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Abstract

We present a Bayesian search algorithm for
learning the structure of latent variable mod-
els of continuous variables. We stress the
importance of applying search operators de-
signed especially for the parametric family
used in our models. This is performed by
searching for subsets of the observed vari-
ables whose covariance matrix can be repre-
sented as a sum of a matrix of low rank and
a diagonal matrix of residuals. The resulting
search procedure is relatively efficient, since
the main search operator has a branch factor
that grows linearly with the number of vari-
ables. The resulting models are often sim-
pler and give a better fit than models based
on generalizations of factor analysis or those
derived from standard hill-climbing methods.

1. Introduction

In a large class of problems, the observed associations
in our data are due to hidden variables that are com-
mon causes of our measured variables. This happens,
for instance, if the observations are sensor data mea-
suring atmospherical phenomena, medical instruments
measuring biological processes, econometrical indica-
tors measuring economical processes and so on. We
are interested in modeling such type of domains. Rey-
ment and Joreskog (1996) and Bollen (1989) provide
an extensive list of examples of this class.

If one wants to model the joint distribution of such
measurements, it is desirable to represent hidden (la-
tent) variables explicitly. Families of models such as
factor analysis, hidden Markov models and variants
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are basic examples of latent variable models. Such
models often can be represented as graphical models
and it is of interest that any learning procedure de-
signed to build these models from data is also capable
of learning the respective graphical structure.

This paper describes a procedure for learning the
structure of latent variable models with the primary
purpose of performing density estimation in continu-
ous (i.i.d.) data, since many datasets contanining sen-
sor data, economical indicators and, in general, mea-
surements obtained through scientific instruments are
continuous. We choose a class of models called mea-
surement/structural models which we believe provides
a good trade-off between flexibility (i.e., the model
space is sufficiently large) and cost (there are practical
ways of searching for models in this class). This family
is explained in Section 2, motivated by limitations of
current approaches for structure learning.

Section 3 is the main section of this paper, and de-
scribes the structure search algorithm along with sev-
eral examples. Section 4 introduces the Bayesian score
function that will be used to guide the search, while
Section 5 provides experimental results. A summary
and directions for future work are given in Section 6.

2. Related Work And Limitations

We identify two main approaches in latent variable
model search. The first one considers the space of
graphs inspired by factor analysis, where latents are
parents, but never children, of observed variables, and
every observed variable has at least one latent par-
ent. Usually, this space consists of models of different
number of independent latents, where each observed
variable is a child of all latent variables. A particular
structure is illustrated by Figure 1(a). The structure
learning problem, therefore, is reduced to the problem
of deciding the number of latent variables as in, e.g.,
Minka (2000). This is an efficient learning procedure,
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Figure 1. In this paper, x variables represent latents, and y variables represent observed variables. Many models encoded
by (b) could in principle be represented by graph (a), albeit with many more parameters that makes learning hard with
small samples. The same is true when using graph (d) to estimate the joint of variables given by model (c).

but does not consider that alternative models outside
this space might be much simpler, as in Figure 1(b),
and therefore fit the data better if sample sizes are
relatively small.

An alternative is to consider full structure learning,
allowing the model to assume an arbitrary directed
acyclic graph (DAG) representation. As suggested by
several authors, one could start with a standard hill-
climbing procedure to search for a DAG without latent
variables, and then introduce hidden variables as com-
mon parents of a set of observed variables that are
densely connected. Another hill-climbing procedure
could be started from this point, and the process it-
erated. An implementation of this idea is described
and evaluated by Elidan et al. (2000). This is a more
expensive but flexible approach.

The problem of this approach is ignoring that search
operators that are useful for hill-climbing learning of
latent-free DAGs might not be appropriate once hid-
den variables are introduced. For instance, assume the
structure in Figure 1(c) is the true structure in our do-
main, and that the respective probability model is a
multivariate Gaussian. Assume also that our current
candidate is the graph in Figure 1(d), and there is a
choice of parameters for (d) that allows it to repre-
sent the population mean and covariance matrix of of
{y1, y2, . . . , y6}. Even if the graph in Figure 1(d) is
potentially able to represent the marginal distribution
of {y1, y2, . . . , y6}, with small samples sizes the simpler
graphical structure of Figure (c) might provide a bet-
ter estimate of the joint. However, the usual search
operators that generate new candidate graphs (as in
Elidan et al., 2000) consist of adding, removing or re-
versing an edge in the current candidate. One can
verify that typically for the space of Gaussian mod-
els representable by Figure 1(d), no edge addition, re-
moval or reversal will increase the marginal likelihood
for observed variables {y1, y2, . . . , y6}. The standard
greedy algorithm gets trapped at this candidate. We
could do better with search operators especially de-
signed for latent variable models. For computational
reasons, it is also desirable that such operators do not
create a large set of candidates at each search step.

Our choice of model space is the class of measure-
ment/structural models. In this class, as in factor
analysis, we forbid edges directed from an observed
variable into a latent variable. However, we allow
edges between latent variables and between observed
variables, as long as the graph is acyclic.

The name of this class comes from the econometrics
and social sciences literature (Bollen, 1989), where a
plausible assumption is that the dataset consists of
clusters of strongly correlated variables. Each clus-
ter measures a different hidden common cause (e.g., a
cluster of indicators of “economical stability,” another
cluster of indicators of “job satisfaction” and so on).
The structural model is the submodel among latent
variables. The measurement model is the submodel
describing the parents of each observed variable. The
relevant latents are those that are causes but not ef-
fects of our measures. For the type of applications we
discussed at the beginning of this paper (e.g., applica-
tions where factor analysis is considered suitable), the
assumption that latents are common causes but not
effects of observations is usually plausible.

3. A Hill-climbing Algorithm

We now describe a practical algorithm for learning
measurement/structural models. The probabilistic
model is a mixture of Gaussians. The linearity of each
mixture component will play an important role in this
paper. The algorithm is a hill-climbing procedure to
find local maxima of a score function. This function
is an approximation of the posterior probability of the
model. We postpone its description to Section 4, since
this is not essential to understand the algorithm.

3.1. A Variable Removal Procedure

Consider the problem stated by Kano and Harada
(2000): initially, an expert provides a measure-
ment/structural latent variable model G. Suppose the
given model does not fit the data (e.g., according to
a significance test). The problem is to find a sub-
set R of the given observed variables such that, when
we remove R from G (which amounts to remove the
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Figure 2. A way of evaluating the improvement on removing y1 from the model given in (a) is to free the covariance
between y1 and the remaining variables, leaving the rest of the model unchanged (Figures (b), (c)). This amounts to
compare the model Figure (d) against the model in Figure (a). See Example 1 in the text for details.

respective nodes and all edges into these nodes), the
resulting submodel G′ fits the data. The probabilistic
model in this case is multivariate Gaussian.

One way of evaluating the gain of removing an ob-
served variable y1, as described by Kano and Harada
(2000), is to compare the original model G against
a candidate model where: 1. the covariance σy1yi

of
y1 and every observed variable yi, i 6= 1, is uncon-
strained; 2. the marginal model for {y2, y3, . . . , ym}
is constrained by the subgraph obtained when y1 is
removed from G.

Example 1. Suppose our model G is the model given
by Figure 2(a), where we have a single latent variable
x1 and six observed variables, {y1, . . . , y6}. Without
loss of generality, assume the mean of each variable is
zero and that σ2

x1
, the variance of x1, equals 1. There-

fore, the marginal distribution of the observed vari-
ables is given by the covariance matrix of {y1, . . . , y6}.
Since the model is multivariate Gaussian, it can be
parameterized by a linear model such that

yi = λix1 + ǫi, i = 1, . . . , 6 (1)

where ǫi is a zero mean Gaussian random variable.
This means that the observed covariance matrix Σ is
given by

Σ = ΛΛ′ + Φ (2)

where Λ′ = [λ1λ2 . . . λ6] and Φ is a diagonal matrix,
Φii corresponding to the variance of ǫi. Therefore, Σ
can be represented by the sum of a rank-1 matrix (ΛΛ′)
and a diagonal matrix. We say that Σ follows a rank-1
constraint.

To evaluate how well the fit of the graph improves
when removing y1, we essentially fix the marginal
structure of y2, . . . , y6 (Figure 2(b)), which will im-
pose a rank-1 constraint on the respective marginal
covariance matrix, while freeing all entries σy1yi

to as-
sume arbitrary values. This is illustrated by Figure
2(c). Notice that this basically amounts to evaluating
the graphical model in Figure 2(d). Call this graph

G\y1
, a notation also used later in this paper. When

factorizing the observed distribution p(y1, . . . , y6) as

p(y1, . . . , y6) = p(y1|y2, . . . , y6) × p(y2, . . . , y6) (3)

we see that p(y1|y2, . . . , y6) is unconstrained according
to G\y1

, while (the covariance matrix of) p(y2, . . . , y6)
obeys a rank-1 constraint.

The upshot is: if the model in Figure 2(a) is in fact
correct, then it should score higher than the model
given by Figure 2(d) since it has fewer parameters. If
the model in Figure 2(a) is not correct, then it should
score lower than Figure 2(d), since it imposes more
constraints on the observable marginal density1. �

We say that a graph for a Gaussian model entails a
rank-r constraint if, for any choice of parameter values,
its observed covariance matrix Σ can be represented by
the sum ℵ+Φ, where ℵ is a rank r matrix and Φ is di-
agonal. A factor analysis/principal component analy-
sis model of r latents entails such a constraint. We
say that a graph for a mixture of Gaussians model en-
tails a rank-r constraint if, for every covariance matrix
Σi corresponding to the ith component, Σi = ℵi + Φ,
where ℵi is rank r. Notice that the mixture of factor
analysers model with r latents (Ghahramani & Beal,
1999) is a special case of a rank-r model.

This variable elimination procedure is the main build-
ing block of our algorithm for searching for such con-
straints, as explained in the next section. While Kano
and Harada (2000) are interested only in selecting vari-
ables from a given latent variable model, we are inter-
ested in building latent models from scratch.

3.2. A Clustering Procedure: Overview

What does the variable removal procedure buy us, and
what is the role of rank constraints? In a Gaussian
model without hidden variables, conditional indepen-
dence constraints essentially define the model: it is a

1The model (a) is nested within (d), i.e. marginal
y1, . . . y6 in (a) can be represented by (d), but not the op-
posite: the matrix for y1, y2, y3, y4 is rank-1 only in (a).
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well-known result that Gaussian graphical models with
the same conditional independence constraints are also
likelihood equivalent (Spirtes et al., 2000). This is not
true for latent variable models and explains why search
operators defined by single edge modifications are not
ideal in our problem. Although there is no known full
characterization of likelihood equivalence in the class
of Gaussian measurement/structural models, several
recent results point to the usefulness of describing la-
tent variable models by rank constraints:

• for a large class of measurement models, rank con-
straints are all that is needed to learn the struc-
tural model given a measurement model (Spirtes
et al., 2000);

• rank-1 constraints can identify any subgraph of a
measurement model where each latent has at least
three unique measures (observed children that are
not children of any other variable) (Silva et al.,
2006; Silva & Scheines, 2005);

• the cross-covariance matrix of any two groups of
random variables with rank-r can be represented
by a latent variable model with r pairs of latents
(Wegelin et al., 2006);

• a large number of equality constraints entailed by
factor analysis models can be described by com-
binations of rank constraints (Drton et al., 2005);

Searching for models that entails several rank con-
straints seems to be a promising way of building sparse
graphical models of mixtures of Gaussians. The search
problem is that different subsets of variables are con-
nected by different rank constraints. For instance,
both graphs in Figure 1(a) and Figure 1(b) entail a
rank-3 constraint for its full set of observed variables,
but only the one in Figure 1(b) entails a rank-1 con-
straint for the subset y1, y2, y3, y4.

The natural way of scoring a model with a rank-r con-
straint is to build a latent variable model where all
observed variables share the same r latents. To score
the fit of a combination of rank constraints is to score a
model where some edges between latents and observed
variables do not exist. The challenge, therefore, is to
design a search procedure that tries to efficiently find
proper subsets of variables that correspond to rank-r
constraints and to combine these constraints in a glob-
ally coherent model. Finding a model that entails all
rank constraints entailed by the true model that gen-
erated the data is a NP-hard problem2. In practice,
we will adopt a greedy heuristic procedure as follows:

2By reduction of the NP-hard problem of learning a
DAG to the problem of learning a structural model with
fixed measurement model as in Spirtes et al. (2000).

Algorithm K-LatentClustering

Input: a data set D of observed variables Y, an integer k
Output: a DAG

1. Let G and Gbest be fully connected graphs with nodes
Y and G−1 an empty graph

2. Do
3. G←IntroduceLatentCluster(G, G−1,Y, k)
4. Do
5. Let ymax ← argmaxyi∈YF(G\yi

,D)
6. If F(G\ymax

,D) > F(G,D)
7. Remove ymax from G
8. While G is modified
9. If GraphImproved(G, Gbest)

10. G−1 ← Gbest

11. Gbest ← G
12. While Gbest is modified
13. Return Gbest

Figure 3. Build a latent variable model where variables are
“clustered” by sharing the same k latent parents.

• find first a large group of variables that share a
single latent parent (rank-1 constraints);

• put these variables aside, and within the remain-
ing variables, try to find another group where vari-
ables share a single latent parent. Iterate;

• once no such group can be found, try now the
same procedure where variables now share two la-
tent parents (rank-2). Keep increasing the num-
ber of latents when no model can be found;

• stop when there are too few variables remaining
(more on that later);

• join all submodels found so far into a single la-
tent variable model. Add extra connections and
remaining variables as appropriate;

The greedy aspect of this approach comes when trying
to find the largest subset of variables that corresponds
to a rank-r constraint for a fixed r. Instead of scor-
ing all models of r latents (by using all subsets of the
available observed variables), we adopt a top-down ap-
proach using the variable removal procedure of Section
3.1. An important advantage of this operator is that it
defines a space of candidates that is linear in the num-
ber of variables at each step. Details are discussed in
the next section.

3.3. Detailed Algorithm

We will assume for now that the number of mixture
components n is given, and we have a score function
F(G,D) such that, given n, graph G, and dataset D,
returns a score for graph G. The goal is to find a local
maximum for F within a space that greedily selects
variables corresponding to low-rank constraints.
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Algorithm IntroduceLatentCluster

Input: two graphs G, G−1; a set of observed variables Y;
an integer k defining the cluster size
Output: a DAG

1. Let NodeDump be the set of observed nodes in Y
that are not in G

2. Let T be the number of clusters in G
3. Add a new cluster of k latents XT to G and form a

complete DAG among latents in G.
4. For all y ∈ NodeDump
5. If y ∈ G−1

6. Let Xi be the parent set of y in G−1

7. Set Xi+1 to be the parent set of y in G
8. Else
9. Set XT to be the parent set of y in G

10. Return G

Figure 4. Add a new latent to G with a new arrangement
of observed nodes. The new arrangement move nodes to
the next latent cluster according to their position in G−1.

Algorithm K-LatentClustering is described in Fig-
ure 3 (see also Figure 4). It searches for models with
clusters of variables, where each cluster is a set of ob-
served variables that share the same k latent parents.
Variables in different clusters share no parents. This
algorithm is used by a higher-level algorithm, intro-
duced later in this section, that iterates through dif-
ferents values of k and combines the output of each call
into a single graph. For now, it suffices to understand
how K-LatentClustering works.

Example 2. Suppose k = 1, Y = {y1, y2, . . . , y6}.
K-LatentClustering will start by creating a model
with 1 latent, and all variables in Y will be children of
this latent (top of Figure 5). We will then score each
graph G\yi

(as defined in Section 3.1). If the best of all
such graphs is also better than the current candidate,
we update our current candidate. The rest of Figure
5 illustrates two iterations of Steps 5-7: we choose to
remove y2 at the first iteration, and y6 in the second.

Because we have now a model with different variables
than the graph Gbest from the previous iteration, we
need a way to compare these two graphs. GraphIm-

proved is a comparison criterion: let Vbest be the set
of nodes that are in Gbest but not in G. Add Vbest

to G to create a new graph G′, make Vbest a clique
in G′, and make each node in Vbest a child of the
original observed nodes YG from G. Create G′

best in
an analogous way. GraphImproved returns true if
F(G′,D) ≥ F(G′

best,D). The idea is that we need to
have the same variables in both graphs, but we want
to score only the rank constraints entailed by Gbest

and G. Therefore p(Vbest|YG) and p(V|YGbest
) are

unconstrained. �
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Figure 5. Example of a search tree in the K-

LatentClustering algorithm. It iteratively removes one
observed variable at a time by choosing the submodel
with the highest score. In the figure, each box represents
the model chosen at the corresponding step.

Once we find our first cluster Y1 with a subset of ob-
served variables sharing the same k latent parents, in
the next iteration of K-LatentClustering we try to
find a second cluster Y2 that also share k latent par-
ents, but that has none of the parents of Y1

3. Nodes
from Y1 might also need to be removed in the second
iteration.

Example 3. To see why we might need to remove
nodes from the first cluster, consider the following ex-
ample illustrated by Figure 6. For simplicity we also
use k = 1. Suppose the true model is the one depicted
in Figure 6(a). A plausible candidate at the end of
the first iteration of K-LatentClustering is shown
in Figure 6(b): since x1 d-separates y1, y2, y3, y4, y6 in
the true model, a rank-1 constraint exists in the co-
variance matrix of such variables.

When the second iteration of K-LatentClustering

starts, IntroduceLatentCluster will introduce la-
tent t2 as shown in Figure 6(c). Everything is on its
right place, except y6. It is expected that the variable
removal heuristic will choose y6 to be removed, since
G\y5

can represent the actual population distribution,
while no other candidate graph has this property (most
entailed rank constraints that include y6 are violated in
the population). Figure Figure 6(d) illustrates a typ-
ical candidate obtained at the end of the second iter-
ation. In the third iteration, K-LatentClustering

starts with the exact model and, given enough data,
no modifications will judged to be necessary (the di-
rection of the edge t1 → t2 is not important here). In

3Notice that the cross-covariance matrix (i.e., the ma-
trix composed of covariances of pairs in Y1×Y2) for each
mixture component will be of rank k.
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Figure 6. An illustration of different iterations of K-LatentClustering (see Example 3 in the text). Figure (a) shows
the true model, and (b) and example of model generated at the end of the first iteration of the algorithm. Notice the
arbitrary labeling t1 for the latent in Figure (b). The remaining figures show the progression of the second iteration.

Algorithm FullLatentClustering

Input: a data set D
Output: a DAG

1. i← 0; D0 ← D; Solutions← ∅; k ← 1
2. Do
3. Gi ← K-LatentClustering(Di, k)
4. If Gi has some latent node
5. Solutions← Solutions ∪ {Gi}
6. Let Di+1 be a subset of Di containing data only

for variables not in Gi

7. i← i + 1
8. While Solutions changes
9. Increase k by 1 and repeat Steps 2-8 if the number v

of remaining variables if large enough
10. Let Gfull be the graph composed by merging all

graphs in Solutions, where latents are fully con-
nected as an arbitrary DAG

11. For every pair {Gi, Gj} ⊆ Solutions
12. Greedily add/delete new independent latents

yi ← xnew → yj to Gfull, (yi ∈ Gi, yj ∈ Gj), to
maximize F(Gfull,D)

13. Return Gfull

Figure 8. Merge the solutions of multiple K-

LatentClustering calls.

general, a node might traverse all clusters in a com-
plete run of the algorithm. �

This example is also useful to understand algorithm
IntroduceLatentCluster. This algorithm checks
the position of each removed node (those in that are in
Y but not in G), and moves each removed node to its
“next” cluster, following the order by which such clus-
ters were created (obtained from G−1). Notice that
if T = 0, this will create the initial cluster, and all
nodes will be added to LC0. Notice that all latents
are connected in an arbitrary graph. We will deal with
learning the structural model at the end.

We are now ready to introduce the full latent clustering
algorithm, as described in Figure 8. The initial stages
just call K-LatentClustering repeatedly, while in-
creasing k when necessary. This first stage (Steps 1-9)
ends when k gets large enough4. Notice that not all

4When there are more edges in the graph than entries
in the sample covariance matrix.

observed variables might be included at this stage.

In the remaining of the algorithm, we merge all solu-
tions resulting from a call to K-LatentClustering

into a single graph. Since each solution was derived
individually, there might be correlations between vari-
ables in different graphs that are not accounted by the
latent variables. We account for such residual correla-
tions by greedily introducing “ancillary” latents: these
are latents that are disconnected from all other vari-
ables, except a pair of observed variables yi, yj . Such
a latent affects only the covariance σyiyj

(on each mix-
ture component)5.

Example 4. Figure 7 provides an example on how
K-LatentClustering is used in the full clustering
procedure. Different number of latents per cluster can
in principle be found by increasing k as needed. �

Finally, we finish the search procedure by inserting the
possibly remaining observed nodes. The final search
consists of a standard hill-climbing search for edges
among latents, and for edges into the newly added
nodes. We call the full algorithm composed by Ful-

lLatentClustering and the final greedy search the
RankSearch algorithm, evaluated in Section 5.

4. A Bayesian Score Function

As stated before, our probability model is a mixture
of Gaussians. The model can therefore be represented
by a linear parameterization conditioned on a discrete
variable representing the mixture component. Since
we are interested in scoring graphs using a posterior
distribution, we need priors for such parameters. We
adopt the parameterization and priors for mixture of
factor analysers given by Ghahramani and Beal (1999)
and an uniform prior for graphs. The only difference
is that we allow edges between observed variables and
between latents. Such edges can use the same type
of priors and hyperparameters. We also use the same
type of variational approximation and hyperparame-

5This is not strictly precise. It might also constrain the
variances σ2

yi
and σ2

yj
if the residual covariance between

this pair is strong enough, for instance.
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Figure 7. An illustration of the interaction between FullLatentClustering and K-LatentClustering. Suppose the
true model is the one in Figure (a). Each bi-directed edge represents a single latent that is independent of all other latents
in the model. In (b), we have a typical output of the first call of K-LatentClustering (k = 1) from FullLatent-

Clustering. Notice that the third cluster is not included with this model, because K-LatentClustering at this stage
searches for clusters that are separated by single latents. This third cluster, however, can be generated individually by a
second call to K-LatentClustering, as shown in (c). It is intuitive that if we want to merge these two graphs, we have
to search for the residual covariances that are due to the original “bi-directed” edges.

ter fitting of Ghahramani and Beal (1999). The only
difference is that we fully factorize the marginal varia-
tional distribution of the “ancillary latents,” since they
might grow to large numbers.

It is interesting to notice that this approach can be
trivially extended to a non-parametric Bayesian set-
ting using Dirichlet process mixtures (and the trun-
cated variational approximation of Blei and Jordan
(2004)). We did not perform experiments with such
model due to its high computational cost.

5. Experiments

It is important to known how well the variable re-
moval heuristic performs on finding correct measure-
ment/structural graphs. This can be done by simula-
tions, which are not included in this paper due to lack
of space but described by Silva (2005). This heuristic
largely succeeds on rebuilding a variety of structures.

To evaluate RankSearch (RS) on the task of density
estimation, we compare its performance against two
standard algorithms: mixture of factor analysers (FA)
(Ghahramani & Beal, 1999) and FindHidden (FH)
(Elidan et al., 2000). FH is designed to exploit condi-
tional independencies among observed variables, which
is not the case in RS and FA. If the domain contains
many of such independencies, then FH should be more
appropriate. We stress that RS was never intended to
be used on this type of problem, but on those where
factor analysis seems appropriate (see Spirtes et al.,
2000, for examples of applications of each type)6.

6Some implementation details: both RS and FH use
Structural EM (Elidan et al., 2000) to speed up search.
Both use the same score function and number of mixture
components, chosen a priori by the output of the mixture
of factor analysers algorithm. That is, all three algorithms
use the same number of mixture components. Moreover,
due to its high computational cost on our datasets, our im-
plementation of FindHidden only expands the semiclique

Eight datasets are used. Two datasets were simulated
from a sparse latent variable model of 2 mixture com-
ponents and 5 latents, where each latent has exactly
5 observed children, and each observed variable has a
single parent. Latents are fully connected as an arbi-
trary DAG. Datasets synth200 and synth500 were
generated by sampling 200 and 500 cases from this
model, respectively. The remaining datasets are7:

• arrhythmia (arr): 452 instances / 16 variables
• ionosphere (iono): 351 / 33
• heart images (spectf): 349 / 44
• water treatment plant (water): 380 / 38
• waveform generator (wave): 5000 / 21
• breast cancer (wdbc): 561 / 25

Table 1 shows the results. We use 5-fold cross-
validation, and report the results for each partition.

By analysing the synthetic datasets synth200 and
synth500, where the assumption of a sparse measure-
ment structure holds, it seems clear the RS algorithm
is able to give a better fit with smaller datasets, al-
though as expected all algorithms will do well with
larger datasets. In the spectf dataset, it is clear that
RS tends to do better than FA, although in this partic-
ular cross-validation setting we missed statistical sig-
nificance (by a sign test) due to one anomalous case.
The wave dataset is also synthetic, and data is abun-
dant: all three algorithms perform approximately the
same, with RS identifying a single latent separating
most observed variables. Differences in iono are more
extreme arguably due to truncations in the data.

The dataset water is used to illustrate an interest-

that has the best initial score (details in Elidan et al., 2000)
7All datasets are from the UCI Repository (Blake &

Merz, 1998). Non-ordinal discrete variables and instances
with missing values were removed. For the arrhythmia

dataset, we used only the first 20 continuous variables.
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Table 1. Evaluation of the average test log-likelihood of the outcomes of three algorithms. For each structure output by
a corresponding search algorithm, we fit its parameters with the training set using maximum likelihood estimation. Each
line is the result of a single split in a 5-fold cross-validation. The entry R −M is the difference between RS and mixture of
factor analysers. The entry R − F is the difference between RS and FindHidden. The table also provides the respective
averages (avg). A star (*) indicates positive differences that are statistically significant at a level of 0.05 using a sign test.

Set RS R - M R - F RS R - M R - F RS R - M R - F RS R - M R - F

arrythmia iono syn200 syn500

1 -18.76 1.14 0.56 -34.65 4.84 9.54 -18.50 0.16 0.97 -13.63 -0.01 0.07
2 -22.50 1.35 1.47 -25.60 6.06 11.58 -17.99 0.32 0.24 -11.09 -0.08 0.12
3 -18.32 1.29 0.32 -28.30 7.05 11.53 -18.70 0.46 1.10 -11.70 0.08 0.26
4 -23.61 1.99 1.37 -32.90 4.25 6.73 -16.24 0.59 1.36 -10.67 0.02 0.22
5 -22.97 1.03 1.17 -32.87 7.72 9.89 -18.67 0.34 0.67 -11.89 0.06 0.11

avg -21.23 1.36* 0.98* -30.86 5.98* 9.85* -18.02 0.37* 0.87* -11.80 0.01 0.16*
spectf water wave wdbc

1 -47.60 1.48 2.33 -30.91 6.33 5.1 -24.11 -0.06 0.80 -15.78 -0.81 -0.62
2 -45.76 4.72 4.66 -29.69 2.48 4.36 -23.97 -0.05 -0.61 -19.87 -1.72 -0.52
3 -47.93 -0.01 0.21 -40.76 7.57 -1.74 -23.87 -0.1 0.96 -17.73 -1.45 -1.2
4 -43.42 2.31 4.64 -42.57 4.97 -2.77 -24.1 -0.09 0.97 -15.76 0.28 -0.06
5 -41.52 3.01 5.13 -44.4 8.08 -9.63 -24.24 -0.05 -0.04 -17.11 -2.06 0.08

avg -45.25 2.30 3.39* -37.67 5.89* -0.94 -24.06 -0.07 0.42 -17.25 -1.15 -0.46

ing phenomenon: RS and FA do not work well with
a dataset which has several discrete ordinal variables,
being very unstable. Another interesting phenomenon
was the outcome of the wdbc dataset. RS actually
performed worse and seemed to underfit the data,
greedily choosing clusters with small number of la-
tents. FA chooses a relatively large number of latents,
approximately 12 per iteration, i.e., almost 1 latent per
2 observed variables. However, if we start FullLa-

tentClustering with 2 latents per clusters (k = 2)
instead of 1, then RS is better than FA in 3 out of 5
partitions (4 out of 5 compared to FH). This suggests
other possible variations of RankSearch.

6. Conclusion

To the best of our knowledge, RankSearch is the
first structure learning algorithm for graphical mod-
els explicity designed to use constraints that are rel-
evant to continuous latent variable models. The al-
gorithm can certainly be extended in a variety of
ways. A natural extension, for instance, is to allow
K-LatentClustering to also re-insert nodes that
are removed, which is actually suggested by Kano and
Harada (2000). In this paper, we tried to keep the
algorithm as simple as possible to evaluate how it per-
forms with a minimum set of search operators. As
future work, we plan to adapt it to ordinal data and
different types of parametric and nonparametric mod-
els. If latents are connected by non-linear functions,
but observed variables are still linear functions of their
parents, rank constraints are still of singular impor-
tance on structure learning (Silva & Scheines, 2005).
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