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Abstract

Applications of copula models have been in-
creasing in number in recent years. This class
of models provides a modular parameteriza-
tion of joint distributions: the specification of
the marginal distributions is parameterized
separately from the dependence structure of
the joint, a convenient way of encoding a
model for domains such as finance. Some re-
cent advances on how to specify copulas for
arbitrary dimensions have been proposed, by
means of mixtures of decomposable graphi-
cal models. This paper introduces a Bayesian
approach for dealing with mixtures of copu-
las which, due to the lack of prior conjugacy,
raise computational challenges. We motivate
and present families of Markov chain Monte
Carlo (MCMC) proposals that exploit the
particular structure of mixtures of copulas.
Different algorithms are evaluated according
to their mixing properties, and an application
in financial forecasting with missing data il-
lustrates the usefulness of the methodology.

1 CONTRIBUTION

We present and evaluate new approaches for comput-
ing posterior distributions of mixtures of copula mod-
els. The goal is to provide new tools for density estima-
tion in multivariate analysis where copula models are
deemed appropriate. This requires efficient Markov
chain Monte Carlo (MCMC) methods that exploit the
particularities of copula models, and such algorithms
are evaluated according to their mixing properties.

The copula approach for multivariate analysis provides
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a modular parameterization of distributions and den-
sities (Nelsen, 2007): the choice of families for the uni-
variate marginals is arbitrary, and a copula function

defines the full joint for a fixed choice of marginals.
This is particularly attractive in domains where good
models for individual objects are known and well-
motivated, but a dependency model for such objects
less so. A popular example is financial modeling:
while models such as heavy-tailed t-distributions pro-
vide a good fit to individual stocks, it is less clear
how to model the joint distribution of stock prices.
The copula parameterization allows for different mod-
els while conveniently preserving a choice of univariate
marginals that are well-suited to the problem. Nelsen
(2007), Joe (1997), Nicoloutsopoulos (2005) and Kir-
shner (2007) describe the theory and applications.

Defining a copula function for distributions with three
or more variables is difficult. However, through mix-
tures of tree-structured distributions, one can extend
bivariate copulas to problems of arbitrary dimension.
Kirshner (2007) describes the tree-copula formulation
and a particular setup for finite mixtures, as well as
a maximum likelihood approach for learning. In this
paper, the challenge is how to perform Bayesian infer-
ence. Copula models are not in the exponential family
and we will have to deal with non-conjugate prior dis-
tributions. In order to provide a self-contained presen-
tation, Section 2 contains a brief description of copula
models. Our mixture model is described in Section 3.
The bulk of our contribution is contained in Section 4,
where we detail different MCMC proposals suited for
this class of models. Experiments are described in Sec-
tion 5. The final application concerns an illustration
of stock market predictions under missing data.

2 REVIEW OF COPULA MODELS

A bivariate copula function C(u, v) is a cumulative dis-
tribution function (CDF) over the interval [0, 1]× [0, 1]
with uniform marginals (Nelsen, 2007). If the density
function exists, we denote it by c(u, v). This concept is
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particularly useful for parameterizing bivariate distri-
butions. If Fi(·) and Fj(·) are the marginal CDFs for
Yi and Yj , the joint CDF F (Yi, Yj) is fully determined
by the triplet

{Fi(·), Fj(·), C(ai(·), aj(·))},

where ai(·) ≡ F−1
i (·). Changing the copula function

will define a different joint while keeping the same
marginals. Changing the marginals but keeping the
copula fixed will result in a different joint: in this case,
however, any measure of association ρ(Yi, Yj) that is
invariant with respect to strictly monotonic transfor-
mations (e.g., taking logarithms) will remain the same.
Conversely, any continuous CDF will imply an unique
copula function (a fundamental result in multivariate
analysis derived in Sklar’s theorem; see, e.g., page 18
of Nelsen, 2007). An example is the density of the
Gaussian copula function with parameter ρ:

Φρ(u, v) =
1

2π

√

1 − ρ2
exp

(

−

u
2 + v

2
− 2ρuv

2(1 − ρ2)

)

(1)

This copula is the one implied by the Gaussian CDF,
and can be used to construct non-Gaussian distribu-
tions if applied with non-Gaussian marginal CDFs.
Pitt et al. (2006) describe a Bayesian approach for
Gaussian copula models with applications in finance
and health care. Nicoloutsopoulos (2005) discusses a
variety of problems that have natural representations
in terms of copulas and univariate marginals.

2.1 Tree-Copulas and Mixtures

It is, however, very hard to construct multivariate cop-
ulas for three or more random variables (Nelsen, 2007),
the Gaussian being an exception. Kirshner (2007) uses
a simple but clever trick to define copulas of arbi-
trary dimensionality d by assuming the distribution is
Markov with respect to a tree T with edge set E(T ).
Assume that the data is continuous and the joint den-
sity p(Y) exists. The copula-parameterized density
function is given by

p(Y|T , Θ) =

[

d
∏

v=1

fv(Yv | Λv)

]

cT (a) (2)

cT (a) ≡
∏

{u,v}∈E(T )

cuv(au(Yu), av(Yv) | Θuv),

where Λv is a set of parameters for the marginal fv(·)
and Θuv is a set of parameters for the copula density
function cuv(·, ·). The result is interesting due to the
fact that the set {cuv(·, ·)} can be an arbitrary set of
bivariate copula densities, and cT (a) is still guaran-
teed to be a valid multivariate copula density. The

drawback is that the tree imposes many conditional
independence constraints that might be undesirable.

Much more flexibility can be achieved by using mix-
tures of trees. Let Y(i) denote a particular data point.
The model of Kirshner is defined by

Y(i)| T (i),Θ ∼ p( · | T (i), Θ) (3)

T (i) ∼ pT ( · |ΘT )

where Θ consists of parameters for all marginals and
copula parameters for each pair of variables. As in
Equation (2), only parameters associated with a par-
ticular edge are used in the definition of p(·| T (i), Θ).
Trees are hidden variables, with a distribution param-
eterized by ΘT . Without loss of generality, the trees
can always be connected graphs. The absence of an
edge Yu − Yv is equivalent to choosing the indepen-

dence copula C(u, v) = uv as the respective copula
function.

In what follows, we describe a Bayesian approach
and show how efficient MCMC proposals can be con-
structed. To the best of our knowledge, this is the first
Bayesian approach to this problem.

3 MODEL AND PRIORS

Kirshner (2007) also introduced a maximum likelihood
estimator (MLE) for mixtures of tree-copulas. In his
model, the set of all tree models is parameterized by a
single matrix of O(d2) parameters: each pair of vari-
ables is associated with a particular copula function
independently of the trees. As such, different trees
will share the same parameters corresponding to the
common edges. Both the matrix and the mixture pro-
portions are learned by finding their MLE. This choice
of parameterization is motivated by the fact one can
obtain simple expressions for updating the parame-
ter estimates in a iterative scheme (at a cost of O(d3)
per iteration), which is an adaptation of the setup de-
scribed by Meilǎ and Jaakkola (2006). Although one
can also motivate the above parameterization of the
tree mixture by claiming it to be conjugate to the
density of Y given a tree, the approach of Kirshner
(2007) is not Bayesian. It also assumes there is no
missing data.

In the Bayesian case, there is little motivation to use
the constraints of Meilǎ and Jaakkola (2006), which
requires massive parameter sharing across trees. The
reason is that the parameters cannot be integrated out
analytically, and so we will need to resort to MCMC
methods anyways. Each tree-copula in our proposed
mixture has a different set of parameters, allowing the
potential number of mixture components to be infi-
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nite.1

Our proposed model is related to—but different
from—the mixture of trees approach of Kirshner and
Smyth (2007), which is learned through a Bayesian ap-
proach but which has a different set of marginal param-

eters per mixture component. This is not suitable for
problems motivated by the modular nature of copula
parameterizations. Moreover, the models of Kirshner
and Smyth (2007) are restricted to discrete distribu-
tions and conjugate priors.

3.1 Model Details

The basic prior for our model follows the standard
Dirichlet process (DP) mixture formulation (Neal,
2000), except that only trees and copula parameters
vary between different mixture components. Each tree
will have the same univariate marginals, so that all
univariate marginals are fully defined independently
of the mixture of trees. If non-parametric marginals
or copulas are desirable, they can be parameterized
accordingly (Nicoloutsopoulos, 2005), but once again
disentangled from the prior over trees.

Define the finite mixture model with K components
as follows:

Y (i) | z(i), [T ], Λ, [Θ] ∼ p( · | Tzi
, Λ, Θzi

)

Λ ∼ pΛ( · )

Θz ∼ pΘ( · ) (4)

z(i) |π ∼ Discrete( · |π1, . . . , πK)

Tz ∼ T0(·)

π ∼ Dirichlet( · |α/K, . . . , α/K)

where [T ] is the set of all possible trees indexed by z;
[Θ] is the set of all copula parameters, a copula for each
pair of variables; Λ is the set of univariate marginal
parameters. The functions on the right-hand side are
respective density functions or mass functions defined
in the next sections.

We will assume that the joint prior for the trees,
marginal and copula parameters is fully factorized, and
denote the marginal priors for Λu and Θz ≡ {Θuv;z}
by pΛ(Λu) and pΘ(Θuv;z), respectively.

The Dirichlet process mixture over trees arises in the
limit, as K → ∞. A diagram for the model, in the
plate notation, is depicted in Figure 3.1.

3.2 Remarks on Transdimensional Methods

From the model specification, it is clear that there
will be copula parameters Θuv;z(i) that are indepen-

1In the Bayesian setup, copula parameters for a given
pair of variables still naturally share a common prior. This
provides a softer version of parameter sharing.

N

θk

z(i) Y(i)

oo

πk

Λ

Figure 1: A plate graphical model for the generation
of N data points Y. Indicators z are hidden. The fig-
ure stresses that the mixture model is over the copula
parameter Θ, which does not include the marginal pa-
rameterization Λ (which could be itself another Dirich-
let process mixture).

dent of Y(i) given the latent tree T (i). Unlike Meilǎ
and Jaakkola (2006), parameters are not re-used across
trees. Unlike Kirshner and Smyth (2007), parameters
are not a priori exchangeable between pairs of vari-
ables (copula families might differ for different pairs)
and hence can not be interpreted as coming from the
same array of dimensionality O(d).

It is sensible to question the need for such param-
eters. In transdimensional Monte Carlo approaches
(also known as reversible jump MCMC, Green, 1995),
parameters are created and destroyed as needed by
moves through model space. However, the Dirichlet
process mixture requires a common base measure for
all component mixtures, and as such the parameter
space for two different tree components has to be the
same. Given the flexibility and the many successful
applications of DP mixtures, we favor this approach
over the finite mixture models approach.

As a matter of fact, the likelihood function for a par-
ticular tree component can be written so that it is a
(trivial) function of all O(d2) copula parameters. Let
E be the symmetric adjacency matrix representation
of an undirected tree T , and let E be the space of ma-
trices encoding spanning trees. The likelihood of point
Y is therefore described by Equation (2) with cT (a)
given by

cT (a) =
∏

u,v;1≤u<v≤d

cuv(au(Yu), av(Yv))
euv (5)

where euv ∈ {0, 1} is the respective element of E. The
base measure of the DP mixture is defined over the
distribution of matrices in E and the common distri-
bution of copula parameters. We have to guarantee
that changes in E result in a valid model, and as such
the (fixed) space of parameters must account for all
possible combinations of edges.
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The fact that, for a fixed tree, some parameters play
a trivial role in the likelihood function will have impli-
cations in the MCMC approaches, as we will see.

4 FAMILIES OF PROPOSALS

We need to sample parameters Θz ∪ Λ ∪ π, trees Tz

and latent variables z. Sampling z given the other el-
ements can be done using Algorithm 8 of Neal (2000)
and we will not discuss it further. In what follows
we describe the proposals to be used in a Metropolis-
Hastings (MH) scheme when sampling parameters and
trees. The non-standard step consists of sampling
trees given all other elements, which we now describe
in full detail.

4.1 Tree Proposals

We cannot sample from the posterior marginal of T
directly, but sampling becomes doable after condition-
ing on the copula parameters, i.e., by sampling from
the distribution TΘz

(Tz) ≡ P (Tz | Θz). As a matter
of fact, this distribution assumes the form

TΘ(T ) =
1

ZTΘ

∏

{u,v}∈E(T )

βuv. (6)

It is well-known that there are exact and randomized
algorithms for sampling from such a distribution, and
this has been successfully applied in other MCMC con-
texts (Kirshner and Smyth, 2007). However, in our
case we face the challenge that the weights βuv are not
obtained after marginalizing parameters, as in Kirsh-
ner and Smyth (2007), but conditioned on parameters
sampled from a MCMC iteration. Importantly, most
of such parameters were not associated with any data
point in the previous iteration. Sampling from (6) has
unwanted consequences: the previously detached pa-
rameters were sampled from the prior (as implied by
(5)), and therefore are likely to be bad choices for mod-
eling the data points in that particular cluster.

As a matter of fact, a pilot implementation revealed
that the randomized algorithms for sampling from (6)
are useless for all practical purposes: most copula den-
sity functions are essentially zero, which implies the
algorithm will not converge in any reasonable amount
of time. The exact algorithm is also problematic: not
only might the mixing of the chain be bad due to a de-
pendence on a large uninformative set of parameters,
but also due to the extreme variability of the copula
densities which translate into numerical instabilities.
For problems with conjugate priors or small dimen-
sional ones, the exact algorithm is helpful. However,
in general we will need a different approach.

We now define three different tree proposals that can

be used in a MH scheme.

The Simple proposal: the simplest tree proposal
consists of choosing an edge Yu −Yv uniformly at ran-
dom and moving it uniformly at random to any legal
place Ym − Yn that will result in a new spanning tree.
Although we are still keeping the same sampled pa-
rameters, this local change makes only a small modifi-
cation to the tree model. Parameters associated with
the unchanged edges remain in the likelihood function.
However, it is fast and easy to implement.

The Treeangle proposal: the Simple proposal has
two shortcomings. In the choice of edge, the result-
ing path connecting Yu and Yv can be very large, and
their association will typically be much smaller than
the one in the current tree model. The chances of re-
jection for this case can be higher than in moves that
do not propose a great excursion from the current as-
sociations implied by the tree. Moreover, it will be
sensible to choose a new set of parameter values in
tandem with the new edge. An arbitrary edge move
might complicate the choice of new sensible values for
the parameters of the added edge Ym − Yn.

To increase acceptance, we favor an approach that
makes more localized changes and proposes new pa-
rameter values simultaneously. For a fixed tree T , de-
fine a proposal q(T ? | T ) by the following algorithm:

1. for each Yi − Yj in E(T ), let wij = (#ni − 1) +
(#nj − 1), where #ni is the number of neighbors
of Yi in T . Let WT =

∑

{i,j}∈E(T ) wij

2. choose an edge Yu − Yv from T with probability
wuv/WT

3. choose a neighbor Yt of {Yu, Yv} in T \{Yu, Yv}
uniformly at random

4. return a tree T ? that results from removing from
T the edge Yu − Yv and adding the edge Y? − Yt,
where Y? = Yu if Yv and Yt are adjacent in T , and
otherwise Y? = Yv.

We call such a tree modification a treeangular move,
because it changes a “treeangle” Yi−Yj −Yk in T into
a new subpath Yj − Yi − Yk. The choice of treeangle
is uniform, since q(T ?|T ) ∝ 1 for all T ?. This move
always results in a spanning tree, as illustrated by Fig-
ure 2(a)-(b), and can be computed at a cost of O(d).
It is possible to traverse the whole space of spanning
trees with sequences of treeangular moves.

Proposition 1 Let T and T ? be two spanning trees.

Then there is a sequence of treeangular moves that

transforms T into T ?.
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Figure 2: In the pictures above, circles represent vertices and squares represent subtrees. Dashed edges represent
the possibility that a circled vertex is adjacent to several vertices in the subtree. The treeangular move that
replaces the edge Yu − Yv in (a) with edge Yu − Yt always results in another spanning tree, as illustrated in (b).
To obtain an tree in which Yu has a single neighbor Yv, as illustrated by (c), one can start from an arbitrary
tree such as (d), and sequentially “move” Yu towards Yv in the (unique) path between them using treeangular
moves. After connecting Yu with Yv, other neighbors of Yu can be eliminated also by treeangular moves.

Proof: Every spanning tree has at least one vertex
with exactly one neighbor. Let Yu be such a vertex in
T ? and Yv its respective neighbor, as in Figure 2(c). If
Yu and Yv are not neighbors in T , there is an unique
path Yu −Yp(1) −Yp(2) − · · ·−Yv in T (where it might
be possible that Yp(2) = Yv). Since Yu and Yp(2) are
not adjacent, exchange edge Yu −Yp(1) with Yu −Yp(2)

using the local triangular move. This can be propa-
gated through the path until Yu and Yv are adjacent,
as illustrated by Figure 2(d).

If Yu has other neighbors, they can be passed to Yv

again with the same move until Yu has Yv as its single
neighbor. The edge Yu−Yv exists in both trees, and it
is not part of any path but the one-edge path contain-
ing Yu −Yv. It is then possible to ignore the existence
of this edge in both trees and repeat the process until
T = T ?. �

Given a proposed tree T ? with new edge Yu − Yt, we
also sample a new parameter vector Θ?

ut for the corre-
sponding tree. Ideally, the new value should be based
on the current implied copula that results from the
distribution based on T , i.e., the copula that corre-
sponds to the joint of {Yu, Yt} as encoded by the cur-
rent {Θ, T }.

Even though the dimensionality of our model is fixed,
we can follow the common practice in the literature of
transdimensional Monte Carlo methods (Green, 1995):
parameterize the proposal distribution of the new pa-
rameter set Θ?

ut according to functionals of the implied
copula. In particular, in copula functions with one pa-

rameter only (θ?
ut), there is usually a one-to-one cor-

respondence between θ?
ut and a canonical measure of

association between Yu and Yv. This includes, for in-
stance, Kendall’s tau and Spearman’s rank correlation
ρ (e.g., see the tables in Chapter 5 of Joe, 1997).

For the rest of the paper, consider the case where all
bivariate copulas that define the tree-copulas are one-
parameter functions. This includes a large number
of families of copulas, including the Gaussian. The
following is a template for proposals for a new θ?

ut to
be sampled along a treeangle move Yu − Yv − Yt →
Yu − Yt − Yv:

1. calculate the rank correlation ρuv corresponding
to θuv

2. calculate the rank correlation ρut corresponding
to the copula function implied by Yu − Yv − Yt

3. find a ρ0
ut that trades-off the following:

(a) ρ0
ut is “close” to ρut

(b) ρuv is “close” to the implied rank correlation
of Yu and Yv as given by the path Yu−Yt−Yv

and parameters θtv and θ(ρ0
ut)

4. calculate θ0
ut from ρ0

ut

5. propose θ?
ut from a distribution parameterized by

θ0
ut

A possible measure of distance between ranks is the
Euclidean distance, and the sum of the individual dis-
tances in 3.(a) and 3.(b) above defines a simple trade-
off to be minimized. In general, the transformation
into rank correlations defines a copula-agnostic com-
mon scale to ease the choice of distance measure. In
practice, mapping between parameters and rank corre-
lations, and finding the corresponding ρ0

ut, will require
a numerical procedure. However, since we are dealing
with a density over three variables only, pre-computed
tabulated solutions can be feasibly provided as rea-
sonable approximations. For instance, Joe (1997) pro-
vides several tables for approximately mapping param-
eters to rank correlations (the approximation does not
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affect the correctness of the sampler, since the MH
procedure will provide detailed balance as long as we
provide the proposal probabilities according to the ap-
proximation). Furthermore, one important case can
be solved analytically: when all bivariate copulas are
Gaussian. An example in the Gaussian case will help
to clarify the procedure.

Example (Gaussian copulas): If each copula in
the path Yu − Yv − Yt is Gaussian with parameters
{θuv, θvt}, respectively, it is known that the implied
copula for {Yu, Yt} is also Gaussian with parameter
θuvθvt (for simplicity, in this example we are bypass-
ing the rank correlation transformation and working
directly in the parameter space). We can then choose
our θ0

ut as the one that minimizes

(θ0
ut − θuvθvt)

2 + (θuv − θ0
utθvt)

2 (7)

where the first term in the sum corresponds to the
distance in 3.(a) and, the second term, to the dis-
tance in 3.(b) (with the sum of both defining the trade-
off). The solution is given by θ0

ut = 2θuvθvt/(1 + θ2
vt).

We then sample θ?
ut from a uniform distribution in

(max(−1, θ0
ut−w), min(1, θ0

ut +w)) for a user-specified
parameter w (recall that the Gaussian copula param-
eter lies in [−1, 1]). �

Let quvt(θ
?
ut;z |Tz) represent the parameter proposal

within cluster z as determined by the choice of treean-
gle move Yu −Yv −Yt (where, of course, we are condi-
tioning on the other parameters, data, and latent vari-
ables). We also need to define a proposal for θ?

uv in
order for the move to be reversible. One possibility is
to define a proposal based on the sampled value of θ?

ut

using an analog mechanism. However, notice that this
parameter will not affect the likelihood of the new tree
model. As such, we suggest taking the proposal simply
be the prior, i.e., quvt(θ

?
uv;z | θ?

ut;z , Tz) ≡ pΘ(θ?
uv).

Let Dz be the subset of the data currently assigned to
cluster z. To summarize, the acceptance probability
of the coupled tree-parameter proposal is given by the
min{1,R}, where

R=





∏

Y(i)∈Dz

cut(a(Y
(i)
u ),a(Y

(i)
t )|θ?

ut;z)

cuv(a(Y
(i)
u ),a(Y

(i)
v )|θuv;z)





q(Tz | T ?
z )

q(T ?
z | Tz)

(8)

×
pΘ(θ?

ut;z)pΘ(θ?
uv;z)

pΘ(θut;z)pΘ(θuv;z)

T0(T
?)

T0(T )

quvt(θut;z , θuv;z |T ?
z )

quvt(θ?
ut;z, θ

?
uv;z |Tz)

The Hybrid proposal: finally, we suggest a more
computer-intensive variation of the Treeangle pro-
posal. Given a treeangle Yu − Yv − Yt, calculate
the marginal likelihood of the copula densities of
Yu − Yt − Yv and Yv − Yu − Yt and choose between
one of the two subtree structures with weights pro-

portional to the evaluated marginal likelihoods. One-
parameter copulas with fully factorized priors require
only the (numerical) computation of three unidimen-
sional integrals: those corresponding to the marginal
likelihoods of Yu − Yt, Yu − Yv and Yt − Yv. This can
be efficiently done by quadrature methods. Once the
new subtree structure is chosen, we propose new pa-
rameters using the same proposal of Treeangle and
evaluate the joint (tree, parameters) proposal using
the same MH update (8), but with a different tree pro-
posal q′(T ?

z | Tz). Since we are combining a quadrature
method with MCMC updates, we call this the Hybrid

method.

The overhead of solving integrals numerically is
strongly amortized by increasing sample sizes and di-
mensionality. Since each point belongs to a single clus-
ter at each MCMC iteration, a single pass through the
data is performed for all trees in all clusters in any
given iteration. Moreover, the cost does not increase
with the dimensionality of the data. Meanwhile, sev-
eral passes will be necessary in order to update the
marginal parameters at a O(d) cost.

4.2 Sampling Parameters

Sampling given marginal or copula parameters by fix-
ing all other parameters can be done by several stan-
dard approaches, such as MH or slice sampling (Neal,
2003). It is relevant to discuss the required factors
used in evaluating a MH proposal for the marginal pa-
rameters Λu of a given variable Yu. Let Duv denote
the set of datapoints associated with trees where the
edge Yu − Yv exists. When proposing new marginal
parameters Λ?

u, let the respective ratio Ru (proposals
omitted) be:

Ru ≡

[

d
∏

i=1

f(Y
(i)
u | Λ?

u)

f(Y
(i)
u | Λu)

]

×
pΛ(Λ?

u)

pΛ(Λu)
(9)

×







∏

v 6=u





∏

Y(i)∈Duv

cuv(a
?(Y

(i)
u ), a(Y

(i)
v ))

cuv(a(Y
(i)

u ), a(Y
(i)
v ))











For notational simplicity, we also omitted the depen-
dency of cuv(·, ·) on Θuv;z. This clarifies the comment
made at the end of the previous section: when a new
Λ?

u is accepted, we will still need to make a new (possi-
bly partial) pass through the dataset when proposing
Λ?

v for any Yv connected to Yu in some tree. This fol-
lows from the fact that all a(Yu(i)) have been modified,

since a(Y
(i)
u ) ≡ F−1(Y

(i)
u ), a function of Λu.

Other remarks: Strictly speaking, it seems we need
to sample all copula parameters for a particular cluster
z at each iteration of parameter sampling. However,
only O(d) parameters affect the likelihood function in
any given cluster, as discussed. It seems wasteful to
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sample the remaining parameters for applications that
do not need them (e.g., prediction problems). It is in-
deed the case that we never need to explicitly sample
O(d2) parameters. Since the parameters not associ-
ated with any tree are by definition sampled from the
prior, no history of such parameters is necessary when
proposing a new MH move. Instead, we can sample the
“old” parameter Θut on-demand, by sampling it from
the prior when a new edge Yu−Yt has to be evaluated,
as if it was sampled in the previous iteration. Notice
that an exact tree sampler, which requires the evalua-
tion of (6), cannot take advantage of this shortcut and
will require sampling all parameters.

5 EXPERIMENTS

We evaluate how the different proposals compare in
Section 5.1 and illustrate a simple application of the
MCMC methodology in 5.2. For simplicity, we define
T0 to be the uniform distribution over spanning trees
so that we can efficiently sample from this distribution,
as required by Algorithm 8 of Neal (2000). A stepping-
out slice sampler (Neal, 2003) is used to sample copula
parameters. MH with Gaussian or uniform proposals
is used to sample marginals.

5.1 Algorithm Comparison

We use Gaussian bivariate copulas as the base copula,
with uniform priors in [-1, 1] for the copula param-
eters. In the first experiment, we compare Simple,
Treeangle, Hybrid and an exact algorithm (Ex-

act) for sampling from (6) without changing param-
eters2. Marginals are set to the empirical CDF and
fixed throughout the whole procedure to better evalu-
ate the differences between the copula samplers.

We chose nine datasets from the UCI Repository
(Blake and Merz, 1998). Discrete variables were re-
moved (defined to be variables that take three or fewer
distinct values in the training set). A burn-in period
of 1,000 points is followed by 50,000 samples which
we used in the comparison. We summarize the results
in Table 1. We choose the copula correlation matrix
implicitly encoded by the tree-copulas, averaged over
training points, as a cluster label-independent statis-

2In each step, if we could not perform the required ma-
trix inversions due to numerical instabilities, we would ap-
ply the Simple procedure. The proposal for the copula
parameters is the one described in the Example of Section
4.1 with w = 0.15. We initialize the clusters with 10 parti-
tions by uniform sampling, and then do k-means as follows:
fit the maximum likelihood tree for each cluster and com-
pute the similarity of each point to each cluster using its
log-likelihood; points are reassigned to the most similar
cluster and the process iterated. Parameters and trees are
initialized by their MLEs. The DP hyperparameter α is
given a Gamma(0.1, 1) prior.

tic to be traced. We calculate the effective sample size
(ESS) (Kass et al., 1998) of each independent entry in
the average matrix (a total of d(d− 1)/2 entries), and
adjust it by dividing by the total sampling time of the
algorithm. For each entry, we then calculate the ra-
tios of the adjusted ESS for Hybrid (H) with respect
to each of the other algorithms ((S)imple, (T)reengle
and (E)xact) and report the average over the matrix
entries in Table 1. We also report the non-adjusted ra-
tios (i.e., without correcting for the computing time) to
give a better idea of the improvements of the Hybrid

algorithm, since the time difference between the algo-
rithms tends to zero for larger datasets and non-fixed
marginals. These are reported as the H/*n columns.
We also report the acceptance rate for the tree moves
(Acc*) (we omit the Exact algorithm, since it is not
comparable to the others).

For most of the experiments, there is a clear advan-
tage of Treeangle and Hybrid over the others, and
an advantage of Hybrid over Treeangle3. This is
reflected both by measuring the ESS of the average la-
tent copula correlation matrix, and through the accep-
tance rate of different trees. It is also clear that with
the default sampling parameters, some difficulties arise
for all samplers with cloud as the acceptance rate for
the trees is overall low. This can be partially explained
by plotting the data: it can be seen that there are
strongly non-linear pairwise trends that might create
difficulties for the mixture of Gaussian copulas. Nev-
ertheless, it is clear that the proposed samplers show
consistent improvement over standard approaches.

5.2 Missing Data Example

In order to show a simple application that cannot be
performed by analytically integrating trees even un-
der conjugate conditions (Meilǎ and Jaakkola, 2006),
we apply the Bayesian copula mixture to a problem
with missing data. In stock market data analysis, it is
common to have missing measurements at any partic-
ular time point − partially because some of the stocks
did not exist at that time. We used the monthly re-
turns data from NYSE and AMEX from 1968–1998
described by Gramacy et al. (2008). As a test set, we
removed the monthly returns for the stocks in the final
year. Tree-copulas with Gaussian components are used
along with t-marginals under Jeffrey’s prior. We ran
10 different trials by randomly selecting 10 stocks with
no missing data (from a total of over 1200), plus an-
other 20 stocks with 10–100 missing entries. We com-
pare the full MCMC methodology where missing data
is sampled using a standard MH procedure, against an

3The exceptions are the datasets glass and yeast. The
difficulty in glass might be due to several variables having
the majority of their values at zero.
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Table 1: Comparison of the ratio of the average effective sample sizes for the different algorithms (H, S, T, E)
in 9 different datasets, as explained in the text. In the table, d refers to the number of variables and N to the
sample size. The respective proportion of accepted trees is given as the last three columns.

Dataset d N H/S H/T H/E T/S T/E H/Sn H/Tn H/En AccS AccT AccH
cloud 10 1024 2.35 1.06 4.27 4.30 8.01 3.17 1.36 5.50 0.010 0.036 0.031

concrete 9 1030 3.23 1.98 1.20 1.83 0.74 4.25 2.58 1.78 0.066 0.102 0.137
ecoli 5 336 1.62 1.43 1.03 1.20 0.82 3.03 2.70 1.84 0.168 0.204 0.245
fire 7 517 1.34 1.15 2.17 1.14 2.15 1.79 1.58 3.07 0.147 0.178 0.218
glass 8 214 0.81 0.84 0.89 1.03 1.19 1.09 1.14 1.14 0.112 0.172 0.214
seg 16 205 9.16 1.13 8.02 9.17 8.55 10.5 1.36 8.23 0.047 0.088 0.141

vowel 10 990 1.17 1.84 1.23 1.03 0.95 1.71 2.42 1.98 0.070 0.091 0.141
wdbc 30 569 6.38 3.04 4.86 5.52 6.96 7.00 3.22 4.02 0.028 0.088 0.110
yeast 6 1484 0.94 0.67 1.18 1.40 1.77 1.48 1.08 1.80 0.208 0.262 0.315

Table 2: Predictive log-likelihood for 10 trials with
the financial data with two methods for missing data
treatment (Sampled and Avg).

Trial Sampled Avg Trial Sampled Avg
1 -35.07 -35.47 6 -36.10 -35.57
2 -38.89 -39.49 7 -34.87 -35.38
3 -38.39 -40.15 8 -36.27 -36.55
4 -36.95 -37.27 9 -34.62 -34.61
5 -35.80 -37.00 10 -36.12 -36.75

off-the-shelf estimator that fills in the missing entries
with the average of the observed entries. The Hy-

brid sampler is used in both cases. There is a total
of 361 training points and 12 test points. The average
log-likelihood of the test set is calculated under both
approaches and the result is shown in in Table 5.2.
There is a consistent advantage to treating the missing
data as part of the inference process that marginalizes
latent variables.

6 CONCLUSION

We described how MCMC approaches for a Bayesian
mixture of copulas can be efficiently designed. An un-
usual characteristic of this problem is the fact that
there will be parameters that, at any sampling stage,
are independent of the data given other parameters
(i.e., the tree adjacency matrices). Although this is
related to transdimensional MCMC, we are not aware
of other problems with this exact characteristic that
have been tackled with MCMC methods. As future
work, we seek practical ways of imposing hierarchical
priors over parameters from different trees. develop
specialized approaches for special patterns of missing
data, such as monotone missingness patterns, for com-
putational gains in higher dimensional problems. Per-
forming model selection on the types of copulas used in
each edge is also an open challenge. In particular, an

analogue of the structure learning problem in general
Markov random fields corresponds in our formalism to
the problem of choosing which pairs should be given
the independence copula across trees.
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M. Meilǎ and T. Jaakkola. Tractable Bayesian learning of
tree belief networks. Statistics and Computing, 2006.

R. Neal. Markov chain sampling methods for Dirichlet
process mixture models. J. Comp. Graph. Stats., 9, 2000.

R. Neal. Slice sampling. The Annals of Statistics, 31, 2003.

R. Nelsen. An Introduction to Copulas. Springer, 2007.

D. Nicoloutsopoulos. Parametric and Bayesian Non-
parametric Estimation of Copulas. PhD Thesis, Uni-
versity College London, 2005.

M. Pitt, D. Chan, and R. Kohn. Efficient Bayes. inf. for
Gaussian copula regress. models. Biometrika, 93, 2006.



Errata (20/04/2009):

There is a typo in page 2, line 5: the definition of ai(·) should be
ai ≡ Fi(·) (this aliasing is convenient to make it equal to the conventional
notation in the copula literature).

Thanks to Frederik Eaton for pointing this out.
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