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Abstract One approach for constructing copula functions is by miidgpion.
Given that products of cumulative distribution functio®DFs) are also CDFs,
an adjustment to this multiplication will result in a copufedel, as discussed by
Liebscher (J Mult Analysis, 2008). Parameterizing modédsproducts of CDFs
has some advantages, both from the copula perspectivei{ésgwell-defined for
any dimensionality) and from general multivariate anayg.g., it provides mod-
els where small dimensional marginal distributions candmlye read-off from the
parameters). Independently, Huang and Frey (J Mach Leasn B 1) showed
the connection between certain sparse graphical modelpradidicts of CDFs, as
well as message-passing (dynamic programming) schemesrigputing the like-
lihood function of such models. Such schemes allows modebe testimated with
likelihood-based methods. We discuss and demonstrate M@dp@aches for esti-
mating such models in a Bayesian context, their applicaticopula modeling, and
how message-passing can be strongly simplified. Impoytamil view of message-
passing opens up possibilities to scaling up such methad=) that even dynamic
programming is not a scalable solution for calculatinglihk@od functions in many
models.

1 Introduction

Copula functions are cumulative distribution functiondD@&3) in the unit cube
[0,1]P with uniform marginals. Copulas allow for the constructiohmultivari-
ate distributions with arbitrary marginals — a result dilecelated to the fact that
F(X) is uniformly distributed in[0, 1], if X is a continuous random variable with
CDF F(-). The space of models includes semiparametric models, whinite-
dimensional objects are used to represent the univariaigimads of the joint distri-
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bution, while a convenient parametric family provides a Wwagepresent the depen-
dence structure. Copulas also facilitate the study of nreasaf dependence that are
invariant with respect to large classes of transformatidtise variables, and the de-
sign of joint distributions where the degree of dependenuersy variables changes
at extreme values of the sample space. For a more detailedewef copulas and
its uses, please referto [11, 19, 6].

A multivariate copula can in theory be derived from any jadigtribution with
continuous marginals: iF (Xy,...,Xp) is a joint CDF andF(-) is the respective
marginal CDF ofX;, then F(Fl’l(-),...,Fgl(-)) is a copula. A well-known re-
sult from copula theory, Sklar's theorem [19], provides teneral relationship.
In practice, this requires being able to compqué(-), which in many cases is not
a tractable problem. Specialized constructions existjquéarly for recipes which
use small dimensional copulas as building blocks. See [Xot2xamples.

In this paper, we provide algorithms for performing Bayasigerence using the
product of copulas framework of Liebscher [14]. Constmgttopulas by multiply-
ing functions of small dimensional copulas is a concepyusithple construction,
and does not require the definition of a hierarchy among obsevariables as in
[2] nor restricts the possible structure of the multiplicatoperation, as done by
[12] for the space of copula densities that must obey the amadrial structure of
a tree. Our contribution is computational: since a prodficopulas is also a CDF,
we need to be able to calculate the likelihood function if &sgn inference is to
take placé. The structure of our contribution is as follows: i. we siifipthe re-
sults of [10], by reducing them to standard message pas$iugithms as found
in the literature of graphical models [3] (Section 3); iir fiatractable likelihood
problems, an alternative latent variable representatiothie likelihood function is
introduced, following in spirit the approach of [25] for solg doubly-intractable
Bayesian inference problems by auxiliary variable sangp(ection 4).

We start with Section 2, where we discuss with some more Idé&iproduct
of copulas representation. Some illustrative experimargsiescribed in Section 5.
We emphasize that our focus in this short paper is computatiand we will not
provide detailed applications of such models. Some apgics can be found in

9.

2 Cumulative Distribution Fields

Consider a set of random variabl@ds, ..., Uy}, each having a marginal density
in [0,1]. Realizations of this distribution are represented@s. ..,up}. Consider
the problem of defining a copula function for this set. Thedma of two or more
CDFs is a CDF, but the product of two or more copulas is in gamest a copula
— marginals are not necessarily uniform after multiplioatiln [14], different con-

1 Pseudo-marginal appproaches [1], which use estimatesdikédihood function, are discussed
briefly in the last Section.
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structions based on products of copulas are defined so héintd result is also a
copula. In particular, for the rest of this paper we will atihye construction

K
azi j
C(ug,...,Up) = rLCj(ul“,...,u?)p‘) 1)
J:

whereaj1+...+ax =1,a; >0forall 1<i < p, 1< j <K, with eachCj(-,...,-)
being a copula function.

Independently, Huang and Frey [8, 9] derived a product of €Dfedel from
the point of view of graphical models, where independencesizaints arise due to
the absence of some arguments in the factors (correspoimdffiyto setting some
exponentsyj to zero). Independence constraints from such models iedindse
arising from models of marginal independence [4, 5].

Example 1 We first adopt the graphical notation of [4] to describe thredastruc-
ture of the cumulative distribution network (CDN) models$tfang and Frey, where
a bi-directed edg&m <+ Uy, is included ifUy, andUp, appear together as arguments
to any factor in the joint CDF product representation. Fatance, for the model

C(ug, up,u3) = Cy(us, u%/z)cz(ué/z, uz) we have the corresponding network

U1<—)U2<—>U3

First, we can verify this is a copula function by calculatthg univariate marginals.
Marginalization is a computationally trivial operation@DFs: sinceC(uy, Uz, U3)
means the probability?(U; < ug,U, < up,Us < us), one can find the marginal
CDF of U; by evaluatingC(uz,®, ). One can then verify tha(U; < uj) = u;,

i ={1,2,3}, which is the CDF of an uniform random variable given that [0, 1].
One can also verify thdt); and U3 are marginally independent (by evaluating
C(uz,,us) and checking it factorizes), but that in genédalandU; arenot condi-
tionally independent gived,. B

See [4, 5, 9] for an in-depth discussion of the independenmgepties of such
models, and [14] for a discussion of the copula dependerugeepties. Such copula
models can also be defined conditionally. For a (non-Ganissialtiple regression
model of outcome vector on covariate vectoX, a possible parameterization is to
define the density a(y; | x) and the joint copul&€(Uy, ...,Up) whereU; = P(Y; <
yi | X). Copula parameters can also be functionX of

Bayesian inference can be performed to jointly infer thetgrasr distribution of
marginal and copula parameters for a given dataset. Fodisitypf exposition,
from now on we will assume our data is continuous and follonisariate marginal
distributions in the unit cube. We then proceed to infer @osts over copula param-
eters only. We will also assume that for regression models the copubnpeters do

2 |n practice, this could be achieved by fitting marginal med&{-) separately, and transforming
the data using plug-in estimates as if they were the true imeleg This framework is not uncom-
mon in frequentist estimation of copulas for continuousagdabpularized as “inference function
for margins”, IFM [11].
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not depend on the covariate vectorThe terms “cumulative distribution network”
(CDN) and “cumulative distribution fields” will be used iméhangeably, with the

former emphasizing the independence properties thatfaoisethe factorization of

the CDF.

3 A Dynamic Programming Approach for Aiding MCMC

Given the parameter vectérof a copula function and data = {UY,... UN)},
we will describe Metropolis-Hastings approaches for gatieg samples from the
posterior distributiorp(6 | ). The immediate difficulty here is calculating the like-
lihood function, since (1) is a CDF function. Without furtieformation about the
structure of a CDF, the computation of the correspondingaipdity density func-
tion (PDF) has a cost that is exponential in the dimensionplof the problem. The
idea of a CDN is to be able to provide a computationally effitigay of performing
this operation if the factorization of the CDF has a spedialcture.

Example 2 Consider a “chain-structured” copula function given®y, ..., up) =
Cy(ug, u; 1/2 )Cz(ué/z,ué/z) .Cp-a(u p/ 1-Up). We can obtain the density function
c(ug,... up) as

_|_

Sl Up) = | 50 G, dus. .. dUp

02C1(u1,u;/2)] {09202( 1/2 1/2) -Cp1(u p/ 1,Up)

(9C1(U1, u%/z)
dul

aCl(ULU;/Z)] 9P 1Cy(uy 57, 1/2) -Cp-1(u p/ 1aup)]

_ (92C1(U17 U;/z)

0U10u2 % m2e1(U2)

X Mp1(U2) +
Here,mp1 = [Mp1(Up) mzﬁl(LTz)]T is a two-dimensional vector corresponding to
the factors in the above derivation, known in the graphicadleling literature as a
message [3]. Due to the chain structure of the factorization, conmpyithis vector

is a recursive procedure. For instance,

+

B 0C2(U;/2, 1/2) 09*3C3(u§/27u£11/2)...Cp,l(ut/fl,up)
mp_,1(U2) =

duz dug...0up

_ 1 2 JY/2 1/2
1/2  1/2 oP 203( / / ).--Cpa(u p/,yup)
{CZ(UZ U3 )} d 3...0Up
oC ul/z,ul/2 _
= % X Mg_2(Ug) +Co(uy' %, Uz ) x Ma_s2(U3)
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implying that computing the two-dimensional vectay ,1 corresponds to a summa-
tion of two terms, once we have pre-computasl,,. This recurrence relationship
corresponds to &(p) dynamic programming algorithrill

The idea illustrated by the above example generalizesés xad junction trees.
The generalization is implemented as a message passinglatgby [8, 10] named
the derivative-sum-product algorithm. Although [8] represents CDNs usifagtor
graphs [13], neither the usual independence model associate attorf graphs
holds in this case (instead the model is equivalent to oflheady existing notations,
as the bi-directed graphs used in [4]), nor the derivative-product algorithm cor-
responds to the standard sum-product algorithms used forpemarginalization
operations in factor graph models. Hence, as stated, tivatiee-sum-product al-
gorithm requires new software, and new ways of understgndpproximations
when the graph corresponding to the factorization has a tiggwidth, making
junction tree inference intractable [3]. In particulartire latter case Bayesian in-
ference is doubly-intractable (following the terminoloigyroduced by [17]) since
the likelihood function cannot be computed.

Neither the task of writing new software nor deriving new @pgmations are
easy, with the full junction tree algorithm of [10] being siterably complek In
the rest of this Section, we show a simple recipe on how toaedue problem of
calculating the PDF of a CDN to the standard sum-productlprob

Let (1) be our model. Let be ap-dimensional vector of integers, eaghe
{1,2,...,K}. Let Z be thepX space of all possible assigmentszoFinally, letl (-)
be the indicator function, wheté¢x) = 1 if X is a true statement, and zero otherwise.

The chain rule states that

—_— = = (U, z 2
dup...dup ZEZ%JELQOJ( ) (2)
where o) o "
X E=NC (U .. u”)
(pj(U,Z)E . J( 1- : p
i st. 3= OUi

To clarify, the seti st. z = j are the indices of the set of variablesvhich are
assigned the value gfwithin the particular term in the summation.
From this, we interpret the function

K
pe(u,z) = |'| ¢ (u,2) )
j=1

as a joint density/mass function over the spaxé]® x {1,2,...,K}P for a set of
random variabled) U Z. This interpretation is warranted by the fact thmf:) is

3 Please notice that [10] also presents a way of calculatiagthdient of the likelihood function
within the message passing algorithm, and as such has slewiit advantages for tasks such as
maximum likelihood estimation or gradient-based sampNkig do not cover gradient computation
in this paper.
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Fig. 1 In (a) and (b), a simple chain and tree models representédasdbi-directed graphs. In (c)
and (d), our corresponding extended factor graph repragens with auxiliary variableg.

non-negative and integrates to 1. For the structured caserenonly a subset of
{U1,...,Up} are arguments to any particular copula fa€gf-), the corresponding
sampling space &f is 2 C {1,2,...,K}, the indices of the factors which are func-
tions ofU;. This follows from the fact that for a variabjeunrelated tax we have
0f(x)/dy =0, and as such fat = j we haveg;(u,z) = pc(u,z) =0 if Cj(-) does
not vary withu;. From this, we also generalize the definition®fto 27 x ... x 2.

The formulation (3) has direct implications to the simplfion of the derivative-
sum-product algorithm. We can now cast (2) as the margiai@iz of (3) with re-
spect taZ, anduse standard message-passing algorithms. The independence struc-
ture now follows the semantics of an undirected Markov nektwW8] rather than
the bi-directed graphical model of [4, 5]. In Figure 1 we shsmne examples using
both representations, where the Markov network indeperelerodel is represented
as a factor graph. The likelihood function can then be corgbhy this formulation
of the problem using black-box message passing softwaijarfotion trees.

Now that we have the tools to compute the likelihood funct®ayesian infer-
ence can be carried. Assume we have for eg¢h a set of parametersd;,a; },
of which we want to compute the posterior distribution gisame data? us-
ing a MCMC method of choice. Notice that, after marginaligihand assuming
the corresponding graph is connected, all parameters areattyudependend in
the posterior since (2) does not factorize in general. Thisons the behaviour of
MCMC algorithms for the Gaussian model of marginal indesroe as described
by [24]. Unlike the Gaussian model, there are no hard caoingsran the parameters
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across different factors. Unlike the Gaussian model, hewedactorizations with
high treewidth cannot be tractably treated.

4 Auxiliary Variable Approaches for Bayesian I nference

For problems with intractable likelihoods, one possibilg to represent it as the
marginal of a latent variable model, and then sample joilatgnt variables and
the parameters of interest. Such auxiliary variables mapime contexts help with
the mixing of MCMC algorithms, although we do not expect tiodhappen in our
context, where conditional distributions will prove to b&itg complex. In [24], we
showed that even for small dimensional Gaussian model@tiweluction of latent
variables makes mixing much worse. It may nevertheless hdemnthat helps to
reduce the complexity of the likelihood calculation up toragtical point.

One straightforward exploration of the auxiliary variablgproach is given by
(3): just include in our procedure the sampling of the ditatent vectoz (9 for
each data poird. The data-augmented likelihood is tractable and, moreavgibbs
sampler that samples eaghconditioned on the remaining indicators only needs to
recompute the factors where variaklgis present. The idea is straightforward to
implement, but practioners should be warned that Gibbs Bagip discrete graph-
ical models also has mixing issues, sometime severely. Ailpitis/ to mitigate this
problem is to “break” only a few of the factors by analytiggdumming over some,
but not all, of the auxiliaryZ variables in a way that the resulting summation is
equivalent to dynamic programming in a tractable subgrdpgheoriginal graph.
Only a subset will be sampled. This can be done in a way anakgothe classic
cutset conditioning approach for inference in Markov randilds [20]. In effect,
any machinery used to sample from discrete Markov randoutsfigin be imported
to the task of sampling. Since the method in Section 3 is basically the result of
marginalizingZ analytically, we describe the previous method as a “coldpsam-
pler, and the method whereis sampled as a “discrete latent variable” formulation
of an auxiliary variable sampler.

This nomenclature also helps to distinguish those two nuittior yet another
third approach. This third approach is inspired by an ireggion of the indepen-
dence structure of bi-directed graph models as given viaectid acyclic graph
(DAG) model with latent variables. In particular, considee following DAG ¢’
constructed from a bi-directed gragh i. add all variables of/ as observed vari-
ables tag?’; ii. for each clique§ in ¢, add at least on hidden variable€6and make
these variables a parent of all variablesSinIf hidden variables assigned to differ-
ent cliques are independent, it follows that the indepeoéennstraints among the
observed variables & and¥’ [21] are the same, as defined by standard graphical
separation criterfa See Figure 2 for examples.

4 Known as Global Markov conditions, as described by e.g..[21]
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Fig. 2 The independence constraints implied by (a) among vasahldJ, andUz are also implied
by (b) and (c) according to standard graphical separatierier (the Global Markov properties
described in, e.g., [21]).

The same idea can be carried over to CDNs. Assume for now #udit EDF
factor has a known representation given by

4 , P .
PJ(U1§Uilja---vUPSU%pJ)—/{rlplj(ui <u |hj>} p; (h;) dh;
1=

and thaiR; is not included in the product @; is not in factorj. Assume further that
the joint distribution oH = UjH factorizes as

K
(h)= ;(hy)
PH J]1[% i

It follows that the resulting PDF implied by the product of E®{Cj(-)} will
have a distribution Markov with respect to a (latent) DAG rebaver{U,H}, since

0P <ultpalt) _ b Oicpar Ri(U <u |hy}
duy...dup = PH l_l au;

D
= pu(h) |] Pi (Ui | hear(i))

(4)

wherePar (i) are the “parents” of);: the subset of1, 2, ...,K} corresponding to the
factors wherdJ; appears. The interpretation pf(-) as a density function follows
from the fact that agaifi]jepar(i) Rj (Ui < uiaij | hj) is a product of CDFs and, hence,
a CDF itself.

MCMC inference can then be carried out over the joint paramatdH space.
Notice that even if all latent variables are marginally ipéedent, conditioning on
U will create dependencigsand as such mixing can also be problematic. However,
particularly for dense problems where the number of fadtocsnsiderably smaller

5 As a matter of fact, with one latent variable per factor, #mutting structure is a Markov network
where the edgélj, — H;, appears only if factor$; and j, have at least one common argument.
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than the number of variables, sampling in thespace can potentially sound more
attractive than sampling in the alternatiespace.

One important special case are products of Archimedeanaspin Archimedean
copula can be interpreted as the marginal of a latent variatddel with a sin-
gle latent variable, and exchangeable over the obsengatPuetailed account of
Archimedean copulas is given by textbooks such as [11, 1@ their relation to
exchangeable latent variable models in [15, 7]. Here weigeoas an example a
latent variable description of the Clayton copula, a popadgula in domains such
as finance for allowing stronger dependencies at the lowantijas of the sample
space compared to the overall space.

Example 3 A set of random variablegU,...,U,} follows a Clayton distribu-
tion with a scalar parametérwhen sampled according to the following generative
model [15, 7]:

1. Sample random variabl from a Gammdg1/6,1) distribution
2. Samplepiid variables{Xy, ..., Xy} from an uniform(0, 1)
3. SetU; = (1—log(X)/H) Y m

This implies that, by using Clayton factaZg(-), each associated with respective
parameted; and (single) gamma-distributed latent variallg we obtain

Pi(Ui < U™ | hy) = exp(—hj(y 3% — 1))

By multiplying over all parents dflj and differentiating with respect 1g, we get:

,e. . 76. ..71
Pi(U [ hear) = | [T exe(=hi(y i _1))] [ S Gaijhiy jai) 5)
jePar(i) i i

AMCMC method can then be used to sample joiftiw; },{6;}, {HWY, ... H®}}
given observed data with a sample sizel Ve do not consider estimating the shape
of the factorization (i.e., the respective graphical madelcture learning task) as
donein [23].

5 Illustration

We discuss two examples to show the possibilities and diffesuof performing
MCMC inference in dense and sparse cumulative distribdtalds. For simplicity
we treat the exponentiation paramet@jsis constants by setting them to be uniform
for each variable (i.e., lf appears ik factorsa;; = 1/k for all of the corresponding
factors). Also, we treat marginal parameters as known is Bayesian inference
exercise by first fitting them separately and using the estisn@ generate uniform
(0,1) variables.
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Financial data experiment
T T T

Parameters

12 14 18 18 2
MCMC iterations x10'

Fig. 3 MCMC traces of the 10 parameters for the 46 log-returns dadavergence is slow, al-
though each step is relatively cheap.

The first one is a simple example in financial time series, wina have 5 years
of daily data for 46 stocks from the S&P500 index, a total 4 8ata points. We fit
a simple first-order linear autoregression model for eagkréturny;; of stocki at
timet, conditioned on all 46 stocks at tinhe- 1. Using the least-squares estimator,
we obtain the residuals and use the marginal empirical Chfatsform the residual
data into approximately uniforitd; variables.

The stocks are partitioned into 4 clusters according to tammategory of busi-
ness of the respective companies, with cluster sizes \@fyam 6 to 15. We define
a CDF field using 10 factors: one for each cluster, and onedoh @air of clusters
using a Clayton copula for each factor. This is not a sparsgefio terms of inde-
pendences among the obseryed, ..., Use}. However, in the corresponding latent
DAG model there are only 10 latent variables with each olz@mU; having only
two parents.

We used a Metropolis-Hastings method where e@dls sampled in turn con-
ditioning on all other parameters using slice sampling [1&tent variables are
sampled one by one using a simple random walk proposal. A gaf@r2) prior
is assigned to each copula parameter independently. FRyiilgstrates the trace
obtained by initializing all parameters to 1. Although eaighation is relatively
cheap, convergence is substantially slow, suggestingldbexit variables and pa-
rameters have a strong dependence in the posterior. Aseigpproach does not

6 Even though itis still very restricted, since Clayton camuhave single parameters. A plot of the
residuals strongly suggests that a t-copula would be a npp®priate choice, but our goal here
is just to illustrate the algorithm.
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look particularly practical. Better proposals than randeatks are necessary, with
slice sampling each latent variable being far too experaidenot really addressing
the posterior dependence between latent variables anchptees.

Our second experiment is a simple illustration of the predosmethods for a
sparse model. Sparse models can be particularly useful ttelhmesidual depen-
dence structure, as in the structural equation example23)f Here we use syn-
thetic data on a simple chay «» ... <> Us using all three approaches: one where
we collapse the latent variables and perform MCMC movegusitty the observed
likelihood calculated by dynamic programming; another rehee sample the four
continuous latent variables explicitly (the “continuoaseint” approach); and the
third, where we simply treat our differential indicatorsdiscrete latent variables
(the “discrete latent” approach). Clayton copulas with gen{2,2) priors were
again used, and exponergg were once again fixed uniformly. As before, slice
sampling was used for the parameters, but not for the camtimlatent variables.

Figure 4 summarizes the result of a synthetic study with aleanchoice of
parameter values and a chain of five variables (a total of drpaters). For the col-
lapsed and discrete latent methods, we ran the chain foritg@@ions, while we ran
the continuous latent method for 10000 iterations with igo sif convergence. The
continuous latent method had a computational cost of alboegtto four times less
than the other two methods. Surprisingly, the collapseddisatete latent methods
terminated in roughly the same amount of wallclock time,ibigeneral we expect
the collapsed sampler to be considerably more expensiweeffective sample size
for the collapsed method along the four parameters(4860 891 100Q 903) and
for the discrete latent case we obtaif@d3 151 201 359).

6 Discussion

Cumulative distribution fields provide another constrostfor copula functions.
They are particularly suitable for sparse models where nraagginal indepen-
dences are expected, or for conditional models (as in [2BPre/residual associa-
tion after accounting for major factors is again sparsetated. We did not, how-
ever, consider the problem of identifying which sparsecitrtes should be used,
and focused instead on computing the posterior distribudiche parameters for a
fixed structure.

The failure of the continuous latent representation asliangivariables in a
MCMC sampler was unexpected. We conjecture that more stiqatesd proposals
than our plain random walk proposals should make a subatafifierence. How-
ever, the main advantage of the continuous latent repratsemts for problems with
large factors and a small number of factors compared to theeuof variables. In
such a situation perhaps the product of CDFs formulatiomishoot be used any-
way, and practitioners should resort to it for sparse pmokleln this case, both
the collapsed and the discrete latent representations seeffer a considerable
advantage over models with explicit latent variable repnéstions (at least compu-
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Fig. 4 Sampling performance for the synthetic case study usinthtiee different methods.

tationally), a result that was already observed for a sintlass of independence
models in the more specific case of Gaussian distributiofis [2

An approach not explored here was the pseudo-marginal méthowere an in
place of the intractable likelihood function we use a pusitinbiased estimator. In
principle, the latent variable formulations allow for thelowever, in a preliminary
experiment where we used the very naive uniform distribuis an importance
distribution for the discrete variabl@s in a 10-dimensional chain problem with 100
data points, the method failed spectacularly. That is, trenchardly ever moved.
Far more sophisticated importance distributions will beassary here.

Expectation-propagation (EP) [16] approaches can in jpiebde developed as
alternatives. A particular interesting feature of thislgemn is that marginal CDFs
can be read off easily, and as such energy functions for géned EP can be de-
rived in terms of actual marginals of the model.

For problems with discrete variables, the approach can &é aknost as is by
introducing another set of latent variables, similarly teatis done in probit models.
In the case where dynamic programming by itself is possiblapdification of (1)
using differences instead of differentiation leads to alsindiscrete latent variable
formulation (see the Appendix of [22]) without the need of &mrther set of latent
variables. However, the corresponding function is nottjdistribution oveZ UU
anymore, since differences can generate negative numbers.
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Some characterization of the representational power afymts of copulas was
provided by [14], but more work can be done and we also camjec¢hat the point
of view provided by the continuous latent variable représton described here
can aid in understanding the constraints entailed by thautative distribution field
construction.

Acknowledgements The author would like to thank Robert B. Gramacy for the finalndata.
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