File S1
Derivation of the fixation probability of a mutant

Expected change of mutant frequency. In order to derive the probability of fixation of a mutant, we first evaluate
the expected change of mutant frequency over one generation. The frequency of the mutant in a male indexed
i € {1,...,Nn} is written as pm; € {0,1/2,1}, and the frequency in a female j € {1,..., Nt} is written
p;; € {0,1/2,1}. The indicator variables 14, and Lo, respectively take the value one if the paternally and
maternally inherited alleles of individual ¢ are mutant, and zero otherwise. Then, the mutant frequencies in male
7 and in female j are

and py =29 ¥ (S1.1)

We write P, , = Zfiml Pmit/Nm and pg, = Z;V:flpfj’t/Nf for the average mutant frequencies in males and
females in the population and denote by q, the vector collecting the realization of mutant frequencies (the realized

values of 1 ;. and 1o;) in the population at time .

If the mutant changes male and female phenotypes by ., and d; and a parent transmits its maternally or paternally
inherited gene with equal probability, the expected average male and female mutant frequencies in the next

generation is

mel 1w (Om, O) + prj 1w (O, )

j=1

E[pm,t+1 la;] = ON.
m

(S1.2)

ED 11 la,] = 2N me 1Wh; (O, 6) +prg swf; (0m, 0) |
j=1

where w, (dm, d¢) is the expected number of adult offspring of sex u of individual ¢ (itself is of sex v) (Price 1970).
Eq. (SI.2) extends Rice (2008)'s "selection differential" to a two-sexes populations (his cov(¢, Q) term assuming a

constant population size).

If selection is wealk, it is sufficient to approximate allele frequency change to the first order of phenotypic ef-
fect in males and females ., and d. The fitness terms wY; are approximated as wY;(dm,d) = w¥(0) +
Sm(Ow,(0)/9dm) + 5t(0w?;(0)/d8) + O(6%), with (0) = (0,0). There are two things to note about the fit-
ness terms and their derivatives. First, in the absence of phenotypic differences, each individual is expected to
contribute equally to the next generation, and so w;(0) = N,,/N,. Second, the partial derivatives of an individ-
ual's fitness with respect to phenotypic effect in the other sex is zero dw?;(0)/9d,, = 0 with u # v. For instance,
when all males are the same (d,, = 0), changes in female phenotype have no effect on the expected number of

adult offspring of a focal male. So substituting for w, (0m, d¢) in eq. (SI.2) gives

1 1
EPm,e+1l9] = 5(?m,t + Pry) TN Om mez e + 5prth +0(6%)
(S1.3)
_ 1 1 & dw ,
E[Dgiq1lae] = §(pm,t +Pry) + 2N Om ;pmzt + 5prf]t + 0(67).
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Another consequence of weak selection is that the fitness derivative of an individual in eq. (SI.3) can be ap-
proximated in terms of only three phenotypic values: the phenotype of an individual, the average male phe-
notype and the average female phenotype. To see this, consider the expected number of female adults pro-
duced by male ¢, wfm.. This depends on his phenotype zn,;, as well as the collection of the phenotypes of all
the other males in the population, z_n; = {zmk;k : 1 — Ng,k # i}, as well as those of all the females
in the population, zz = {z;;7 : 1 — N;}. Expanded about male population average, excluding male 1,

Z_mi =1/(Nm—1) Zk# Zmk, and female population average z; = Z 2t/ N¢, wy,,; reads

f f = i
Wh (Zmis 2-mis 26) & Wh (2mis Zomis Z6) + D 3ka (Zmis — )+ Z 6sz (217 — Z1), (S1.4)
k=1,k+i
and the remainder is O(52) because the difference between any two phenotypes of the same sex is of order
0(0). The effect of changing the phenotype of any female has the same effect on the fitness of male 4, so
that all dw,;/dz; are equal, and Zﬁl(ﬁwfm/é)zfj)(zfj —z) = (Owf;/0z;) Z] 1 (267 — %), but by defini-
tion, Zj»\il(ij — Zf) = 0. A similar argument shows that Zg;“m#i(@w;i/azmk)(zmk — Z_mi) = 0. Hence,
the female component of fitness of male 4, wf ;(2mi, 2_mi, z), can be approximated by w! .(zm:, Z—mi, Z); that
is, as a function of its phenotype, zn;, the average male phenotype excluding the focal, Z_.,;, and the aver-

age phenotype of females in the population. However, for computational purposes it may be more conve-

f
me

nient to express w' . in terms of z,; and the average male phenotype Z,,. This can be done since Z_,,; =
(NmZm — 2mi)/(Nm — 1), so from now on we write the fitness of individual i as w' ;(2mi, Zm, Zf), keeping in
mind that with this notation w’ ;(2mi, Z_mi, Zf)/02mi = Ow (2, Zm, %) /0% + (Ow',;(2mis Zm, Z¢)/0Zm) / N
Using the chain rule, the derivatives of fitness with respect to ¢, is Ow, /06, = (OwY,/0zyi)(dzy;/dd,) +
(oW, /0Zm)(dZm/ ddy,) + (0w, /0%)(dZs/ dd,). By observing that the average male phenotype is insensi-
tive to changes in female mutant effects (dZ,/dd = 0), and that the average female phenotype is insen-
sitive to changes in male mutant effects (dzs/ dé,, = 0), the derivatives of fitness collapse to dwY; /05, =
(0w, | 0zy;)(dzy; / ddy) + (Ow?, /0Z,)(dZ, / ddy ). This may be further simplified by noting that since the number
of adults of either sex held constant at each generation, any fitness gain made by a focal individual due to a change
of phenotype must be compensated by a decrease in fitness by the rest of the population (Rousset 2004, p. 96),
i.e., Qwg; /02mi + 0wy, /0Zm = 0 and Q! /Oz; + Qwy; /0Z = 0. Thus, we eventually obtain for the derivatives

of fitness

(S1.5)

Owy; 8wm dzyi  dZy
351) 62?)1 d51) d5?)

Eq. (SI.5) is used to substitute for the derivatives of fitness in eq. (SI.3). To see how, consider the substitution for

dw™.(0)/95m in

Al Al dzmi dzm(0
o me = me ( dé()— dé( )>. (S1.6)

m
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At (0m,dr) = 0, i.e. where all males are the same, the rate of change of fitness of a male i with respect to its
phenotype is the same for all males Qwy;(0)/0zm; = 0wy, (0)/0zmk. Thus, the index i denotes a representative
male (or a focal male), rather than a specific one. Then, dw,(0)/0zm; may be taken out of the sum in eq. (SI.6)

and the index dropped for the function wp); is dropped, giving

N,
1 ow.(0) Zmi _ dZm \ Owl(0)
~ mit—s— = | Pmi=e — Pm e e, S1.7
N, 2 Pmiegp, (p dom 7 d6m> . (51.7)
Nm

where the overbar with index mi denotes averaging over all males Z,; = > ., ;/Np. Using a similar argument

for all derivatives of fitness in eq. (SI.3), we obtain

€ 011190] = 5P +F10) + 3D 5o + 63D ) 1 0() .
€712/ = 3 + 710+ n 2D 222D 1 60, O o), |
where - -
I~ —pmfg:)t ond, Dri =5 (22 —pfji)t, (519)

and the overbar with index fj denotes averaging over all females Zf; = Z;V:fl xj/Ns. We have added the sub-
script ¢ in eq. (S1.9) to make the time dependence of Dr, ;+ and Ds ; explicit, since they depend on the population

genotypic realization at generation ¢, q,.

The expectation of mutant frequencies in males and females from generation ¢ to generation ¢ + 1 are found by

marginalizing eq. (SI.8) over q,

Pm,t+1 = E[E[Dr ¢41]a.]] = Z E[Pm,c+119¢] Pr(ay)

% (1.10)

pee+1 = E[E[Preqla,]] = Z EPt¢41la,] Pr(a,),
q¢

where Pr(q,) is the distribution of allele frequencies at time ¢. By inspection of eq. (SI.8), we see that only Pt
Dt tr Dy ¢ and Dy, depend on g, and thus have to be marginalized over q,. Doing so will define the moments of
the distribution Pr(q,) required to calculate the expected allele frequency change over one generation. Since Pt
Dt.tr D ¢ and Dy 4 are all evaluated in the absence of phenotypic differences ((6m, 05) = 0), they are marginalized
for a neutral process, and the expectation operator is written E°[-]. We have E°[p, ;] = pm and E°[p¢ ;] = pr, and

evaluate E°[Dp, ¢] and E°[Ds ] below.

We will calculate E°[pm;i(dzmi/dom)] and E°[pg;(dz;/dd;)] together, and then E°[py,(dZm/ddm)] and
E°[ps(dzs/dds)], but first, we note that individual phenotype in terms of individual allele frequencies are
given by zm; = 2m + Om (2hpmi + (1 — 2h)10’i19i): and z; = 2¢ + 0¢(2hps; + (1 — 2h)]].o7|j]].9j). So that average
male and female phenotypic values are written as Zm = >_; zmi/Nm = zm + 0m (2P, + (1 — 20)T 5, To;,)

and zf = 3 2t/ Ne = 2 + 0¢(2hpg, + (1 — 2h)1 5 ;1g;¢). We then obtain the derivatives with respect to ¢ of
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these averages and the phenotype of male ¢, which are needed for the population statistics, as

dZmi

5 = 2w+ (1= 201, 1o,

‘;‘;—m = 2P, + (1 - 20) T, 1g;, (S1.11)
m

dzs _ .

Using eq. (SI.1) together with eq. (SI.11), we have

° Trm o ]107‘7.+J1Q"
E |:pmid6m]t =E # (h(]lozz + ]191) + (1 a 2h)]lozl]lgl)‘|
Y R t (S1.12)
R dzsj o | T QJ
£ [pfjcwﬂ —E #ﬂ (h(]].ozj +1o;) + (1 - Zh)]lozj]lgj>| ,
' t

which expanded gives

T dem
£ |y 25 | — e {h/g(ﬂoz.+2]1Cf}]19¢+]191)+(1—2h)ﬂo"]191}
dom |, o Lo

Nm

1 o
- [Z h/2(1g, + 2141, + 1g;) + (1 — 2h)1 4, 1g; (51.13)
i=1

t

= E°[h/2(1g,; + 21, 1o; + 1gs) + (1 — 2h)1 5, Loils,

where we have used that at neutrality, all males are expected to have the same genotypic composition. More

succinctly, we write

° dz, i
E |Pmi—e— | = h(Pms+me) + (1 — 2h)n,
o |,

— (S1.14)

Py

E° {pfjdéfﬂ = h(pst +ne) + (1 — 2h)m,
t

where nH =F° []1@2.]1@] is the probability that both the paternal and maternal alleles of an individual are mutants.
In the absence of phenotypic differences, this probability is equal for all individuals E°[1 ;,1o;] = E°[1 5, Toy]
for all 7 and k and irrespective of the sexes of the individuals. To see this, consider the recurrence for 7 over one
generation: n;41 = EO[]lo?li]lQi]t_Arl. If individual 7 of generation ¢ 4 1 has father indexed a and mother indexed ¢

at generation ¢,

1
M4+1 = ZEO[(]]‘Oza + ]lga)(]].ozc + ]].Qc)]h (S|15)

since the paternally inherited mutant of i is equally likely to be the paternally or the maternally inherited mutant
of its father a, and the maternally inherited mutant of i is equally likely to be the paternally or the maternally
inherited mutant of its mother c. This argument holds whatever the sex of i, so 17 = E°[1 5, 10;] does not depend
onthe sex of individual i. A similar argument shows that 1) is also equal to the probability that a paternally inherited

allele and a maternally inherited allele of two different, randomly sampled individuals are mutants, i.e. 1 =

E°[1 g, 1g;] = E°[1 5, 1o;] with i # j.
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We now calculate E°[p,,,(dZm/ddm)] and E°[ps(dZ¢/dd¢)]. Using eq. (SI.11) and rearranging to collect the terms
that involve the same male 4, and those that involve two different males i and k, we have E°[p,,(dZm/ddm)]: =
E°[2/ N (3, Di + 2 iz Pmipk) + (1 = 21) /(N2 (32, Pmil g Lgi + 22 g iz Pmil gy, Loi)]e. Letting ex-
pectation run through gives 2h /Ny, (E° z]t + (Nm — 1)E°[PmiPrle) + (1 — 2h)/Nm(E°m]t + (N —

DE®[pmil 5, Lox]t) where i # k. Finally, factoring by 1/ Ny, yields

o |= fm 1 o O [ o o
E B | = 2 (20 (B2 — EPmmrle ) + (1= 20) (E°pmiT 5, Toule — E Pl 5, Toe)e)
dom |, Nm (S1.16)

+ 2hEO[pml‘pk]t + (1 — 2h)Eo mel:u.ozk]].Qk]t

Expanding the above in terms of indicator variables for paternally and maternally inherited alleles, we have
E°[p2,] = E°[(1g,; + Loi + 21 5,10:)/4] = (pm + 1)/2, and we write E° [pm;px] = (21 + /ﬂr?j + H%)/Zl, where
nf = EO[]].Ozi]].ozk] is the probability that two randomly sampled males i # k both inherited the mutant allele
from their fathers, and rq, = E°[To;1og] is the probability that they inherited the mutant allele from their moth-
ers. Then, E°[pmilp,1o;] = 7, and finally E°[pmil g, Tox] = (oS + p,%)/Z, where pd = B[l Ly pLow] is
the probability that randomly sampled male i has inherited the mutant from its father and that another randomly
sampled male k is homozygous for the mutant, and p,% = EO[JlQi]lozk]le} is the probability that randomly sam-

pled male 7 has inherited the mutant from its mother and that another randomly sampled male & is homozygous

for the mutant. After using the similar argument for E°[prdZz;], we find that at generation ¢

o dZm 1 w + K] 7+ of
- {pmm}tm{th’tz =20 (e = T
d Q ot ?
+h<nt+”t2+”t>+(12h)<pt2+pt>,
_ dz 1 nfﬂ +n? p? er?
g | = — | pp— ) 4 (1—2h) [ — P2
[pfdéfL Nf{ <pf,t 5 +( ) | e 5

o ? J ?
+h<nt+’€t;—’£t>+(1—2h) (W),

where for two randomly sampled females j # |, /<;foz = E°[]10zj]lozl} , n? = E°[lg;1o], pfd = Eo[ﬂozj]lozl]lgz]

(S1.17)

and pf = E°[lg;1 5, Loy).

Substituting egs. (S1.14) and (SI.17) into eq. (SI.8), we find that the unconditional expected allele frequencies in

the males and females of the next generation are given by

owl(0) n Nt owf"(0)

Pm,i+1 = %(pm,t +Pte) + O K arznmi 6fN7me’t Oz (S1.18)
Prt+1 = %(pm,t + prt) + 5mNWr:Km’t alavinf?) + 6fo’tag]ig)>. |
where g Q o4 ?
o R
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for u € {m,f}. The latter can be interpreted as the neutral expectation of the covariance between genotype and

phenotype at generation t in an individual of sex u. Indeed, from eqs. (SI.6) and (S1.10), we have that K, is also

1 dz4i(0)  dZ,(0)
E [Nu;pm,t< T ) : (S1.20)

equal to

u

11 1 o
Ku,t = i(siE [Nu Zpui,t (ZUL - Zu)]

11 1 &
557EO [Nu Z(pui,t _T)ui,t) (Zuz - Zu)] .

K3

(S1.21)

Therefore, K, ; is proportional to the expected covariance E° [C[py; ¢, zui]] at generation ¢ between individual

genotype and phenotype in sex u, when mutant frequencies p,,; + evolve neutrally.

Closing the recursion. Eq. (SI.18) gives the change of p,, and ps over one generation, which depends on higher
moments of the distribution of the mutant in the population (7, Iiit, Hf’t, pit, and pg’t). These latter also
change from one generation to the next, and in order to evaluate the change of pn, ; and ps; over more than one

generation, we need to characterize these recursions. Since they are evaluated at (6, d) = 0 in eq. (SI.18), it

?

is sufficient to evaluate the recursions for 7, Hit, mf’t, pft, and pg ,

at neutrality, where they are only affected
by genetic drift. We give these recursions below using standard population genetic methods (Karlin 1968, for

example).
The probability that a gene sampled in an individual is mutant does not depend on the sex of the individual as it

comes with equal probability from its father or its mother

o 1
Pmi+1 = Prest = 5 (B[l + L i) = 5 (Pme +pri)- (s1.22)

DN =

The probability that the paternally and the maternally inherited allele of individual i at time ¢+ 1 are both mutant,
N1, is given in terms of neutral moments of gene frequency at generation ¢ in eq. (SI.15) which, if expanded,
gives

1
Mear = (2 + K+ REy). (1.23)
; . . J _ o _ o
where for a male i and a female j, kK =E [ldi]lozj], and k& = E°[Lo;lg;].

The probability that two paternally inherited alleles randomly sampled in two different males are both mutants at
generationt+1, nf,tﬂ, depends on whether the two males have the same father, which occurs with a probability
denoted @i or not (which occurs with probability 1 — @ﬁ). These probabilities are referred to as probabilities of
sibships. If the two males have the same father, which we index a, then their paternal alleles can be either both

copies of the paternal gene of a (with probability 1/4), both copies of the maternal gene of a (with probability
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1/4), or one is a paternal copy and one is a maternal copy (with probability 1/2). So, if two males have the same
father, their two paternally sampled genes are mutants with probability (1/4)E°[(1 5, + Lg,)?];. If they have
different fathers, indexed a and b, then the paternal copy of the first male may be the paternal or maternal copy
of a (each with probability 1/2), and the paternal copy of the second male may be the paternal or maternal copy
of b (also each with probability 1/2). In this case, the paternal alleles of the two individuals are both mutants with
probability (1/4)E°[(1 4, + 1o,4)(1 4, + Lop)]:- Combining these two cases, the probability that two randomly
sampled paternal alleles of different males at generation ¢ + 1 are mutants is nﬁtH = @§(1/4)E°[(]loza +
Toa)?]s + (1 — @f)(l/él)Eo[(]loza + 1oa) (14, + Lop)]: which, after letting expectation E°[.] run through and
using previous definitions, gives nﬁtH =09 (2n, + Pt + i) /4 + (1 — 09 (2n, + f—@ﬁit + H‘,n%,t)/4. In fact,
we find more generally that the probabilities that the paternal alleles of two males (x = m), or of two females

(x = 1), or of a male and female (x = c) are mutants at generation ¢ + 1 are given by

od 1-09
Ky 441 = T( Nt + Pm,t + D) + T(Qﬁt + “r?:t + K%,t) (S1.24)

where @?z is the probability that two females have the same father and, 9? is the probability that a male and a

female have the same father.

Using a similar argument, we find that the probabilities that the maternal alleles of two males (x = m), or of two

females (z = f), or of a male and female (x = ¢) are mutants at generation ¢ + 1 are given by

: 1- 07

K1 = 1 2+ e+ pee) + —

(20 + K, + k), (51.25)
where @% is the probability that two individuals, whose sexes are given by x, have the same mother.

The probability pﬁt+1 = EO[]lozi]lozk]lgk]tH that two (different) paternally inherited alleles and one mater-
nally inherited allele at generation £ + 1 are mutants depends on whether the males from which the paternal
alleles are sampled (males 7 and k here) have the same father (indexed a) or different fathers (a and b). Us-
ing a similar argument as in the preceding section, and indexing by ¢ the mother of the male who holds the
maternal allele, we have pg,t_ﬂ = @g(l/S)Eo[(]loza + 1gq)*(1g, + Lol + (1 — @g)(l/&%)Eo[(]loza +
Toa)(1gy, + 1op)(1g, + Loc)li- Then, expanding and letting expectation run through, we have: ,o,?:’tJrl =
9?(%h+«3l+ﬁir+%ﬁl+20i)/8+(1—@§)(éﬁt+éi¢+ﬂpi-%%ﬁt+pﬁt+p%0/&WMem
gf;i =E[1gy,15,15.]¢and gé?m’t = E°[1gq Loy lo.]: are the probabilities that the paternal and maternal alle-
les, respectively, of two randomly sampled (without replacement) males a and b and a female ¢ at generation ¢

are all mutants. We find in general that for z € {m, f, ¢}

607'
Pf,wl :?Z (277t + Hgt + ’%Q,t + 2:021 + 2P§,t)

1-0Y
= (<SS + 2055+ 208, + 05+ 00

(S1.26)
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Similarly, the probability that two (different) maternally inherited alleles and one paternally inherited allele from
two individuals are mutants at generation ¢ + 1, pf’tﬂ = Eo[]lgi]lgj]lozk]t+1, depends on whether individuals ¢
and j from which maternal genes are sampled have the same mother (indexed c) or different mothers (c and d),
Pii1 = OF(1/8)E° (g, + 10.)* (1, + Lol + (1 — OF)(1/8)E° (L, + Loo) (L gy + Loa) (L, + 1ou)le,

where a is the father of the individual whose paternal gene is sampled. Then for z € {m, f, ¢}

607l
pS,t+1 :?x (277t + th + “St + 2P§t + 2/)?,1‘,)
(51.27)
1-e7

d d (o
t— (czm,t + s + 200, + 208 + 0y + pf?t)

where gg”u =E[lgy, 15, 15,ltand gzgf’t = E°[lg,lo.lo4]: are the probabilities that the paternal and maternal

alleles, respectively, of a male a and of two different females ¢ and d at generation t are all mutants.

The probability that three alleles sampled from different individuals are mutants depends on the probabilities
of sibship of three individuals. In order to consider the iteration of the probability gfz, i.e. that three randomly
chosen paternally inherited genes are mutants, we need to separate the cases where all three individuals are
males (subscript x = 3m), all three are females (x = 3f), two are males and one is female (x = 2m), or two
are females and one is male (x = 2f). The probabilities that three paternal alleles are mutants then depend on
whether all three individuals have the same father, which occurs with a probability we write as 535, whether
only two have a same father (with probability E2§EJz ), or if none of the three have the same father (with probability
1-— ESQ?,z — EQf). If they all have the same father (indexed a), then they are all mutants if they have inherited
the mutant gene from the maternal or paternal locus from a. And similar arguments apply for the case when only
two have the same father (indexed a, and the other father is indexed b) or if they have three different fathers
(indexed a, b and c) to give ¢J, ;= Z3TE°[(L 4, + Loa)?]e/8 + E2T E°[(1 g, + Lga)2(1y, + Lop)le/8 +
(1 —239 — =29 )e° [(1g, + Log)(1gpy + Top)(1gp, + ]190)]t /8, which, expanding and letting expectation

run through, results in

=3¢ =29
Tt = g (Pma P 6m) + =g (20 R R+ 20, + 208) 28
51.28
1-239 —=2¢

J J
+ (§3m,t + §39m,t + 3pm,t + 3P2,t)-

8

?

Similarly, the probability that three randomly chosen maternally inherited genes ¢; are mutants can be expressed

in terms of the probabilities that the individuals have the same mother,

=32 =29
§§t+1 = 7(pm,t +pf,t + 67715) + (27715 + deili + Kth + 2pf01 + 2p1?t)
’ 8 8 ’ ’ ’ ’ (51.29)
1— =37 — =9F

ot d
) (Sar,¢ + g??f,t + 3pr; + 3[)]%)

where 532 is the probability that the three holders (whose sexes are given by x € {3m, 3f, 2m, 2f}) have the
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same mother, and 523 is the probability that out of the three individuals, two have the same mother. The mo-
ments ggtﬂ and <§,t+1 (z € {3m, 3f}) also satisfy the recurrences given by egs. (S1.28)(SI.29), and complete the

necessary moments to iterate eq. (S1.18).

Probability of fixation of an autosomal mutant. We proceed to calculate the probability of fixation of the mutant

by iterating its expected change over many generations. Egs. (S1.22) - (SI.29) define the changes in the moments of

the population genotypic distribution of a neutral mutant. Since egs. (S1.22) - (S1.29) are all linear in the relevant

moments, we may express the set of recurrences as a matrix operation: p,,; = A’p;, where p; isa 23 x 1
Jd .2 ? J

vector which collects the necessary moments of Pr(q;) (pm, ps, 7, K5 , Kz, pf, Pz, Sy ,gf,?) forz € {m,c,f},

y € {3m, 3f,2m, 2f}, and A° is a 23 x 23 matrix defined by egs. (SI.22) - (S1.29).

Eq. (S1.18) adds the effects of selection to the expected mutant frequency change. Since it is also linear in pn,, ps,

n, ng’”, /@g, ,Of, and pg, it may also be represented as a matrix operation, giving

Prir = Ap, with A=A + dnAy, + 6A; + O(5?), (S1.30)

where the 23 x 23 matrices i\m and Af describes the first order perturbation of average frequency change due to
mutant effect in males and females respectively. Eq. (SI.30) fully characterizes the expected frequency change of

a mutant in a sexually dimorphic population at any generation i.e., the model is dynamically sufficient.

Explicit expression for these large matrices are omitted from this paper, but they can be found straightfor-
wardly from eqs. (S1.22) - (SI.29) for A° and from eq. (SI.18) for Am and Af. Their entries will of course de-

pend on the order chosen for the entries of p,. We will assume here that the first 15 entries of p, are p, =

(P 01, K 68 RS ki k8 k8 0208 pS o s pF - )T

We derive the expression for the fixation probability 7 of the mutant by estimating the asymptotic sum of expected
allele-frequency change of the allele in males and females (Leturque and Rousset 2002; Rousset 2004; Lessard and
Ladret 2007; Lehmann and Rousset 2009). The fixation probability of the mutant 7, in males, and 7; in females

is the asymptotic average frequency of the mutant in each sex
Tm = lim pmy, 7= lim pg,. (S1.31)
t—o00 t—o00

Because the mutant allele eventually is either eliminated or fixated in the population, the fixation probability in
males and females is the same 7, = 7 = m. The fixation probabilities in males and females could be obtained
from the asymptotic vector lim;_. o Atpo, but this is difficult as it requires the calculation of A's eigenvectors. We
rely on an alternative scheme to obtain 7. To that aim, it is convenient to express the fixation probability of the
mutant as the average

T =amm + (1 — o), (S1.32)
where the weight « is chosen such that the expected frequency change of a neutral mutant in any generation t is
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zero: aE[Apm] + (1 — &)E[Aps¢] = 0. In this case, « = 1/2 for a diploid, autosomal genetic system. Together,
egs. (S1.31) & (S1.32) imply that 7 is the average sum of gene frequency change in males and females, from the

appearance to the eventual fixation or loss of the mutant

7= apmo + (1= a)pro+ > (QE[Apm] + (1 = )E[Ap] ). (51.33)
t=0

The probability of fixation of a mutant with initial frequencies pn, o in males and po females is approxi-
mated to the first order of 6 : @ = apmo + (1 — a)pro + adm(07(0)/00m) + (1 — a)d¢(O7(0)/Dd) +
O(6%). We begin by considering the first order effects of male phenotype on 7. Using eq. (SI.33), it is
Om(0)/0m = (0/00m) > o (AE[Apm 4] + (1 — a)E[Apf4])s,=s=0,- In matrix notation, this is 97(0)/d0m =
Y2 (0/06m)(Pis1 —Py)on=6=0 Where p = pm,ps, ...and a = (a,1—a,0,...,0)is such that when dot mul-
tiplied with p,, it collects and sums pr, ; and pr ; weighted by the reproductive values. Then, using egs. (S1.30), we

have O(p; 41 — P;)/00m = Ampt. So the male perturbation of the probability of fixation may be written as

or(0)
e (S1.34)

e .
= a'ZAmpt

t=0

Om=0=0

The sum >°,° ) py|s,—s—0, Which we write as >°.° | p; where py, ; = A°pg, does not converge as A’ is not regular.
This means A cannot be factored out of the sum in eq. (SI.34). To circumvent this problem, we construct an
iteration around a centred variable using the zero row-sum property of matrix A'\m (Lehmann and Rousset 2009).
To that aim, we define a vector g7 and a matrix Q° such that (i) >~ , Amp,‘f => s I'\m(pf—q,‘?), (i) py 1 —agy, =
(A —Q°)(p; — qy), and (iii) lim;—00 (P; — q7) = 0. The choice of g7 with all vector elements being equal to
aps+ (1 — a)p,m, which acts as a reference variable, and Q° = (qij) with all elements of column 1 being equal
to o, all elements of column 2 being equal to 1 — «, and zero otherwise satisfies all three conditions. In effect, this
choice of the vector qf centers the iteration around the mutant frequency averaged across the sexes according to
their reproductive class (this average is the reference variable), while Q° provides the iteration of the reference

variable.

Using properties (i)-(iii) in the preceding paragraph, we can now factorize Etoio Ampt = Am Etio(pf —q7) =
Ay, YooK — Q%) (py — qf). With all eigenvalues of (A — Q°) being less than 1 in absolute value (Lehmann
and Rousset 2009, p. 47), the sumd® = Y 7° (A — Q°)*(py — qg) can be evaluated as [I| — A + Q°] "', wherel

is the identity matrix, so we have

—a-Ad®, where d°=[1—&+Q°] " (p, —qp)- (S1.35)

All the arguments used to derive eq. (51.35) can be used for 7 (0) /35, and we find 97 (0) /35 = o - Ad®. Hence,

C. Mullon et al. 11 SI



the fixation probability to the first order in selection intensity is

T =apmo+ (1 —a)pro + dmax - Amdo + drax ~Afd° +0(6%). (S1.36)

The entries of d° can be interpreted in terms of mean coalescence times in the resident population. To see
this, we first note that if the expected initial frequency of the mutant is the same in males and females, then
DPmo = DPro = Do, Which is equivalent to assuming that mutation rate is the same in males and females.
Then, if the mutant arose as a single copy, po = 1/(2N), where N = N,, + Ny, and we have p, — qy =
(0,0,—1/(2N),—1/(2N),...,—1/(2N)). In this case, element dS fori > 3 of d° is

d; = =T@y/(2N), (S1.37)

where T(; is the mean coalescent time into a single individual of a set of gene lineages initially residing in state
i (Lehmann and Rousset 2009, eqgs. A-28 & A-29). State here refers to the configuration of the sampled gene
lineages, which are given by the entries of p,;, e.g., for « = 3, if the third entry of p, corresponds to 7, the
probability that an individual's paternal and maternal alleles are both mutant, so d5 = —T(S)/(2N), where T(3) is

the expected number of generations taken for the paternal and maternal genes of an individual to coalesce.

Substituting for « = 1/2 (for an autosomal gene) and for matrices I:\m and Af into eq. (S1.36), the probability of

fixation of a single copy mutant (pm o = pro = 1/(2V)) can be expressed as eq. (1) in the main text, where if

p; = (Pm, Pt 1, /-; f’z, I-ifd‘,lﬁ%, n?, n?, pg,ps”,pgf,pﬁ,p?,p?, ...)T, the sex-specific weights K, and K; are

1 1 dg + d2 Ao+ dSs
Km_4(1 Nm> [ h( . ) (1 2h)< 5 5

1 1 dg + dg Aoy +dSs
K=~ (1 Nf) { h< 5 > (1 2h)( . a )|,

with d; as the ¢th entry of the vector d° defined in eq. (SI.35). This shows that K, and Kt may be interpreted in

given by

(S1.38)

terms of coalescent times for sampled genes (eq. SI.37). Alternatively, using eq. (SI.21), we see that K, and K;
can be interpreted as the expected covariance between between genotype and phenotype in males and females

respectively, cumulated over the neutral segregation of the mutant

R 1
Ku = S5 Z Ku,t T AT o C[pui,ta Zuz]] (S|39)

where the sum runs from the appearance to the eventual fixation or loss of the mutant.

Probabilities of sibships of three individuals. Until now, all our results hold for any arbitrary population size, but
this implies tracking many gene associations. Indeed, as egs. (S1.22) - (SI.29) show, the iteration of eq. (SI.18) over
multiple generations depends on the six probabilities of sibships over two individuals, @Oz and @9 (z € {m,c,f}),

and the eight probabilities of sibships over three individuals Zv and 2 S0l (v € {2,3}, w € {m,f}). Therefore,
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K. and K5 (eq. SI.38) also depend on these fourteen probabilities. As we show below, we can significantly reduce
the number of necessary probabilities of sibships by approximating the probabilities of sibship of three individuals
Q

Evgz and Zwv;, as functions of the probabilities of sibship of two individuals G)ff and 6% when we only consider

the first order effects of finite population size O(1/N).

The probability that three randomly sampled adult males have the same father is 235, = E°[S2 (") /(%))

In the absence of phenotypic differences, each male has the same distribution of reproductive output and E3§’; =
1/((Np = 1) (N — 2))E°[W™? — 3WW M2 4 2™ ], If we assume that the distribution for W™ is sufficiently well-
behaved, and that the number of adult descendants of a male stays bounded as populations size (V) tends to
infinity (or that E°[W "], z > 0, remains bounded as N — o0), we find that none of the terms in 533?:1 are
of order 1/N or more, i.e. ES??;] = 0+ O(1/N?), so the probability that three randomly sampled adult males
have the same father can be approximated to being zero when [V is large. Similarly, we find that all probabilities

of sibship three genes in the same individual are approximately zero, 532.f = 3% =0+ O(1/N?) forz €

{3m, 3f, 2m, 2f}.

Rather than calculating 523?; the probability that out of three males only two have the same father directly, it is

easier to consider the probability that out of three males, none have the same father. These two probabilities are
related by 1 — 239 — 229 =1 — 229 (since 235, = 0 + O(1/N2)). The probability that out of three males,
none have the same father is given by the expected value of the ratio of the number of ways three individuals
may be sampled from the male offspring of three different adult males to the number of ways of sampling three
males out of the entire male population 1 — 225 = [vajmk W;‘“iW;‘jW;]“k/(A;m)]##k#, which after taking the
sum and denominator outside reduces to E°[W WL W, 12 ;2.i. Again by assuming that the number of adult

descendants of a male stays bounded as populations size tends to infinity, using the delta method (Oehlert 1992),

and observing that E°[IV™] = 1, we obtain 1 — 2§, = 1 + 3C° (wm

mai?

Wl +O00/N?).

The covariance term C° [WnT,i,

WQJ’L# may be expressed in terms of @ﬁ. The probability that two males do

not have the same father is, by definition, 1 — ©F, but it is also given by B D WnTiWr’;“j/(A;m)} =

EO [Wm

mi?

Wilizi = COWaWh]iz; + 1, so that C° (wm WnTjL#j = —09. Hence substituting back into
the probability that out of three males none have the same father, and solving for 523?:1, we obtain that the

probability that out of three males only two have the same father is
229 =309 + O(1/N?). (51.40)
The remaining probabilities can be derived by using the same argument, and that E°[W/.] = N;/Np,, produc-

ing
229 =309 + O(1/N?)

=50 2 40, 1log
=2%m = gy~ T 39 T 36m +O(1/N?) (S1.41)

g 2/ 2 1 4 ¢ 1 _ 5 )
=g =2 2 - )42 - 1/N?).
A S(Nm Nf>+390+3@f +O(1/N7)
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By symmetry, we find that the probabilities of sibship of three maternal genes are given to the order O(1/N)
by
228 =303 + O(1/N?)

228 =307 + O(1/N?)

51.42)
22 Z2(2 1Y e 169 o <
H22m—3<Nf Nm)+3@c+3@m+0(l/N)

=99 _ 2 é Q 1 ? 2

225 = 3N, + 3@C + 3@f + O(1/N7).

So assuming the population is large, the iteration of eq. (SI.18) over many generations depends only on the six

probabilities of sibships over two individuals, @f and @S (z € {m,c,f}).

Solving for K, and Kj; in terms of the probabilities of sibships of two individuals. Having expressed the eight
probabilities of sibships of three individuals in terms of the probabilities of sibships of two individuals Y, the
matrix A’ now only depends on these latter six probabilities of sibships, and therefore, so do K, and K (eq. S1.38).
Despite this simplification, solving explicitly for K, and K still requires inverting a 23x23 matrix, (I — A + Qo)fl,
which is computationally expensive and unlikely to yield results easy to interpret. Numerical results for K, and
Ky with arbitrary dominance are shown in fig. 4.D of the main text. However, if h = 1/2, only the first nine entries
of p, are required to generate the expected frequency change over many generations, and hence the probability

of fixation. Thus, A’ reduces to a 9 x 9 matrix. In this case, (1 — A + Q°)71 can be inverted analytically, and using

(SI.38) with h = 1/2, K, and K5 are as eq. (A.2) in the main text.

Probabilities of sibship of two individuals. The probability of fixation of a mutant depends on the probabilities
of sibship of two individuals in the resident population. Here, the probabilities of sibship are expressed in terms
of the first (u's) and second (v and p) moments of the distribution of offspring produced by a resident male and a

resident female to give table 1 of the main text.

The probability that two randomly sampled adult males have the same father, @f, is given by the expected
value of the ratio of the number of ways two individuals may be sampled from the number of adult males pro-
duced by each male, to the number of ways of sampling two males out of the entire male population, i.e.,
0 = e[ (") /(%m)], where W is the random variable for the number of male breeders produced
by male i. In the absence of phenotypic differences in the population, each male has the same distribution for
their reproductive output, so the sum may be taken out in @f, and the subscript ¢ now denotes a randomly sam-
pled male: 1/(Ny, — 1) [VO[W™m] + E°[Wm](E°[Wm.] — 1)]. The expected number of male adults produced by a
male in the absence of phenotypic differences, E°[W,] = 1, so the probability that two randomly sampled adult

males have the same father reduces to ©F = V°[W™]/(Ny, — 1). Conditioning on the number of male juveniles

produced in the population, and using the law of total variance, this gives

1 m
od = ] (N,ivo [”;m} + E° [VO[WWTZ.J,’Qi,Jm]O . (51.43)

The second variance term in eq. (SI.43) depends on how culling or regulation is assumed to take place, which is
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assumed here to occur by sampling juveniles without replacement. In this case, W follows a hypergeometric
distribution with Ny, draws and parameters given by the realization of JT}, with initial probability of success J7; / Jm
and a total population size of Jy,. Then, E°[V°[W™ |J™  Jo]] = E°[Nmd ™ (Jm — J™) (Jm — Nen) /(J2(Jm — 1))]-

Both variance terms in eq. (S1.43) are approximated omitting terms of order 1/N? using the delta method. With

assumption eq. (A.1) in the main text, the second variance term can be approximated as

1 E° N i (Jm — Jii) (Jm — Nim) ~ E°[/mi) _ Pomi _ L (S1.44)
Nm —1 Jr%(Jm_l) Eo[Jm] oL N .
Then, using the delta method with the variance operator, the first variance term in eq. (S1.43) is
N2 Jo vel[Jgm ] 9 v 9
Ve[ = N, m 1/N*) = N,—2& 1/N°). S1.45

Finally, substituting eqs. (S1.44)(S1.45) into eq. (SI.43) gives @Sf in table 1 of the main text. Using the same argu-
ment, we find a similar form for the probabilities that two females have the father @?z, that two males have the

same mother G)% and that two females have the same mother @? (see table 1 in the main text).

The probability that a male and a female have the same father @Sz is given by E° [vaz"‘l WrWE. /(NmNs)], where
Wr‘:n is the random variable for the number of female breeders produced by male i. By conditioning on the juvenile
production of every individual and using the assumption that male and female offspring are culled independently,

we have @5 = NnE°[JT.JE . /(JmJf)]. The delta method is used to approximate the latter. Then, expanding

about the means of J™., J°

mis Jmi» Jm and Jr and using condition eq. (A.1) in the main text, we have

f

d 1 Cl s Thi] 1 Prmii

O = —+Np—5——t=— 11+ 1, (S1.46)
Nm " E[Jm]E[H] Nm Homi M

where p2;2 = C[J™., Jf ] is the covariance between the number of male and offspring juveniles fathered by a

male. Using a similar argument, the probability that a male and a female have the same mother is found as in

table 1 of the main text.

References

KARLIN, S., 1968, Equilibrium Behavior of Population Genetic Models with Non-Random Mating: Part II: Pedigrees,
Homozygosity and Stochastic Models. Journal of Applied Probability 5(3): 487+.

LEHMANN, L. and F. ROUSSET, 2009, Perturbation expansions of multilocus fixation probabilities for frequency-
dependent selection with applications to the Hill-Robertson effect and to the joint evolution of helping and
punishment. Theoretical population biology 76(1): 35--51.

LESSARD, S. and V. LADRET, 2007, The probability of fixation of a single mutant in an exchangeable selection model.

Journal of mathematical biology 54(5): 721--744.

C. Mullon et al. 15 SI



LETURQUE, H. and F. ROUSSET, 2002, Dispersal, kin competition, and the ideal free distribution in a spatially het-
erogeneous population. Theoretical population biology 62(2): 169--180.

OEHLERT, G. W.,, 1992, A Note on the Delta Method. The American Statistician 46(1): 27--29.

PRICE, G. R., 1970, Selection and covariance. Nature 227(5257): 520--521.

RICE, S., 2008, A stochastic version of the Price equation reveals the interplay of deterministic and stochastic
processes in evolution. BMC Evolutionary Biology 8(1): 262+.

RoussET, F., 2004, Genetic Structure and Selection in Subdivided Populations . Princeton University Press.

16 SI C. Mullon et al.



