
         520

Factorial Mixture of Gaussians and
the Marginal Independence Model

Ricardo Silva

Department of Statistical Science
University College London
ricardo@stats.ucl.ac.uk

Zoubin Ghahramani

Department of Engineering
University of Cambridge
zoubin@eng.cam.ac.uk

Abstract

Marginal independence constraints play an
important role in learning with graphical
models. One way of parameterizing a model
of marginal independencies is by building a
latent variable model where two independent
observed variables have no common latent
source. In sparse domains, however, it might
be advantageous to model the marginal ob-
served distribution directly, without explic-
itly including latent variables in the model.
There have been recent advances in Gaussian
and binary models of marginal independence,
but no models with non-linear dependencies
between continuous variables has been pro-
posed so far. In this paper, we describe how
to generalize the Gaussian model of marginal
independencies based on mixtures, and how
to learn parameters. This requires a non-
standard parameterization and raises difficult
non-linear optimization issues.

1 CONTRIBUTION

We present a novel approach to learn multivariate dis-
tributions under marginal independence constraints.
Such constraints result, for instance, from sparse la-
tent variable models where observed variables are gen-
erated by a small combination of independent unob-
served variables. The sparseness of the model implies
that many pairs of observed variables {Yi, Yj} will not
be generated by any common hidden factor (e.g., as in
the stroke model found by Wood et al. (2006)). That
is, such pairs are marginally independent. In this pa-
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per, we are not interested in finding latent represen-
tations of the data, but in modeling the correspond-
ing marginal distribution over the observed variables.
Hence we will avoid representations with explicit latent
variables. We will consider mixture of Gaussian distri-
butions that have several marginal independence con-
straints. Our contribution is a parameterization that
includes sparse factor analysis as a special case and al-
gorithms for computing maximum likelihood and max-
imum a posteriori (MAP) estimators under this class.
This provides flexible choices of models to complement
the existing Gaussian (Drton and Richardson, 2003)
and binary models (Drton and Richardson, 2008).

Y1 Y2 Y3 Y1 Y2 Y3

(a) (b)

Figure 1: The graph in (a) indicates that variables Y1

and Y3 are marginally independent. The graph in (b)
is the Markov network for the same distribution: since
there are no conditional independencies encoded, the
graph has to be complete.

Figure 1(a) illustrates a model of marginal indepen-
dencies using a bi-directed graph notation (Drton and
Richardson, 2003): the lack of a bi-directed edge
Yi ↔ Yj indicates that these two variables have to be
marginally independent. Notice that models that fac-
torize according to a connected Markov network can-
not represent any marginal independence constraints
(Figure 1(b)). The absence of an edge Yi − Yj in
an undirected network implies that Yi and Yj are
conditionally independent given all other nodes, but
marginally they will be dependent if the graph is con-
nected. In contrast, the absence of an edge Yi ↔ Yj

in a bi-directed graph implies marginal independence
of Yi and Yj , but in general these two variables will be
conditionally dependent given all other variables.

The family of independence constraints encoded by the
graphs in Huang and Frey (2008) happens to be the
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same as the one encoded by the bi-directed graph.

Unlike in models parameterized according to directed
acyclic graphs (DAGs), there are no concerns about
cycles in a bi-directed network. A marginal inde-
pendence model is therefore complementary to other
common graphical models. Some classes of mod-
els with mixed directed and bi-directed edges are a
generalization of DAGs, with the advantage of being
closed under marginalization (Richardson and Spirtes,
2002). For simplicity, in this paper we will consider
pure bi-directed models only, as in Figure 1(a). For
more applications and discussions of such models, see
Richardson and Spirtes (2002); Bollen (1989); Silva
and Ghahramani (2009); Huang and Frey (2008).

In Section 2, we discuss a parameterization of models
of marginal independence. In Section 3, we describe
a parameter learning algorithm. Experiments are de-
scribed in Section 4. It is not the goal of this paper
to present scalable algorithms. Off-the-shelf approx-
imations such as basic mean field approaches cannot
be applied directly in this case (see also, Silva and
Ghahramani, 2009; Huang and Frey, 2008). Suitable
approximations are out of the scope of the paper. In-
stead, we will focus on providing methods that work
for small dimensional domains. Such methods will be
useful in the future as a basis for approximations.

2 PARAMETRIC FORMULATION

Suppose we want to model a mixture of Gaussians
where some variables are marginally independent, i.e.,
f(Yi,Yj) = f(Yi)f(Yj) for two sets of marginally in-
dependent variables Yi and Yj . Function f(Y) is the
respective marginal density of set Y. We denote (con-
ditional) independencies by Dawid’s symbol⊥⊥. In this
case, the independence is represented by Yi ⊥⊥ Yj .

The independence model for bi-directed graphs is de-
scribed explicitly by Drton and Richardson (2008) and
references within. Its global Markov property is defined
as follows. Let G be a bi-directed graph with vertex set
Y. We say that set Yi is independent of Yj given Yk

if Yi is separated from Yj by Y\(Yi ∪Yj ∪Yk). We
denote independencies implied by the global Markov
property on a bi-directed graph G by Yi ⊥⊥G Yj | Yk.

One can also verify independence constraints over
Y from the d-separation criterion (Richardson and
Spirtes, 2002) applied to a directed acyclic graph
(DAG) with vertex set Y augmented by (hidden) ver-
tices U. This DAG is created by replacing each bi-
directed edge Yi ↔ Yj by a directed path Yi ← Uij →
Yj . For instance, the graph in Figure 1(a) can be re-
duced to the “canonical” DAG Y1 ← U12 → Y2 ←
U23 → Y3 before independencies are read-off. Notice

that this relationship between bi-directed graphs and
marginals of a DAG motivates the bi-directed edge rep-
resentation.

In order to parameterize such a model, a first attempt
would be to construct a sparse distribution for ob-
served variables Y conditioned on some mixture in-
dicator c ∈ {1, 2, . . . , k}. The problem with this ap-
proach is made evident with the example in Figure 2(a)
for Y = {Y1, Y2, Y3}: after integrating over the possi-
ble values of c, the constraint of interest, Y1 ⊥⊥ Y3, will
be violated. This is illustrated in Figure 2(b).

2.1 The Factorial Model

A solution to the problem of preserving marginal inde-
pendencies − while modeling non-linear, non-Gaussian
distributions − is to build a factorial mixture of Gaus-
sians. For each Yi ∈ Y, i = 1, 2, . . . , p, define its
respective (discrete) indicator ci, with respective sam-
ple space {1, . . . , ki}. Let Πc be the joint probability
function of the mixture indicator variables, and let our
model be given by

c ∼ Πc

Y | c ∼ N (µc, Σc)
(1)

where N (µ, Σ) is the multivariate Gaussian distribu-
tion and the bold notation c denotes that we now
have an indicator vector instead of an indicator scalar.
Moreover, given a bi-directed graph G over Y, the
model (1) is subject to the following constraints1:

µc

i = µc
′

i , if ci = c′i
σc

ij = σc
′

ij , if ci = c′i and cj = c′j
σc

ij = 0, if edge Yi ↔ Yj not in G
ci ⊥⊥ cj | ck, if Yi ⊥⊥G Yj | Yk

(2)

The main result of this section can be summarized as
follows:

Theorem 1 Let G be a bi-directed graph and let a
modelM be given by (1) and (2), where G defines (2).
If Yi ⊥⊥G Yj | Yk, then M satisfies Yi ⊥⊥ Yj | Yk.

Proof: We will show that f(Yi,Yj ,Yk) =
g(Yi,Yk)h(Yj ,Yk) for some {g(·), h(·)}, where f(·)
is the density function ofM.

Assume Yi ⊥⊥G Yj | Yk. By the definition of the
global Markov property, no path Yi ↔ Yk0 . . . Yk1 ↔

1Notice that in Gaussian models of marginal indepen-
dence, the absence of an edge Yi ↔ Yj in the bi-directed
graph corresponds to the respective zero in the covariance
matrix (i.e., (Σ)ij ≡ σij = 0). In the Markov network case,
missing edges correspond to zeroes in the inverse covari-
ance matrix (Drton and Richardson, 2003).
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Figure 2: The mixture model according to (a), with c representing a mixture indicator, defines a sparse Gaussian
distribution with independence Y1 ⊥⊥ Y3 on each mixture component. However, as illustrated in (b), marginal-
izing c will result in a model with no constraints, contrary to the intended assumptions. A solution is to adopt
a factorial representation of mixture component membership. Here, the indicator of mixture membership is a
vector c = {c1, c2, c3} which will preserve the independence Y1 ⊥⊥ Y3 after marginalization. Adding further
independencies to the distribution of c will preserve the original assumptions about Y, as illustrated in (d).

Yj can exist, where Yi ∈ Yi, Yj ∈ Yj and
{Yk0, . . . , Yk1} ⊆ Yk. This implies that we can parti-
tion Yk into two sets Yi

k and Y
j
k, such that no vertex

in Yi ∪Yi
k is adjacent to any vertex in Yj ∪Y

j
k.

Moreover, since by hypothesis each possible Yi ⊥⊥G

Yj | Yk implies ci ⊥⊥ cj | ck, then Πc is Markov with
respect to a bi-directed graph Gc with vertex set c,
where each edge ci ↔ cj exists if and only if Yi ↔ Yj

is in G. By definining ci, cj , c
i
k, c

j
k analogously to the

definitions in the previous paragraph, no vertex in ci∪
ci

k is adjacent to any vertex in cj∪c
j
k, and consequently

Π(ci, cj , c
i
k, c

j
k) factorizes as Π(ci, c

i
k)Π(cj , c

i
k).

Let Σc

ijk be the corresponding marginal covariance ma-
trix for Yi ∪Yj ∪ Yk given c. By the equality con-
straints in (2), Σc

ijk does not depend on c\(ci∪cj∪ck).
We denote this fact by representing this covariance ma-
trix as Σ

cijk

ijk . Similarly, we denote each µc

i as µci

i .

If pN (·) is the density function of a multivariate nor-
mal, the marginal density function f(Yi,Yj ,Yk) can
then be written as:

f(Yi,Yj ,Yk) =

∑

ci∪cj∪c
i
k
∪c

j

k

pN (Yi,Yj ,Y
i
k,Y

j
k |c)Π(ci, cj , c

i
k, c

j
k) =





∑

ci∪c
i
k

pN (Yi,Y
i
k |ci, c

i
k)Π(ci, c

i
k)



 ×





∑

cj∪c
j

k

pN (Yj ,Y
j
k |cj , c

j
k)Π(cj , c

j
k)



 ≡

g(Yi,Yk)h(Yj ,Yk)

This follows from the fact that Σ
cijk

ijk is block-diagonal

(with blocks indexed by i ∪ ki and j ∪ kj) and that
for arbitrary {Yr, Ys} one can define the identity

σcrcs
rs ≡ σc

rs (i.e., the respective covariance is indexed
by {cr, cs} only). �

As implied by the definition of the model, the param-
eterization of the distribution Πc has also to obey the
independence constraints in G. One depiction of the
joint model for Y ∪ c is shown in Figure 2(c) (for
the precise semantics of models with directed and bi-
directed edges, see Richardson and Spirtes, 2002). The
parameterization described by Drton and Richardson
(2008) could in principle be used to define Πc. For
simplicity, for the rest of the paper we assume that all
mixture indicator variables are mutually independent,
as depicted in Figure 2(d). Notice this does not violate
the independencies required by G.

2.2 Canonical Latent Variable Models

To illustrate how the given parameterization accounts
for real-world phenomena, we briefly describe how a
large class of latent variable DAG models is a special
case of the bi-directed model.

Suppose that our observed dependencies all emerge
from some DAG GD with observed variables Y and
latent variables {Z, c}. The model is given by

Yi = λci

i0 +
∑

Zv∈parents(Yi,GD)\c

λci

ivZv + εi (3)

where, as before, ci is a discrete indicator. From
a pool of possible coefficient parameters {λ}, c =
{c1, c2, . . . , cp} selects which parameters will be used
when generating Y = {Y1, Y2, . . . , Yp}. Latent vari-
ables Z are multivariate Gaussian. Furthermore, εi is
Gaussian distributed with zero mean and variance υci

i

coming from a pool of possible variances also indexed
by ci. Without loss of generality, assume variables in Z

have zero mean and unit variance. Elements in {Z, c}
are defined to be mutually independent.

For a latent variable DAG model specified this way,
define a bi-directed graph GLV , with vertex set Y, as
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Figure 3: After marginalizing latent variables Z in (a), the result is the graph of marginal independencies
shown in (b). If two variables belong to a same clique in (b), the graph accounts for the possibility of some
hidden common parent from a DAG model that was marginalized. The encoding given by a bi-directed graph is
agnostic with respect to the exact number of latent variables and how they connect to the elements of a clique.
Given a bi-directed graph, there are different DAGs with latent variables corresponding to the same observable
independencies. In (c), we illustrate a “canonical” DAG compatible with (b).

follows: add an edge Yi ↔ Yj if and only if Yi and Yj

have a common parent from Z in GD. Figures 3(a) and
3(b) illustrate this process.

From Equation (3), it follows that the covariance of Yi

and Yj for a fixed choice of c is given by

σc

ij =
∑

Zv∈{parents(Yi,GD)∪parents(Yj ,GD)}\c

λci

ivλ
cj

jv

It is evident from this construction that σc

ij depends
only on ci and cj . Similarly, it can be shown that
the conditional mean and variance of Yi, µc

i and σc

ii,
depend only on ci. Given that σc

ij = 0 if Yi ↔ Yj is
not in GLV , and that ci and cj will be independent as
well, the following result can be proved:

Proposition 1 Any latent variable model defined by
the above procedure can be parameterized by a factorial
mixture of Gaussians model defined by the respective
bi-directed graph GLV and the conditions (1) and (2).

It is not known if there is an exact latent variable
model representation for every possible marginal inde-
pendence model with factorial mixture of Gaussians.
However, the parameterization based on (1) and (2)
is agnostic with respect to any possible latent struc-
ture Z that generated the independence constraints.
For comparison purposes, we define a canonical latent
variable model from a bi-directed factorial mixture of
Gaussians model as follows: for each clique in the bi-
directed graph G, create a latent variable Z in the
DAG, and make it the parent of all vertices Y that lie
in the clique. In Section 4, this will provide us with
a gold standard to compare our factorial mixture of
Gaussians to a default latent variable model that still
respects the same marginal independence constraints.
Figure 3 illustrates the different constructions.

3 THE LEARNING PROBLEM

Given the equality constraints in (2) and the assump-
tion that Πc fully factorizes, a bi-directed model de-
fined by graph G with p vertices has the following ef-
fective parameters:

• the discrete marginal distribution πi(ci) for each
mixture component;
• the pool of mean parameters µci

i and variance pa-
rameters σci

ii , 1 ≤ i ≤ p;
• the pool of covariance parameters σ

cicj

ij , 1 ≤ i <

j ≤ p, such that Yi ↔ Yj is in G;

For simplicity, we assume that each ci assumes val-
ues in same space {1, 2, ..., k}, where k is pre-specified.
The number of parameters is then O(|E|k2+pk), where
|E| is the number of edges in G.

The learning problem is the maximum
likelihood and MAP estimation of Θ =
{{π(ci)}, {µ

ci

i }, {σ
ci

ii }, {σ
cicj

ij }} given a training

set D = {Y(1), · · · ,Y(n)}. Let (Y(d), c(d)) denote a
complete data point, 1 ≤ d ≤ n over the observables
Y and indicators c. Let 〈·〉f(·) be the expectation

operator with respect to distribution f(·) and π′(c(d))
the conditional distribution of c(d) given Y(d) and a
set of parameters Θ′.

In an expectation-maximization framework, we have
to iteratively maximize the (penalized) likelihood
given by Equation 6 in Table 3.1 with respect to Θ,
subject to

∀c, Σc is positive definite (4)

where the (optional) introduction of penalization P(Θ)
corresponds to a prior distribution defined in the next
section. The penalization is used if a maximum a pos-
teriori estimator is required.
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For the rest of the paper, let k be the maximum (pre-
specified) number of possible states among all ci. The
optimization problem stated above is O(kp). This
problem is intractable in two ways. The first factor
is the computation of the expectation in Equation 6
in Table 3.1 that requires a sum over a large num-
ber of terms. The second factor is the presence of
an equally large number of constraints. Because the
Markov blanket of any node in a connected bi-directed
graph includes all other nodes (Silva and Ghahramani,
2009), the corresponding factor graph will include a
factor adjacent to all nodes. Hence, off-the-shelf free-
energy minimization approaches based on, e.g., belief
propagation, are not directly applicable. This is an im-
portant area of future research, with some directions
given by Huang and Frey (2008).

3.1 Priors

If a MAP estimator is required, a suitable choice of dis-
tribution for the prior of {{σ

cicj

ij }, {σ
ci

ii }} is a product
of experts (Hinton, 2002). We define a Gaussian ex-
pert for each non-zero covariance σ

cicj

ij and an inverse
gamma expert for each variance σci

ii . The resulting
prior is

p({σij}, {σii}) ∝
∏

ij;c pN (σ
cicj

ij ; m, v)

×
∏

i;c pG(σci

ii ; α, β) × I({σij}, {σii})

(5)

where pG(·; α, β) is an inverse gamma density function.
The indicator function I(·) returns zero if there is some
Σc that is not positive definite. Our penalization term
P(Θ) is given by the logarithm of p({σij}, {σii}). For
simplicity, we are not considering priors for the mean
parameters or mixture proportions.

3.2 Algorithms

We extend the maximum likelihood algorithm of Dr-
ton and Richardson (2003) for Gaussian distributions.
The general idea is to perform iterative conditional fit-
ting: fix the covariance matrix of a subset of variables
Y\i ≡ Y\{Yi} while optimizing for the row/column
of Σ corresponding to Yi. Drton and Richardson show
that this local optimization can be done in closed form.
Assume for now that the mean is zero. It is possible
to define the conditional distribution of Yi given Y\i

by the regression

Yi| Y\i =
∑

Yj adjacent to Yi

bijRj + ζi (8)

where Rj is the residual of the regression of Yj on the
nodes not adjacent to Yi according to the current esti-
mate of Σ\i, the covariance matrix of Y\i. This implies

that ΣR, the covariance matrix of the set of residuals
{Rj}, is given by a function of Σ\i. See (Drton and
Richardson, 2003) for details.

By fixing Σ\i (and, therefore, ΣR), it is easy to up-
date {bij} and the variance of ζi by maximizing the
conditional likelihood of Yi. The corresponding i-th
row and column of Σ can be then reconstructed from
such parameters and Σ\i.

Conditional maximization in closed form is not possi-
ble anymore in the factorial model. The Markov blan-
ket of Yi includes all other variables (Silva and Ghahra-
mani, 2009), and therefore for a fixed indicator vector
c, the equation corresponding to (8) becomes

Yi | {c, Y\i} =
∑

Yj adjacent to Yi

bcijR
c

j + ζc

i (9)

that is, the conditional parameters indexed by all en-
tries of c. However, there will be many equality con-
straints tying such parameters. For a given residual
covariance matrix Σc

R and column vector of coefficients
bci , we have

σc

iv = Σc

R,vb
c

i and σc

ii = γc

i + bci
TΣc

Rbci
(10)

where γc

i is the variance of ζc

i . Moreover, Σc

R,v is
the row vector containing the respective covariances
of each element of {Rj} with Yv according to Σc.

The parameterization of the factorial mixture of Gaus-
sians can be expressed as the constraints

σc

ij = σc
′

ij , if ci = c′i and cj = c′j (11)

σc

ii = σc
′

ii , if ci = c′i (12)

These equalities define, respectively, linear and
quadratic constraints on {bci } for a fixed set {γc

i } (each
γc

i has also to be positive). In particular, the equality
of variances implies:

γc

i + bci
T Σc

Rbci = γc
′

i + bc
′T

i Σc
′

Rbc
′

i , if ci = c′i (13)

Unlike in the Gaussian case, we cannot maximize func-
tion (9) for {bci } separately from {γc

i } because of the
constraints (12). For simplicity, we use the fmincon

function in the MATLAB optimization library to per-
form constrained non-linear optimization. This is for-
malized as Algorithm 1 in Table 3.1.

So far, this assumed all mean parameters µci

i are zero.
For the general case, the algorithm is essentially un-
modified. We omit references to the mean parameters
{µci

i } for simplicity2.

2Within each instantiation of c(d) in the expectation
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Table 1: The general learning problem in each EM step is to maximize the objective function for Θ. Algorithm
1 is a generic template for solving this problem using the conditional objective function, where for simplicity we
assume all mean parameters µci

i are zero. Matrices Σc

\i
are the marginal covariance matrices for Y\i ≡ Y\{Yi}.

Penalization P(Θb,γ) corresponds to P(Θ) by transforming variables.

Objective function: maximize

F(Θ;D) =
n

∑

d=1

〈

−
1

2
log |Σc

(d)

| −
1

2
(Y(d) − µc

(d)

)T Σc
(d)−1

(Y(d) − µc
(d)

) + log(π(c(d)))

〉

π′(c(d))

+ P(Θ) (6)

with respect to Θ, subject to: (4)

Conditional objective function: maximize

Fi(Θb,γ ;D) =
n

∑

d=1

〈

−
1

2
log(γc

(d)

i )−
1

2γc
(d)

i



Y
(d)
i −

∑

Yj adjacent to Yi

bc
(d)

ij Rc
(d)

j





2

+ log(π(c(d)))

〉

π′(c(d))

+P(Θb,γ)

(7)
with respect to Θb,γ , subject to: {γi > 0}, (11) and (12) (given (10))

Projection function: given current values for Θb,γ ≡ {{bcij}, {γi}} that respect constraints {γc

i > 0} and (11),
but possibly not (12), change {γc

i } such that all three sets of constraints hold.

This is accomplished as follows. Select a subset Bγ ⊆ {γ
c

i }, of size k, to serve as a basis for {γc

i }: we enumerate

the values for c that correspond to the k-highest values of bci
TΣc

Rbci , and pick the corresponding γc

i to define Bγ .
The remaining elements of {γc

i } are updated by solving (12) with the fixed basis Bγ and fixed coefficients {bcij}.
Return {γc

i }.

Algorithm 1: takes data D = {Y(1), . . . ,Y(n)} and black-box constrained non-linear optimizer, fmincon

1. Initialize Θ and compute π′(c(d)) for all d = 1, 2, . . . , n

2. Iterate Steps 3 and 4 until convergence:

3. For i = 1, 2, . . . , p: fix {Σc

\i
} and calculate {Rc

j}, Θb,γ ≡ {{bcij}, {γ
c

i }}. Maximize Fi(Θb,γ ;D) with respect

to Θb,γ , subject to {{γc

i > 0}, (11), (12)} using fmincon. Rebuild Θ from Σ\i and Θb,γ using (10)

4. Maximize F(Θ;D) with respect to {πi(ci)} and set π′(c) ∝ P(Y | c)
∏

i πi(ci), the posterior of c given Y.

5. Return Θ

Algorithm 2: same as Algorithm 1, except for Step 3

3. For i = 1, 2, . . . , p: fix {Σc

\i
} and calculate {Rc

j}, Θb,γ ≡ {{bcij}, {γ
c

i }}. Then

i. Maximize Fi(Θb,γ ;D) with respect to {bcij} subject to (11) by closed form/fmincon

ii. Initialize {γc

i } from the solution for {bcij} by using the Projection function, and maximize Fi(Θb,γ ;D)
with respect to {γc

i } subject to {γc

i > 0} and (12) using fmincon
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Figure 4: Typical networks found by non-parametric tests of marginal independencies for the glass, wine and
yeast domains, respectively.

Algorithm 2 in Table 3.1 is a suggested relaxed vari-
ation of the problem. We maximize the conditional
density of Yi by first dropping the constraints (12) and
fixing {γc

i }. In maximum likelihood problems, where
P(Θ) ≡ 0, this is a quadratic program with linear
constraints (11) and can be solved analytically. To
optimize for {γc

i } after fixing {bcij}, we need to project
the current parameter vector Θb,γ back to the feasi-
ble space. This is a matter of enforcing (12) and the
positivity of the variances {γc

i }. One can verify that
the function Projection in Table 3.1 accomplishes that.
There is no guarantee this will increase the expected
log-likelihood. In practice, if after the projection we
decrease the conditional log-likelihood we had before
optimizing for {bcij}, we reset the values of such param-
eters and use the complete optimization procedure of
Step 3 of Algorithm 1 for the particular i. Although it
seems in principle that we are taking the risk of unnec-
essarily paying for an overhead, this relaxed optimiza-
tion often increases the log-likelihood and it is much
less computationally expensive for large sample sizes
(since for the MLE it requires only one pass through
the data to find {bcij}) compared against the full step.
By watching the steps where the optimization fails and
changing the method accordingly, we are guaranteed
to converge: only partial maximization at each step is
necessary for the expectation-maximization method.

Sequential plug-in estimator: We also experiment
with a simplified estimation criterion that exploits the
fact that our model is defined by “upward compatible”
parameters. That is, unlike standard undirected mod-
els, where parameters are not locally encoding small
subsets of the marginals, our model can exploit the
fact that each parameter is encoding only a local joint.

〈·〉
π′(c(d)), we have first to temporarily subtract the mean

µc(d) from the data point Y(d) before optimization for the
covariances. After adding the means back, optimizing for
{µci

i } is a standard unconstrained procedure and omitted
from the discussion.

Given an ordering {Y1, Y2, . . . , Yp} and an estimate
for the parameters of the marginal {Y1, Y2, . . . , Yt−1},
we apply Algorithm 1 for i = t only. The process
is implemented by varying t from 1 to p. This is
the equivalent of carrying plug-in estimates for the
marginal of {Y1, . . . , Yt−1} into the learning of the pa-
rameters {σ

ctcj

tj , j < t}, {µct

t }, π(ct). The motivation
is to trade-off statistical efficiency for computational
efficiency without introducing an approximation bias.
The choice of an ordering is left open. In one of our ex-
periments, we treat as Y1 the variable with the fewest
number of neighbors in the graph, Y2 as the one with
the second smallest neighborhood size, and so on. No-
tice that sequential optimization is not applicable in
latent variable models, since in this case a same pa-
rameter has different roles in different marginals.

4 EXPERIMENTS

We first compare our model against the standard mix-
ture of Gaussians (MG) and a latent variable model
(LVM) fit by expectation-maximization (EM) using
predictive log-likelihood as the criterion. Four UCI
Machine Learning repository datasets (Asuncion and
Newman, 2007) were chosen: glass (“Glass Identifica-
tion”), fire (“Forest Fires”), heart (“Statlog Heart”)
and wine. The datasets were chosen so that they were
small and had mostly continuous variables. We show
that using the bi-directed graph parameterization can
help to find better parameters for prediction, even af-
ter being initialized by the parameters of a latent vari-
able model. Training is done by maximum likelihood.
Mixture level k is set to 2, with efficient model selec-
tion left for future work.

A 5-fold cross validation procedure is performed. In
order to provide a bi-directed graph for a given train-
ing set, we start with a complete graph and run the
marginal independence test of Gretton et al. (2007)
for each pair of variables. For each pair where the null
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Table 2: Comparison of predictive log-likelihood of the bi-directed model (BDM) against the respective canonical
latent variable model (LVM) and a mixture of Gaussians (MG). Each row corresponds to a test in a 5-fold cross-
validation setup. The log-likelihood is averaged over the number of test points. Best results in bold.

Fold Glass Fire Heart Wine
BDM LVM MG BDM LVM MG BDM LVM MG BDM LVM MG

1 -4.73 -5.61 -5.73 -8.75 -8.97 -9.62 -2.59 -3.64 -3.50 -8.50 -8.46 -8.71
2 -0.09 -1.56 -8.67 -7.11 -7.50 -7.03 -4.88 -5.05 -5.98 -8.45 -8.44 -8.52
3 -0.04 -2.06 -4.22 -6.35 -7.05 -6.63 -3.00 -3.18 -5.14 -8.55 -8.51 -8.67
4 -3.34 -4.59 -5.01 -7.69 -8.22 -7.88 -2.93 -3.84 -2.67 -10.0 -10.0 -9.70

5 5.50 4.44 -0.65 -7.44 -7.82 -7.03 -0.09 -1.49 -3.59 -8.23 -8.35 -7.81

hypothesis of independence is not rejected at a 0.05
level, we remove the respective edge. Typical graphs
are shown in Figure 4. The latent variable model is
the canonical one defined in Section 2. We train the
bi-directed model by starting from the means and co-
variance matrices implied by the latent variable model:
hence, our initial training log-likelihood is always the
same final log-likelihood of the latent variable model.
Results are summarized in Table 2. Algorithm 2 is
used: the relaxation step increases the log-likelihood
around half of the time (as discussed, we retry with the
corresponding step in Algorithm 1 otherwise). As seen
by the wine experiment (the smallest dataset, with
143 training points only), sometimes our model can
overfit the data compared to LVM. Improvements over
both methods are steady, and overall, the bi-directed
model has a solid performance compared to LVM/MG.

Maximum a posteriori experiment: We used the
yeast dataset from the UCI Machine Learning Repos-
itory. The yeast dataset contains 1484 datapoints and
7 continuous variables. We excluded the attribute
“pox” for being independent of all other attributes
according to the test of Gretton et al. (2007) at a
0.05 level. In our setup, we used two mixture compo-
nents per node and five-fold cross-validation. Struc-
ture learning was done as described before. We com-
pare results in MAP estimation against a latent vari-
able model generated from bi-directed graphs in the
same way as in the previous section. Since the dataset
is comparatively larger, it is now safer to use the se-
quential optimization algorithm. The prior consisted
on a product of (2, 2) inverse gammas and standard
Gaussians. The resulting predictive log-likelihood for
the five folds were -7.18, -7.15, -7.09, -7.24, -7.31 for the
bi-directed model. For the LVM trained by maximum
likelihood and EM, the results were -10.78, -10.24, -
9.68, -10.04, -10.28, showing a sizeable difference.

5 CONCLUSION

This paper follows the spirit of Drton and Richard-
son (2008), where an exact algorithm for binary mod-

els of marginal independencies is derived. In both
cases, the problem scales at an exponential rate with
the number of variables. However, deriving an ex-
act algorithm is an important step in order to de-
sign future approximation techniques, which might re-
quire non-standard approaches. Since the model is
parameterized by marginal parameters instead of con-
ditional ones, methods based on fitting sub-marginals
and propagating estimates might be promising. We
emphasize that the class of models here proposed are
aimed at fairly sparse domains, and should be seen as
a complement to latent variable models. Perhaps the
most important application of bi-directed models is as
a component of mixed graph formulations (Silva and
Ghahramani, 2009). In this case, even the exact algo-
rithm might be useful in a high dimensional problem:
the bi-directed graphical component is often decom-
posable into small disconnected subgraphs. We plan to
embed the techniques introduced here in mixed graph
problems, for both MAP and fully Bayesian learning.
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