, X4) holds in all models
depicted in the previous Figures. T (X1, X2, X3, X5)
does not hold. Also, T (X6, X7, X8, X9) does not hold
in Figure 1, since L2 defines a path between X6 and
X7 that does not include L3.

We will describe results that capture two large classes
of impure models. Each result has implications both
in the measurement model (how is the impure vari-
able causally connected to other variables?) and in
the structure of latent variables (can I have a linear
latent variable model with such a variable that allows
me to estimate the covariance among latents?).

2.1 Case 1

Our first main result allows for the discovery of struc-
tures such as the one depicted in Figure 3. In this
case, two variables are measuring some hidden com-
mon cause that is not measured by any other observed
variable in the system (hence the simplified notation
with bi-directed edges). Models with such a relation-
ship are easily found in the literature of latent variable
models (Bollen, 1989; Silva and Ghahramani, 2006).

Given six random variables {A, B, C, X, Y, Z} assumed
to measure unknown hidden variables within a linear
latent variable model, the following lemma holds:

Lemma 1 If

T (A, B, C, X) = T (A, B, C, Y ) = true
T (A, X, Y, Z) = T (B, X, Y, Z) = true

T (A, B, X, Y ) = false
T (A, B, C, Z) = T (X, Y, Z, C) = false

and all entries in the covariance matrix of
{A, B, C, X, Y, Z} are non-zero, then

• there is a latent T1 in the true model that d-
separates {A, B, C};

• there is a latent T2 in the true model that d-
separates {X, Y, Z};

• T1 6= T2;
• T1 (as well as T2) d-separates every pair in
{A, B, C, T1} × {X, Y, Z, T2}, except (C, Z);

• at most one element of {A, B, C} shares a hidden
common cause with T1, at most one element of
{X, Y, Z} shares a hidden common cause with T2,
and at most one element of {A, B, X, Y } shares
a hidden common cause with its respective latent
parent in {T1, T2};

• C is not a cause of Z is vice-versa, but they have
extra hidden common causes in the true model
that are different from T1, T2;

The proof of this result and all other results here de-
scribed are given in the appendix.

Notice that the graph in Figure 3 is a graph that corre-
sponds to the description given in Lemma 1. However,
this two-latent graph cannot be distinguished from the
graph in Figure 4. Nevertheless, at most one measure
might have an extra confounder factor between itself
and the respective latent in the two-latent graph.
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Figure 4: The following graph is undistinguishable
from the graph Figure 3 according to our procedure.

Let G2L(A, B, C, X, Y, Z) be the latent variable graph
constructed as follows:

• G2L has two latent variables, T1 and T2, where
T1 is a parent of {A, B, C} and T2 is a parent of
{X, Y, Z};

• G2L contains bi-directed edges T1 ↔ T2 and C ↔
Z;

Notice that this is not a DAG anymore, but what
is sometimes known as directed mixed graph (DMG)
(Richardson, 2003; Silva and Ghahramani, 2006). This
notation is useful because we do not want to repre-
sent which other latents are hidden common causes
of {T1, T2} or {C, Z}. Parameterization is analo-
gous to the DAG case, except that the pairs of error
terms {ǫT1

, ǫT2
}, {ǫC , ǫZ} now have non-zero covari-

ances (Bollen, 1989).

The relevance of this construction is given by the fol-
lowing lemma:

Lemma 2 Let S = {A, B, C, X, Y, Z} be a set of
random variables with covariance matrix ΣS gener-
ated by an unknown linear latent variable model. If
{A, B, C, X, Y, Z} satisfies the conditions of Lemma 1,
then there is an unique Gaussian latent variable DMG
model (up to the scale and sign of the latents) defined
by G2L(A, B, C, X, Y, Z) such that the marginal covari-
ance for S according to this model equals ΣS. In this
case, the covariance of T1 and T2 defined by this model
equals the covariance of the respective latents in the
true model containing S.



The implication is that any consistent estimator for
ΣS, as defined by this model, will provide a consistent
estimator for the covariance of the represented latents.

2.2 Case 2

The second case we consider is simpler, and motivated
by Figure 5. Although here there is a pure submodel
where all latents are present and contain three pure
measures, keeping variable Z in the model allows for
more robust estimates of the covariance between latent
variables, since more data becomes available. This rep-
resents a class of problems where an observed variable
measures more than one latent present in the model
(as opposed to Case 1, where the other parents of an
observed variable are not represented explicitly).
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Figure 5: Keeping impure measure Z allows for a more
robust estimation of the covariance between latents.

As before, start by assuming that a set of random
variables {A, B, C, X, Y, Z, V } are observed variables
within a linear latent variable model.

Lemma 3 If

T (A, B, C, K) = true, for K ∈ {X, Y, V, Z}
T (K, X, Y, V ) = true, for K ∈ {A, B, C}

T (K1, K2, K3, K4) = false, for
{K1, K2} ⊂ {A, B, C}, {K3, K4} ⊂ {X, Y, V }

T (X, Y, Z, V ) = true
T (A, X, Y, Z) = T (A, B, C, X) = false

and all entries in the covariance matrix of
{A, B, C, X, Y, Z, V } are non-zero, then

• there is a latent T1 in the true model that d-
separates {A, B, C};

• there is a latent T2 in the true model that d-
separates {X, Y, Z, V };

• T1 6= T2;
• T1 d-separates every pair in {A, B, C, Z, T1} ×
{X, Y, V, T2}, except (Z, T2);

• T2 d-separates every pair in {A, B, C, T1} ×
{X, Y, Z, V, T2}, except (Z, T1);

• at most one element of {A, B, C, Z} shares a
hidden common cause with T1, at most one el-
ement of {X, Y, Z, V } shares a hidden common
cause with T2, and at most one element of

{A, B, C, X, Y, V } shares a hidden common cause
with its respective latent ancestor {T1, T2};

Again, this allows for the identification of a graph such
as the one in Figure 5 up to the possibility of having
one measure sharing a hidden common cause with its
respective latent parent, similar to Figure 4. On top
of that, Z might share another common hidden cause
with its parents.

Regarding estimating the covariance between latents,
we also have an analogous result. Let G2L′ be the
graph constructed as follows: G2L′ has two latent vari-
ables, T1 and T2, where T1 is a parent of {A, B, C, Z}
and T2 is a parent of {X, Y, Z, V }. This leads to the
following result:

Lemma 4 Let S = {A, B, C, X, Y, Z, V } be a set of
random variables with covariance matrix ΣS gener-
ated by an unknown linear latent variable model. If
S satisfies the conditions of Lemma 3, then there
is an unique Gaussian latent variable DAG model
(up to the scale and sign of the latents) defined by
G2L′(A, B, C, X, Y, Z, V ) such that the marginal co-
variance for S according to this model equals ΣS. In
this case, the covariance of T1 and T2 defined by this
model equals the covariance of the respective latents in
the true model containing S.

3 CONCLUSION

Feature selection is also an identifiability problem, as
illustrated by our results. Although the identification
results refer to pairs of latents, they can be combined
to infer models with several latents, in the same spirit
of Silva et al. (2006). In a future work, we plan to
extend the algorithm described by Silva et al. (2006)
to include these latest results, including robust imple-
mentations less sensitive to statistical mistakes. This
can be done in principle by combining the Bayesian
approaches of Silva and Scheines (2006) and Silva and
Ghahramani (2006).

References

K. Bollen. Structural Equation Models with Latent
Variables. John Wiley & Sons, 1989.

T. Richardson. Markov properties for acyclic directed
mixed graphs. Scandinavian Journal of Statistics,
30:145–157, 2003.

R. Silva and Z. Ghahramani. Bayesian inference for
Gaussian mixed graph models. 22th UAI, 2006.

R. Silva and R. Scheines. Bayesian learning of mea-
surement and structural models. 23rd ICML, 2006.



R. Silva, R. Scheines, C. Glymour, and P. Spirtes.
Learning the structure of linear latent variable mod-
els. JMLR, 7:191–246, 2006.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction and Search. Cambridge U. Press, 2000.

APPENDIX: PROOFS

The following proofs uses definitions such as choke
points, treks and d-separation. For definitions and ex-
amples of such concepts, see Appendix B of Silva et al.
(2006).

Lemma 1 If

T (A, B, C, X) = T (A, B, C, Y ) = true
T (A, X, Y, Z) = T (B, X, Y, Z) = true

T (A, B, X, Y ) = false
T (A, B, C, Z) = T (X, Y, Z, C) = false

and all entries in the covariance matrix of
{A, B, C, X, Y, Z} are non-zero, then

• there is a latent T1 in the true model that d-
separates {A, B, C};

• there is a latent T2 in the true model that d-
separates {X, Y, Z};

• T1 6= T2;
• T1 (as well as T2) d-separates every pair in
{A, B, C, T1} × {X, Y, Z, T2}, except (C, Z);

• at most one element of {A, B, C} shares a hidden
common cause with T1, at most one element of
{X, Y, Z} shares a hidden common cause with T2,
and at most one element of {A, B, X, Y } shares
a hidden common cause with its respective latent
parent in {T1, T2};

• C is not a cause of Z is vice-versa, but they have
extra hidden common causes in the true model
that are different from T1, T2;

Proof: By Lemma 9 of Silva et al. (2006) and the hy-
pothesis T (A, B, C, X) = true, T (A, X, Y, Z) = true,
it follows that there is a single latent T1 that d-
separates {A, B, C}, and a single latent T2 that d-
separates {X, Y, Z} (since for simplicity we are assum-
ing in this paper that no observed variable d-separates
other pairs of observed variables, T1 and T2 are la-
tents).

By adding the hypothesis T (A, B, X, Y ) = false, we
have that T1 6= T2. One can show that by contradic-
tion, starting by assuming T1 = T2 and then show-
ing that would imply T (A, B, X, Y ) = true. The ar-
gument is as follows. Assume T1 = T2 = T . By
the Tetrad Representation Theorem (Spirtes et al.,
2000; Silva et al., 2006) and the hypothesis, all treks
connecting {A, B, X, Y } pass through T , at least one
trek exist between each pair (due to the faithfulness

condition and the non-zero covariances between such
variables), and at most one variable in {A, B, X, Y }
is connected to T by a trek into T . This implies
T (A, B, X, Y ) = true, contrary to our hypothesis.

Because T (A, B, C, Z) = T (X, Y, Z, C) = false, nei-
ther T1 nor T2 can d-separate C and Z. T1 d-separates
A from T2, or otherwise there would be a trek connect-
ing A to either X or Y that does not go through T1

(by concatenating a trek A − T2 with a trek T2 − X ,
assuming, without loss of generalization, that X is not
connected to T2 by a trek into T2). By analogy and
symmetry, the other d-separations stated in the theo-
rem hold.

C cannot be a cause of Z, because this implies a trek
T1 − C → · · · → Z that does not include T2 (since
T2 is not a descendant of C by assumption): this trek
contradicts the fact that T2 d-separates {B, X, Y, Z},
since it creates trek B − T1 − C → · · · → Z. By
symmetry, Z is not a cause of C. Because they are not
d-separated by either T1 nor T2, other hidden common
causes of C and Z should exist.

At most one element of {A, B, X, Y } shares a hid-
den common cause with its respective latent parent
in {T1, T2}. This proof is analogous to the proof of
Theorem 15 in (Silva et al., 2006). �.

Lemma 2 Let S = {A, B, C, X, Y, Z} be a set of
random variables with covariance matrix ΣS gener-
ated by an unknown linear latent variable model. If
{A, B, C, X, Y, Z} satisfies the conditions of Lemma 1,
then there is an unique Gaussian latent variable DMG
model (up to the scale and sign of the latents) defined
by G2L(A, B, C, X, Y, Z) such that the marginal covari-
ance for S according to this model equals ΣS. In this
case, the covariance of T1 and T2 defined by this model
equals the covariance of the respective latents in the
true model containing S.

Proof: Let the parameters of the linear latent variable
model Markov to G2L to be as follows:

A = λAT1 + ǫA

B = λBT1 + ǫB

C = λCT1 + ǫC

X = λXT2 + ǫX

Y = λY T2 + ǫY

Z = λZT2 + ǫZ

and let Σǫ be the covariance matrix of error terms,
with non-diagonal elements set to zero, except the en-
tries σǫCǫZ

= σǫZǫC
. Finally, the last parameter is the

covariance matrix ΣT of {T1, T2}.

From the previous lemma, T1 and T2 correspond to
true latents in the true model. To determine the scale
and sign of such latents without loss of generalization,
we will set λA = λX = 1 (Bollen, 1989). Set the



parameter ΣT to be the same as the population co-
variance of {T1, T2} in the true model. Now, set λB =
σBT1

σ2
T1

, where σ2
V is the variance of V , and these vari-

ances are taken from the population distribution of our
random variables in the true model. Set σ2

ǫB
to be the

“regression residual variance,” σ2
ǫB

= σ2
B −λ2

Bσ2
T1

. Set
all coefficients and variances in the parameterization
in an analogous way. Set the off-diagonal entry σǫCǫZ

to σCZ − λCλZσT1T2
.

Because the variances of the latents in this assignment
correspond to the true variances, and by construction
of the given parameterization, the marginal variance
for B will correspond to its true variance. The same
will hold for all observed variables in this model. More-
over, because T1 d-separates A and X , in the true
model we have that σAX = σAT1

σXT2
σT1T2

/(σ2
T1

σ2
T2

).
According to our paramerization, the same covariance
is given by λAλXσT1T2

= σAT1
σXT2

σT1T2
/(σ2

T1
σ2

T2
),

which corresponds to the true covariance. The ar-
gument is analogous for all other pairs, with the ex-
ception of (C, Z). In this case, however, we have the
freedom to set σǫCǫZ

to obtain the actual population
covariance of σCZ .

This solution is unique because the model is identifi-
able: it is well-known in the literature of structural
equation models (Bollen, 1989) that the one-factor
model {T1 → A, T1 → B, T1 → C} has an unique
choice of parameter values corresponding to the
marginal covariance of {A, B, C} (after setting
λA = 1). The same is true for the T2 factor. There is
an unique choice for the covariance of T1 and T2 from
any pair in (A, B) × (X, Y ). Because all parameters
but σǫCǫZ

are now fixed, this will imply a single
possible value for σǫCǫZ

that will correspond to matrix
ΣS. �.

Lemma 3 If

T (A, B, C, K) = true, for K ∈ {X, Y, V, Z}
T (K, X, Y, V ) = true, for K ∈ {A, B, C}

T (K1, K2, K3, K4) = false, for
{K1, K2} ⊂ {A, B, C}, {K3, K4} ⊂ {X, Y, V }

T (X, Y, Z, V ) = true
T (A, X, Y, Z) = T (A, B, C, X) = false

and all entries in the covariance matrix of
{A, B, C, X, Y, Z, V } are non-zero, then

• there is a latent T1 in the true model that d-
separates {A, B, C};

• there is a latent T2 in the true model that d-
separates {X, Y, Z, V };

• T1 6= T2;
• T1 d-separates every pair in {A, B, C, Z, T1} ×
{X, Y, V, T2}, except (Z, T2);

• T2 d-separates every pair in {A, B, C, T1} ×
{X, Y, Z, V, T2}, except (Z, T1);

• at most one element of {A, B, C, Z} shares a
hidden common cause with T1, at most one el-
ement of {X, Y, Z, V } shares a hidden common
cause with T2, and at most one element of
{A, B, C, X, Y, V } shares a hidden common cause
with its respective latent ancestor {T1, T2};

Proof: Most of the results in the theorem follow di-
rectly from Theorem 15 of (Silva et al., 2006). We
are left to show that T1 does not d-separate Z from
T2, and that T2 does not d-separate Z from T1. We
will prove that T2 cannot d-separate Z from T1. By
symmetry, this proves the other result.

Suppose, for the sake of contradiction, that T2 d-
separates Z from T1. Since T1 lies on all treks connect-
ing Z and A (a consequence of the Tetrad Representa-
tion Theorem and hypothesis T (A, B, C, K = Z)), it
will follow that T2 lies on all treks connecting Z and
A.

Suppose first there are treks connecting A to T2 and
Z to T2 that are both into T2, as illustrated in Figure
6(a). If T1 is a descendant of T2, then A and Z will be
d-connected given T1, contrary to our hypothesis. If T1

is not a descendant of T2, there will a trek connecting
T1 and T2 that is into T2 (Figure 6(a)). But then T2

does not d-separate Z from T1.

1
T

2
TZ A

1
T

2
TZ A

Figure 6: Treks connecting Z and A through T1 and
T2.

Therefore, there is no trek connecting A to T2 and Z
to T2 that are both in T2. This fact, and the fact that
T (A, X, Y, V ) = T (X, Y, Z, V ) = true, implies that at
most one element of {A, X, Y, Z} is connected to T2 by
a trek into T2. The hypothesis and this result imply
that T2 d-separates all elements in {A, X, Y, Z}, which
implies T (A, X, Y, Z) = true. Contradiction. �

Lemma 4 Let S = {A, B, C, X, Y, Z, V } be a set
of random variables with covariance matrix ΣS gen-
erated by an unknown linear latent variable model.
If S satisfies the conditions of Lemma 3, then there
is an unique Gaussian latent variable DAG model
(up to the scale and sign of the latents) defined by
G2L′(A, B, C, X, Y, Z, V ) such that the marginal co-
variance for S according to this model equals ΣS. In
this case, the covariance of T1 and T2 defined by this



model equals the covariance of the respective latents in
the true model containing S.

Proof: This proof is similar to the proof of Lemma 2.
The main different is that Z has two linear coefficients
associated with it:

Z = λZ1T1 + λZ2T2 + ǫZ (2)

The definition of {λZ1, λZ2, σ
2
ǫZ
} is analogous: they

are the parameters obtained by the linear regression
of Z on {T1, T2}. Because of the local separations
(T1 d-separating all elements of {A, B, C, Z} and T2

d-separating all elements in {X, Y, Z}), the covariance
Σǫ is allowed to be diagonal.

The uniqueness of this solution can also be obtained
through standard results of structural equations mod-
els: parameters for {T1 → A, T1 → B, T1 → C} are
readily identifiable. The covariance of the latents is
readily obtained from {T1 → A, T1 → B, T1 → C,
T2 → X, T2 → Y , T2 → V, T1 ↔ T2}. Finally, param-
eters for the local equation (2) follow from the previ-
ously identified parameters. �


