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DerivaƟon of the fixaƟon probability of a mutant

Expected change of mutant frequency. In order to derive the probability of fixaƟon of amutant, we first evaluate

the expected change of mutant frequency over one generaƟon. The frequency of the mutant in a male indexed

i ∈ {1, . . . , Nm} is wriƩen as pmi ∈ {0, 1/2, 1}, and the frequency in a female j ∈ {1, . . . , Nf} is wriƩen

pfj ∈ {0, 1/2, 1}. The indicator variables 1♂i
and 1♀i respecƟvely take the value one if the paternally and

maternally inherited alleles of individual i are mutant, and zero otherwise. Then, the mutant frequencies in male

i and in female j are

pmi =
1♂i

+ 1♀i

2
and pfj =

1♂j
+ 1♀j

2
. (SI.1)

We write pm,t =
∑Nm

i=1 pmi,t/Nm and pf,t =
∑Nf

j=1 pfj,t/Nf for the average mutant frequencies in males and

females in the populaƟon and denote by qt the vector collecƟng the realizaƟon ofmutant frequencies (the realized

values of 1♂i
and 1♀i) in the populaƟon at Ɵme t.

If themutant changesmale and female phenotypes by δm and δf and a parent transmits itsmaternally or paternally

inherited gene with equal probability, the expected average male and female mutant frequencies in the next

generaƟon is

E[pm,t+1|qt] =
1

2Nm

Nm∑
i=1

pmi,tw
m
mi(δm, δf) +

Nf∑
j=1

pfj,tw
m
fj(δm, δf)


E[pf,t+1|qt] =

1

2Nf

Nm∑
i=1

pmi,tw
f
mj(δm, δf) +

Nf∑
j=1

pfj,tw
f
fj(δm, δf)

 ,

(SI.2)

wherewu
vi(δm, δf) is the expected number of adult offspring of sex u of individual i (itself is of sex v) (Price 1970).

Eq. (SI.2) extends Rice (2008)'s "selecƟon differenƟal" to a two-sexes populaƟons (his cov(ϕ, Ω̂) term assuming a

constant populaƟon size).

If selecƟon is weak, it is sufficient to approximate allele frequency change to the first order of phenotypic ef-

fect in males and females δm and δf. The fitness terms wu
vi are approximated as wu

vi(δm, δf) = wu
vi(0) +

δm(∂w
u
vi(0)/∂δm) + δf(∂w

u
vi(0)/∂δf) + O(δ2), with (0) = (0, 0). There are two things to note about the fit-

ness terms and their derivaƟves. First, in the absence of phenotypic differences, each individual is expected to

contribute equally to the next generaƟon, and so wu
vi(0) = Nu/Nv . Second, the parƟal derivaƟves of an individ-

ual's fitness with respect to phenotypic effect in the other sex is zero ∂wu
vi(0)/∂δu = 0 with u ̸= v. For instance,

when all males are the same (δm = 0), changes in female phenotype have no effect on the expected number of

adult offspring of a focal male. So subsƟtuƟng for wu
vi(δm, δf) in eq. (SI.2) gives

E[pm,t+1|qt] =
1

2
(pm,t + pf,t) +

1

2Nm

δm

Nm∑
i=1

pmi,t
∂wm

mi(0)
∂δm

+ δf

Nf∑
j=1

pfj,t
∂wm

fj(0)
∂δf

+O(δ2)

E[pf,t+1|qt] =
1

2
(pm,t + pf,t) +

1

2Nf

δm

Nm∑
i=1

pmi,t
∂wf

mi(0)
∂δm

+ δf

Nf∑
j=1

pfj,t
∂wf

fj(0)
∂δf

+O(δ2).

(SI.3)
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Another consequence of weak selecƟon is that the fitness derivaƟve of an individual in eq. (SI.3) can be ap-

proximated in terms of only three phenotypic values: the phenotype of an individual, the average male phe-

notype and the average female phenotype. To see this, consider the expected number of female adults pro-

duced by male i, wf
mi. This depends on his phenotype zmi, as well as the collecƟon of the phenotypes of all

the other males in the populaƟon, z−mi = {zmk; k : 1 → Nm, k ̸= i}, as well as those of all the females

in the populaƟon, zf = {zfj ; j : 1 → Nf}. Expanded about male populaƟon average, excluding male i,

z−mi = 1/(Nm − 1)
∑

k ̸=i zmk, and female populaƟon average zf =
∑

j zfj/Nf, wf
mi reads

wf
mi(zmi, z−mi, zf) ≈ wf

mi(zmi, z−mi, zf) +

Nm∑
k=1,k ̸=i

∂wf
mi

∂zmk
(zmk − z−mi) +

Nf∑
j=1

∂wf
mi

∂zfj
(zfj − zf), (SI.4)

and the remainder is O(δ2) because the difference between any two phenotypes of the same sex is of order

O(δ). The effect of changing the phenotype of any female has the same effect on the fitness of male i, so

that all ∂wf
mi/∂zfj are equal, and

∑Nf
j=1(∂w

f
mi/∂zfj)(zfj − zf) = (∂wf

mi/∂zfj)
∑Nf

j=1(zfj − zf), but by defini-

Ɵon,
∑Nf

j=1(zfj − zf) = 0. A similar argument shows that
∑Nm

k=1,k ̸=i(∂w
f
mi/∂zmk)(zmk − z−mi) = 0. Hence,

the female component of fitness of male i, wf
mi(zmi, z−mi, zf), can be approximated by wf

mi(zmi, z−mi, zf); that

is, as a funcƟon of its phenotype, zmi, the average male phenotype excluding the focal, z−mi, and the aver-

age phenotype of females in the populaƟon. However, for computaƟonal purposes it may be more conve-

nient to express wf
mi in terms of zmi and the average male phenotype zm. This can be done since z−mi =

(Nmzm − zmi)/(Nm − 1), so from now on we write the fitness of individual i as wf
mi(zmi, zm, zf), keeping in

mind that with this notaƟon ∂wf
mi(zmi, z−mi, zf)/∂zmi = ∂wf

mi(x, zm, zf)/∂x + (∂wf
mi(zmi, zm, zf)/∂zm)/Nm.

Using the chain rule, the derivaƟves of fitness with respect to δv is ∂wu
vi/∂δv = (∂wu

vi/∂zvi)(dzvi/ dδv) +

(∂wu
vi/∂zm)(dzm/ dδv) + (∂wu

vi/∂zf)(dzf/ dδv). By observing that the average male phenotype is insensi-

Ɵve to changes in female mutant effects (dzm/ dδf = 0), and that the average female phenotype is insen-

siƟve to changes in male mutant effects (dzf/ dδm = 0), the derivaƟves of fitness collapse to ∂wu
vi/∂δv =

(∂wu
vi/∂zvi)(dzvi/ dδv)+(∂wu

vi/∂zv)(dzv/ dδv). This may be further simplified by noƟng that since the number

of adults of either sex held constant at each generaƟon, any fitness gainmade by a focal individual due to a change

of phenotype must be compensated by a decrease in fitness by the rest of the populaƟon (Rousset 2004, p. 96),

i.e., ∂wu
mi/∂zmi + ∂wu

mi/∂zm = 0 and ∂wu
fj/∂zfj + ∂wu

fj/∂zf = 0. Thus, we eventually obtain for the derivaƟves

of fitness
∂wu

vi

∂δv
=

∂wu
vi

∂zvi

(
dzvi
dδv

− dzv
dδv

)
. (SI.5)

Eq. (SI.5) is used to subsƟtute for the derivaƟves of fitness in eq. (SI.3). To see how, consider the subsƟtuƟon for

∂wm
mi(0)/∂δm in

1

Nm

Nm∑
i=1

pmi,t
∂wm

mi(0)
∂δm

=
1

Nm

Nm∑
i=1

pmi,t
∂wm

mi(0)
∂zmi

(
dzmi(0)
dδm

− dzm(0)
dδm

)
. (SI.6)
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At (δm, δf) = 0, i.e. where all males are the same, the rate of change of fitness of a male i with respect to its

phenotype is the same for all males ∂wm
mi(0)/∂zmi = ∂wm

mk(0)/∂zmk. Thus, the index i denotes a representaƟve

male (or a focal male), rather than a specific one. Then, ∂wm
mi(0)/∂zmi may be taken out of the sum in eq. (SI.6)

and the index dropped for the funcƟon wm
mi is dropped, giving

1

Nm

Nm∑
i=1

pmi,t
∂wm

mi(0)
∂δm

=

(
pmi

zmi

dδm
− pm

dzm
dδm

)
∂wm

m(0)
∂zmi

, (SI.7)

where the overbar with index mi denotes averaging over all males xmi =
∑Nm

i=1 xi/Nm. Using a similar argument

for all derivaƟves of fitness in eq. (SI.3), we obtain

E[pm,t+1|qt] =
1

2
(pm,t + pf,t) + δmDm,t

∂wm
m(0)

∂zmi
+ δf

Nf

Nm
Df,t

∂wm
f (0)

∂zfj
+O(δ2)

E[pf,t+1|qt] =
1

2
(pm,t + pf,t) + δm

Nm

Nf
Dm,t

∂wf
m(0)

∂zmi
+ δfDf,t

∂wf
f(0)

∂zfj
+O(δ2),

(SI.8)

where

Dm,t =
1

2

(
pmi

dzmi

dδm
− pm

dzm
dδm

)
t

and, Df,t =
1

2

(
pfj

dzfj
dδf

− pf
dzf
dδf

)
t

, (SI.9)

and the overbar with index fj denotes averaging over all females xfj =
∑Nf

j=1 xj/Nf. We have added the sub-

script t in eq. (SI.9) to make the Ɵme dependence ofDm,t andDf,t explicit, since they depend on the populaƟon

genotypic realizaƟon at generaƟon t, qt.

The expectaƟon of mutant frequencies in males and females from generaƟon t to generaƟon t + 1 are found by

marginalizing eq. (SI.8) over qt

pm,t+1 = E[E[pm,t+1|qt]] =
∑
qt

E[pm,t+1|qt] Pr(qt)

pf,t+1 = E[E[pf,t+1|qt]] =
∑
qt

E[pf,t+1|qt] Pr(qt),
(SI.10)

where Pr(qt) is the distribuƟon of allele frequencies at Ɵme t. By inspecƟon of eq. (SI.8), we see that only pm,t,

pf,t, Dm,t andDf,t depend on qt and thus have to be marginalized over qt. Doing so will define the moments of

the distribuƟon Pr(qt) required to calculate the expected allele frequency change over one generaƟon. Since pm,t,

pf,t,Dm,t andDf,t are all evaluated in the absence of phenotypic differences ((δm, δf) = 0), they are marginalized

for a neutral process, and the expectaƟon operator is wriƩen E◦[·]. We have E◦[pm,t] = pm and E◦[pf,t] = pf, and

evaluate E◦[Dm,t] and E◦[Df,t] below.

We will calculate E◦[pmi(dzmi/dδm)] and E◦[pfj(dzfj/dδf)] together, and then E◦[pm(dzm/dδm)] and

E◦[pf(dzf/dδf)], but first, we note that individual phenotype in terms of individual allele frequencies are

given by zmi = zm + δm(2hpmi +(1− 2h)1♂i
1♀i), and zfj = zf + δf(2hpfj +(1− 2h)1♂j

1♀j). So that average

male and female phenotypic values are wriƩen as zm =
∑

i zmi/Nm = zm + δm(2hpm,t + (1 − 2h)1♂i
1♀it

)

and zf =
∑

j zfj/Nf = zf + δf(2hpf,t + (1 − 2h)1♂j
1♀j t). We then obtain the derivaƟves with respect to δ of
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these averages and the phenotype of male i, which are needed for the populaƟon staƟsƟcs, as

dzmi

dδm
= 2hpmi + (1− 2h)1♂i

1♀i

dzm
dδm

= 2hpm,t + (1− 2h)1♂i
1♀it

dzf
dδf

= 2hpf,t + (1− 2h)1♂j
1♀j

t
.

(SI.11)

Using eq. (SI.1) together with eq. (SI.11), we have

E◦
[
pmi

dzmi

dδm

]
t

= E◦
[
1♂i

+ 1♀i

2

(
h(1♂i

+ 1♀i) + (1− 2h)1♂i
1♀i

)]
t

E◦
[
pfj

dzfj
dδf

]
t

= E◦
[
1♂j

+ 1♀j

2

(
h(1♂j

+ 1♀j) + (1− 2h)1♂j
1♀j

)]
t

,

(SI.12)

which expanded gives

E◦
[
pmi

dzmi

dδm

]
t

= E◦
[
h/2(1♂i

+ 21♂i
1♀i + 1♀i) + (1− 2h)1♂i

1♀i

]
t

=
1

Nm
E◦
[

Nm∑
i=1

h/2(1♂i
+ 21♂i

1♀i + 1♀i) + (1− 2h)1♂i
1♀i

]
t

= E◦[h/2(1♂i
+ 21♂i

1♀i + 1♀i) + (1− 2h)1♂i
1♀i]t,

(SI.13)

where we have used that at neutrality, all males are expected to have the same genotypic composiƟon. More

succinctly, we write

E◦
[
pmi

dzmi

dδm

]
t

= h(pm,t + ηt) + (1− 2h)ηt

E◦
[
pfj

dzfj
dδf

]
t

= h(pf,t + ηt) + (1− 2h)ηt,

(SI.14)

where ηH = E◦[1♂i
1♀i] is the probability that both the paternal andmaternal alleles of an individual aremutants.

In the absence of phenotypic differences, this probability is equal for all individuals E◦[1♂i
1♀i] = E◦[1♂k

1♀k]

for all i and k and irrespecƟve of the sexes of the individuals. To see this, consider the recurrence for η over one

generaƟon: ηt+1 = E◦[1♂i
1♀i]t+1. If individual i of generaƟon t+ 1 has father indexed a and mother indexed c

at generaƟon t,

ηt+1 =
1

4
E◦[(1♂a

+ 1♀a)(1♂c
+ 1♀c)]t, (SI.15)

since the paternally inherited mutant of i is equally likely to be the paternally or the maternally inherited mutant

of its father a, and the maternally inherited mutant of i is equally likely to be the paternally or the maternally

inherited mutant of its mother c. This argument holds whatever the sex of i, so η = E◦[1♂i
1♀i] does not depend

on the sex of individual i. A similar argument shows that η is also equal to the probability that a paternally inherited

allele and a maternally inherited allele of two different, randomly sampled individuals are mutants, i.e. η =

E◦[1♂i
1♀j ] = E◦[1♂j

1♀i] with i ̸= j.
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We now calculate E◦[pm(dzm/dδm)] and E◦[pf(dzf/dδf)]. Using eq. (SI.11) and rearranging to collect the terms

that involve the same male i, and those that involve two different males i and k, we have E◦[pm(dzm/dδm)]t =

E◦[2h/N2
m(
∑

i p
2
mi +

∑
i,k,i̸=k pmipk) + (1 − 2h)/(N2

m)(
∑

i pmi1♂i
1♀i +

∑
i,k,i̸=k pmi1♂k

1♀k)]t. Leƫng ex-

pectaƟon run through gives 2h/Nm(E◦[p2mi]t + (Nm − 1)E◦[pmipk]t) + (1− 2h)/Nm(E◦[pmi1♂i
1♀i]t + (Nm −

1)E◦[pmi1♂k
1♀k]t) where i ̸= k. Finally, factoring by 1/Nm yields

E◦
[
pm

dzm
dδm

]
t

=
1

Nm

(
2h
(
E◦[p2mi]t − E◦[pmipk]t

)
+ (1− 2h)

(
E◦[pmi1♂i

1♀i]t − E◦[pmi1♂k
1♀k]t

))
+ 2hE◦[pmipk]t + (1− 2h)E◦[pmi1♂k

1♀k]t.

(SI.16)

Expanding the above in terms of indicator variables for paternally and maternally inherited alleles, we have

E◦[p2mi] = E◦[(1♂i
+ 1♀i + 21♂i

1♀i)/4] = (pm + η)/2, and we write E◦[pmipk] = (2η + κ♂
m + κ

♀
m)/4, where

κ♂
m = E◦[1♂i

1♂k
] is the probability that two randomly sampled males i ̸= k both inherited the mutant allele

from their fathers, and κ♀
m = E◦[1♀i1♀k] is the probability that they inherited the mutant allele from their moth-

ers. Then, E◦[pmi1♂i
1♀i] = η, and finally E◦[pmi1♂k

1♀k] = (ρ♂m + ρ
♀
m)/2, where ρ♂m = E◦[1♂i

1♂k
1♀k] is

the probability that randomly sampled male i has inherited the mutant from its father and that another randomly

sampled male k is homozygous for the mutant, and ρ
♀
m = E◦[1♀i1♂k

1♀k] is the probability that randomly sam-

pled male i has inherited the mutant from its mother and that another randomly sampled male k is homozygous

for the mutant. AŌer using the similar argument for E◦[pfdzf], we find that at generaƟon t

E◦
[
pm

dzm
dδm

]
t

=
1

Nm

{
h

(
pm,t −

κ♂
t + κ

♀
t

2

)
+ (1− 2h)

(
ηt −

ρ♂t + ρ
♀
t

2

)}

+ h

(
ηt +

κ♂
t + κ

♀
t

2

)
+ (1− 2h)

(
ρ♂t + ρ

♀
t

2

)
,

E◦
[
pf
dzf
dδf

]
t

=
1

Nf

{
h

(
pf,t −

κ♂
t + κ

♀
t

2

)
+ (1− 2h)

(
ηt −

ρ♂t + ρ
♀
t

2

)}

+ h

(
ηt +

κ♂
t + κ

♀
t

2

)
+ (1− 2h)

(
ρ♂t + ρ

♀
t

2

)
,

(SI.17)

where for two randomly sampled females j ̸= l, κ♂
f = E◦[1♂j

1♂l
] , κ♀

f = E◦[1♀j1♀l], ρ♂f = E◦[1♂j
1♂l

1♀l]

and ρ
♀
f = E◦[1♀j1♂l

1♀l].

SubsƟtuƟng eqs. (SI.14) and (SI.17) into eq. (SI.8), we find that the uncondiƟonal expected allele frequencies in

the males and females of the next generaƟon are given by

pm,t+1 =
1

2
(pm,t + pf,t) + δmKm,t

∂wm
m(0)

∂zmi
+ δf

Nf

Nm
Kf,t

∂wm
f (0)

∂zfj

pf,t+1 =
1

2
(pm,t + pf,t) + δm

Nm

Nf
Km,t

∂wf
m(0)

∂zmi
+ δfKf,t

∂wf
f(0)

∂zfj
.

(SI.18)

where

Ku,t =
1

2

(
1− 1

Nu

)[
h

(
pu,t −

κ♂
u,t + κ

♀
u,t

2

)
+ (1− 2h)

(
ηt −

ρ♂u,t + ρ
♀
u,t

2

)]
, (SI.19)
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for u ∈ {m, f}. The laƩer can be interpreted as the neutral expectaƟon of the covariance between genotype and

phenotype at generaƟon t in an individual of sex u. Indeed, from eqs. (SI.6) and (SI.10), we have that Ku is also

equal to

Ku,t =
1

2
E◦
[

1

Nu

Nu∑
i

pui,t

(
dzui(0)
dδu

− dzu(0)
dδu

)]
, (SI.20)

and since zui = zu + δu(2hpui + (1− 2h)1♂i
1♀i), this may be wriƩen as

Ku,t =
1

2

1

δu
E◦
[

1

Nu

Nu∑
i

pui,t (zui − zu)

]

=
1

2

1

δu
E◦
[

1

Nu

Nu∑
i

(pui,t − pui,t) (zui − zu)

]
.

(SI.21)

Therefore, Ku,t is proporƟonal to the expected covariance E◦ [C[pui,t, zui]] at generaƟon t between individual

genotype and phenotype in sex u, when mutant frequencies pui,t evolve neutrally.

Closing the recursion. Eq. (SI.18) gives the change of pm and pf over one generaƟon, which depends on higher

moments of the distribuƟon of the mutant in the populaƟon (ηt, κ♂
u,t, κ

♀
u,t, ρ♂u,t, and ρ

♀
u,t). These laƩer also

change from one generaƟon to the next, and in order to evaluate the change of pm,t and pf,t over more than one

generaƟon, we need to characterize these recursions. Since they are evaluated at (δm, δf) = 0 in eq. (SI.18), it

is sufficient to evaluate the recursions for ηt, κ♂
u,t, κ

♀
u,t, ρ♂u,t, and ρ

♀
u,t at neutrality, where they are only affected

by geneƟc driŌ. We give these recursions below using standard populaƟon geneƟc methods (Karlin 1968, for

example).

The probability that a gene sampled in an individual is mutant does not depend on the sex of the individual as it

comes with equal probability from its father or its mother

pm,t+1 = pf,t+1 =
1

2

(
E◦[1♂i

+ 1♂i
]t
)
=

1

2
(pm,t + pf,t). (SI.22)

The probability that the paternally and thematernally inherited allele of individual i at Ɵme t+1 are bothmutant,

ηt+1, is given in terms of neutral moments of gene frequency at generaƟon t in eq. (SI.15) which, if expanded,

gives

ηt+1 =
1

4
(2ηt + κ♂

c,t + κ
♀
c,t). (SI.23)

where for a male i and a female j, κ♂
c = E◦[1♂i

1♂j
], and κ

♀
c = E◦[1♀i1♀j ].

The probability that two paternally inherited alleles randomly sampled in two different males are both mutants at

generaƟon t+1, κ♂
m,t+1, depends onwhether the twomales have the same father, which occurs with a probability

denotedΘ♂
m or not (which occurs with probability 1−Θ♂

m ). These probabiliƟes are referred to as probabiliƟes of

sibships. If the two males have the same father, which we index a, then their paternal alleles can be either both

copies of the paternal gene of a (with probability 1/4), both copies of the maternal gene of a (with probability

C. Mullon et al. 7 SI



1/4), or one is a paternal copy and one is a maternal copy (with probability 1/2). So, if two males have the same

father, their two paternally sampled genes are mutants with probability (1/4)E◦[(1♂a
+ 1♀a)

2]t. If they have

different fathers, indexed a and b, then the paternal copy of the first male may be the paternal or maternal copy

of a (each with probability 1/2), and the paternal copy of the second male may be the paternal or maternal copy

of b (also each with probability 1/2). In this case, the paternal alleles of the two individuals are both mutants with

probability (1/4)E◦[(1♂a
+ 1♀a)(1♂b

+ 1♀b)]t. Combining these two cases, the probability that two randomly

sampled paternal alleles of different males at generaƟon t + 1 are mutants is κ♂
m,t+1 = Θ♂

m (1/4)E◦[(1♂a
+

1♀a)
2]t + (1 − Θ♂

m )(1/4)E◦[(1♂a
+ 1♀a)(1♂b

+ 1♀b)]t which, aŌer leƫng expectaƟon E◦[.] run through and

using previous definiƟons, gives κ♂
m,t+1 = Θ♂

m (2ηt + pm,t + pf,t)/4 + (1 − Θ♂
m )(2ηt + κ♂

m,t + κ
♀
m,t)/4. In fact,

we find more generally that the probabiliƟes that the paternal alleles of two males (x = m), or of two females

(x = f), or of a male and female (x = c) are mutants at generaƟon t+ 1 are given by

κm
x,t+1 =

Θ♂
x

4
(2ηt + pm,t + pf,t) +

1−Θ♂
x

4
(2ηt + κ♂

m,t + κ
♀
m,t) (SI.24)

whereΘ♂
f is the probability that two females have the same father and,Θ♂

c is the probability that a male and a

female have the same father.

Using a similar argument, we find that the probabiliƟes that the maternal alleles of two males (x = m), or of two

females (x = f), or of a male and female (x = c) are mutants at generaƟon t+ 1 are given by

κ
♀
x,t+1 =

Θ
♀
x

4
(2ηt + pm,t + pf,t) +

1−Θ
♀
x

4
(2ηt + κ♂

f,t + κ
♀
f,t), (SI.25)

whereΘ♀
x is the probability that two individuals, whose sexes are given by x, have the same mother.

The probability ρ♂m,t+1 = E◦[1♂i
1♂k

1♀k]t+1 that two (different) paternally inherited alleles and one mater-

nally inherited allele at generaƟon t + 1 are mutants depends on whether the males from which the paternal

alleles are sampled (males i and k here) have the same father (indexed a) or different fathers (a and b). Us-

ing a similar argument as in the preceding secƟon, and indexing by c the mother of the male who holds the

maternal allele, we have ρ♂m,t+1 = Θ♂
m (1/8)E◦[(1♂a

+ 1♀a)
2(1♂c

+ 1♀c)]t + (1 − Θ♂
m )(1/8)E◦[(1♂a

+

1♀a)(1♂b
+ 1♀b)(1♂c

+ 1♀c)]t. Then, expanding and leƫng expectaƟon run through, we have: ρ♂m,t+1 =

Θ♂
m

(
2ηt + κ♂

c,t + κ
♀
c,t + 2ρ♂c,t + 2ρ

♀
c,t

)
/8 + (1−Θ♂

m )
(
ς♂2m,t + ς

♀
2m,t + 2ρ♂c,t + 2ρ

♀
c,t + ρ♂m,t + ρ

♀
m,t

)
/8, where

ς♂2m,t = E◦[1♂a
1♂b

1♂c
]t and ς

♀
2m,t = E◦[1♀a1♀b1♀c]t are the probabiliƟes that the paternal and maternal alle-

les, respecƟvely, of two randomly sampled (without replacement) males a and b and a female c at generaƟon t

are all mutants. We find in general that for x ∈ {m, f, c}

ρ♂x,t+1 =
Θ♂

x

8

(
2ηt + κ♂

c,t + κ
♀
c,t + 2ρ♂c,t + 2ρ

♀
c,t

)
+

1−Θ♂
x

8

(
ς♂2m,t + ς

♀
2m,t + 2ρ♂c,t + 2ρ

♀
c,t + ρ♂m,t + ρ

♀
m,t

) (SI.26)
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Similarly, the probability that two (different) maternally inherited alleles and one paternally inherited allele from

two individuals are mutants at generaƟon t+ 1, ρ♀x,t+1 = E◦[1♀i1♀j1♂k
]t+1, depends on whether individuals i

and j from which maternal genes are sampled have the same mother (indexed c) or different mothers (c and d),

ρ
♀
t+1 = Θ

♀
x (1/8)E◦[(1♂c

+ 1♀c)
2(1♂a

+ 1♀a)]t + (1−Θ
♀
x )(1/8)E◦[(1♂c

+ 1♀c)(1♂d
+ 1♀d)(1♂a

+ 1♀a)]t,

where a is the father of the individual whose paternal gene is sampled. Then for x ∈ {m, f, c}

ρ
♀
x,t+1 =

Θ♂
x

8

(
2ηt + κ♂

c,t + κ
♀
c,t + 2ρ♂c,t + 2ρ

♀
c,t

)
+

1−Θ
♀
x

8

(
ς♂2m,t + ς

♀
2m,t + 2ρ♂c,t + 2ρ

♀
c,t + ρ♂f,t + ρ

♀
f,t

) (SI.27)

where ς♂2f,t = E◦[1♂a
1♂c

1♂d
]t and ς

♀
2f,t = E◦[1♀a1♀c1♀d]t are the probabiliƟes that the paternal and maternal

alleles, respecƟvely, of a male a and of two different females c and d at generaƟon t are all mutants.

The probability that three alleles sampled from different individuals are mutants depends on the probabiliƟes

of sibship of three individuals. In order to consider the iteraƟon of the probability ς♂x , i.e. that three randomly

chosen paternally inherited genes are mutants, we need to separate the cases where all three individuals are

males (subscript x = 3m), all three are females (x = 3f), two are males and one is female (x = 2m), or two

are females and one is male (x = 2f). The probabiliƟes that three paternal alleles are mutants then depend on

whether all three individuals have the same father, which occurs with a probability we write as Ξ3♂x , whether

only two have a same father (with probabilityΞ2♂x ), or if none of the three have the same father (with probability

1 − Ξ3♂x − Ξ2♂x ). If they all have the same father (indexed a), then they are all mutants if they have inherited

the mutant gene from the maternal or paternal locus from a. And similar arguments apply for the case when only

two have the same father (indexed a, and the other father is indexed b) or if they have three different fathers

(indexed a, b and c) to give ς♂x,t+1 = Ξ3♂x E◦[(1♂a
+ 1♀a)

3]t/8 + Ξ2♂x E◦[(1♂a
+ 1♀a)

2(1♂b
+ 1♀b)]t/8 +

(1 − Ξ3♂x − Ξ2♂x )E◦
[
(1♂a

+ 1♀a)(1♂b
+ 1♀b)(1♂c

+ 1♀c)
]
t
/8, which, expanding and leƫng expectaƟon

run through, results in

ς♂x,t+1 =
Ξ3♂x
8

(pm,t + pf,t + 6ηt) +
Ξ2♂x
8

(2ηt + κ♂
m,t + κ

♀
m,t + 2ρ♂m,t + 2ρ

♀
m,t)

+
1− Ξ3♂x − Ξ2♂x

8
(ς♂3m,t + ς

♀
3m,t + 3ρ♂m,t + 3ρ

♀
m,t).

(SI.28)

Similarly, the probability that three randomly chosenmaternally inherited genes ς♀x are mutants can be expressed

in terms of the probabiliƟes that the individuals have the same mother,

ς
♀
x,t+1 =

Ξ3
♀
x

8
(pm,t + pf,t + 6ηt) +

Ξ2
♀
x

8
(2ηt + κ♂

f,t + κ
♀
f,t + 2ρ♂f,t + 2ρ

♀
f,t)

+
1− Ξ3

♀
x − Ξ2

♀
x

8
(ς♂3f,t + ς

♀
3f,t + 3ρ♂f,t + 3ρ

♀
f,t)

(SI.29)

where Ξ3
♀
x is the probability that the three holders (whose sexes are given by x ∈ {3m, 3f, 2m, 2f}) have the
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same mother, and Ξ2
♀
x is the probability that out of the three individuals, two have the same mother. The mo-

ments ς♂x,t+1 and ς
♀
x,t+1 (x ∈ {3m, 3f}) also saƟsfy the recurrences given by eqs. (SI.28)(SI.29), and complete the

necessary moments to iterate eq. (SI.18).

Probability of fixaƟon of an autosomal mutant. We proceed to calculate the probability of fixaƟon of the mutant

by iteraƟng its expected change overmany generaƟons. Eqs. (SI.22) - (SI.29) define the changes in themoments of

the populaƟon genotypic distribuƟon of a neutral mutant. Since eqs. (SI.22) - (SI.29) are all linear in the relevant

moments, we may express the set of recurrences as a matrix operaƟon: pt+1 = A◦pt, where pt is a 23 × 1

vector which collects the necessary moments of Pr(qt) (pm, pf, η, κ♂
x , κ♀

x , ρ♂x , ρ♀x , ς♂y ,ς♀y ) for x ∈ {m, c, f},

y ∈ {3m, 3f, 2m, 2f}, and A◦ is a 23× 23matrix defined by eqs. (SI.22) - (SI.29).

Eq. (SI.18) adds the effects of selecƟon to the expected mutant frequency change. Since it is also linear in pm, pf,

η, κ♂
x , κ♀

x , ρ♂x , and ρ
♀
x , it may also be represented as a matrix operaƟon, giving

pt+1 = Apt with A = A◦ + δm
.
Am + δf

.
Af +O(δ2), (SI.30)

where the 23× 23matrices
.
Am and

.
Af describes the first order perturbaƟon of average frequency change due to

mutant effect in males and females respecƟvely. Eq. (SI.30) fully characterizes the expected frequency change of

a mutant in a sexually dimorphic populaƟon at any generaƟon i.e., the model is dynamically sufficient.

Explicit expression for these large matrices are omiƩed from this paper, but they can be found straighƞor-

wardly from eqs. (SI.22) - (SI.29) for A◦ and from eq. (SI.18) for
.
Am and

.
Af. Their entries will of course de-

pend on the order chosen for the entries of pt. We will assume here that the first 15 entries of pt are pt =

(pm, pf, η, κ
♂
m , κ♂

c , κ♂
f , κ

♀
m, κ

♀
c , κ

♀
f , ρ

♂
m , ρ♂c , ρ♂f , ρ

♀
m, ρ

♀
c , ρ

♀
f , . . .)

T .

We derive the expression for the fixaƟon probabilityπ of themutant by esƟmaƟng the asymptoƟc sumof expected

allele-frequency change of the allele inmales and females (Leturque and Rousset 2002; Rousset 2004; Lessard and

Ladret 2007; Lehmann and Rousset 2009). The fixaƟon probability of the mutant πm in males, and πf in females

is the asymptoƟc average frequency of the mutant in each sex

πm = lim
t→∞

pm,t, πf = lim
t→∞

pf,t. (SI.31)

Because the mutant allele eventually is either eliminated or fixated in the populaƟon, the fixaƟon probability in

males and females is the same πm = πf = π. The fixaƟon probabiliƟes in males and females could be obtained

from the asymptoƟc vector limt→∞ Atp0, but this is difficult as it requires the calculaƟon of A's eigenvectors. We

rely on an alternaƟve scheme to obtain π. To that aim, it is convenient to express the fixaƟon probability of the

mutant as the average

π = απm + (1− α)πf, (SI.32)

where the weight α is chosen such that the expected frequency change of a neutral mutant in any generaƟon t is
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zero: αE[∆pm,t] + (1− α)E[∆pf,t] = 0. In this case, α = 1/2 for a diploid, autosomal geneƟc system. Together,

eqs. (SI.31) & (SI.32) imply that π is the average sum of gene frequency change in males and females, from the

appearance to the eventual fixaƟon or loss of the mutant

π = αpm,0 + (1− α)pf,0 +
∞∑
t=0

(
αE[∆pm,t] + (1− α)E[∆pf,t]

)
. (SI.33)

The probability of fixaƟon of a mutant with iniƟal frequencies pm,0 in males and pf,0 females is approxi-

mated to the first order of δ : π = αpm,0 + (1 − α)pf,0 + αδm(∂π(0)/∂δm) + (1 − α)δf(∂π(0)/∂δf) +

O(δ2). We begin by considering the first order effects of male phenotype on π. Using eq. (SI.33), it is

∂π(0)/∂δm = (∂/∂δm)
∑∞

t=0(αE[∆pm,t] + (1 − α)E[∆pf,t])δm=δf=0,. In matrix notaƟon, this is ∂π(0)/∂δm =

α·
∑∞

t=0(∂/∂δm)(pt+1−pt)δm=δf=0 where p = pm, pf, . . . andα = (α, 1−α, 0, . . . , 0) is such that when dotmul-

Ɵplied with pt, it collects and sums pm,t and pf,t weighted by the reproducƟve values. Then, using eqs. (SI.30), we

have ∂(pt+1 − pt)/∂δm =
.
Ampt. So the male perturbaƟon of the probability of fixaƟon may be wriƩen as

∂π(0)
∂δm

= α ·
∞∑
t=0

.
Ampt

∣∣∣∣
δm=δf=0

. (SI.34)

The sum
∑∞

t=0 pt|δm=δf=0, which we write as
∑∞

t=0 p
◦
t where p◦t+1 = A◦p◦t , does not converge as A◦ is not regular.

This means
.
A cannot be factored out of the sum in eq. (SI.34). To circumvent this problem, we construct an

iteraƟon around a centred variable using the zero row-sum property of matrix
.
Am (Lehmann and Rousset 2009).

To that aim, wedefine a vectorq◦t and amatrixQ◦ such that (i)
∑∞

t=0

.
Amp◦t =

∑∞
t=0

.
Am(p◦t−q◦t ), (ii)p◦t+1−q◦t+1 =

(A◦ − Q◦)(p◦t − q◦t ), and (iii) limt→∞(p◦t − q◦t ) = 0. The choice of q◦t with all vector elements being equal to

αpf,t + (1−α)pm,t, which acts as a reference variable, and Q◦ = (qij)with all elements of column 1 being equal

to α, all elements of column 2 being equal to 1−α, and zero otherwise saƟsfies all three condiƟons. In effect, this

choice of the vector q◦t centers the iteraƟon around the mutant frequency averaged across the sexes according to

their reproducƟve class (this average is the reference variable), while Q◦ provides the iteraƟon of the reference

variable.

Using properƟes (i)-(iii) in the preceding paragraph, we can now factorize
∑∞

t=0

.
Ampt =

.
Am
∑∞

t=0(p
◦
t − q◦t ) =.

Am
∑∞

t=0(A
◦ − Q◦)t(p0 − q◦0). With all eigenvalues of (A◦ − Q◦) being less than 1 in absolute value (Lehmann

and Rousset 2009, p. 47), the sum d◦ =
∑∞

t=0(A
◦ − Q◦)t(p0 − q◦0) can be evaluated as [I− A◦ + Q◦]

−1, where I

is the idenƟty matrix, so we have

∂π(0)
∂δm

= α ·
.
Amd◦, where d◦ = [I− A◦ + Q◦]

−1
(p0 − q0). (SI.35)

All the arguments used to derive eq. (SI.35) can be used for ∂π(0)/∂δf, and we find ∂π(0)/∂δf = α ·
.
Afd◦. Hence,
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the fixaƟon probability to the first order in selecƟon intensity is

π = αpm,0 + (1− α)pf,0 + δmα ·
.
Amd◦ + δfα ·

.
Afd◦ +O(δ2). (SI.36)

The entries of d◦ can be interpreted in terms of mean coalescence Ɵmes in the resident populaƟon. To see

this, we first note that if the expected iniƟal frequency of the mutant is the same in males and females, then

pm,0 = pf,0 = p0, which is equivalent to assuming that mutaƟon rate is the same in males and females.

Then, if the mutant arose as a single copy, p0 = 1/(2N), where N = Nm + Nf, and we have p0 − q0 =

(0, 0,−1/(2N),−1/(2N), . . . ,−1/(2N))T . In this case, element d◦i for i ≥ 3 of d◦ is

d◦i = −T(i)/(2N), (SI.37)

where T(i) is the mean coalescent Ɵme into a single individual of a set of gene lineages iniƟally residing in state

i (Lehmann and Rousset 2009, eqs. A-28 & A-29). State here refers to the configuraƟon of the sampled gene

lineages, which are given by the entries of pt, e.g., for i = 3, if the third entry of pt corresponds to ηt, the

probability that an individual's paternal andmaternal alleles are bothmutant, so d◦3 = −T(3)/(2N), where T(3) is

the expected number of generaƟons taken for the paternal andmaternal genes of an individual to coalesce.

SubsƟtuƟng for α = 1/2 (for an autosomal gene) and for matrices
.
Am and

.
Af into eq. (SI.36), the probability of

fixaƟon of a single copy mutant (pm,0 = pf,0 = 1/(2N)) can be expressed as eq. (1) in the main text, where if

pt = (pm, pf, η, κ
♂
m , κ♂

c , κ♂
f , κ

♀
m, κ

♀
c , κ

♀
f , ρ

♂
m , ρ♂c , ρ♂f , ρ

♀
m, ρ

♀
c , ρ

♀
f , . . .)

T , the sex-specific weightsKm andKf are

given by

Km =
1

4

(
1− 1

Nm

)[
−h

(
d◦4 + d◦7

2

)
− (1− 2h)

(
d◦10 + d◦13

2
− d◦3

)]
Kf =

1

4

(
1− 1

Nf

)[
−h

(
d◦6 + d◦9

2

)
− (1− 2h)

(
d◦12 + d◦15

2
− d◦3

)]
,

(SI.38)

with di as the ith entry of the vector d◦ defined in eq. (SI.35). This shows thatKm andKf may be interpreted in

terms of coalescent Ɵmes for sampled genes (eq. SI.37). AlternaƟvely, using eq. (SI.21), we see that Km and Kf

can be interpreted as the expected covariance between between genotype and phenotype in males and females

respecƟvely, cumulated over the neutral segregaƟon of the mutant

Ku =
1

2

1

2N

∞∑
t=0

Ku,t =
1

4

1

2N

1

δu

∞∑
t=0

E◦ [C[pui,t, zui]] (SI.39)

where the sum runs from the appearance to the eventual fixaƟon or loss of the mutant.

ProbabiliƟes of sibships of three individuals. UnƟl now, all our results hold for any arbitrary populaƟon size, but

this implies tracking many gene associaƟons. Indeed, as eqs. (SI.22) - (SI.29) show, the iteraƟon of eq. (SI.18) over

mulƟple generaƟons depends on the six probabiliƟes of sibships over two individuals,Θ♂
x andΘ♀

x (x ∈ {m, c, f}),

and the eight probabiliƟes of sibships over three individuals Ξv♂w and Ξv
♀
w (v ∈ {2, 3}, w ∈ {m, f}). Therefore,

12 SI C. Mullon et al.



Km andKf (eq. SI.38) also depend on these fourteen probabiliƟes. As we show below, we can significantly reduce

the number of necessary probabiliƟes of sibships by approximaƟng the probabiliƟes of sibship of three individuals

Ξv♂w and Ξv
♀
w as funcƟons of the probabiliƟes of sibship of two individuals Θ♂

x and Θ
♀
x when we only consider

the first order effects of finite populaƟon sizeO(1/N).

The probability that three randomly sampled adult males have the same father is Ξ3♂3m = E◦[
∑Nm

i

(
Wm

mi
3

)
/
(
Nm
3

)
].

In the absence of phenotypic differences, eachmale has the same distribuƟon of reproducƟve output andΞ3♂3m =

1/((Nm− 1)(Nm− 2))E◦[Wm
mi

3− 3Wm
mi

2+2Wm
mi]. If we assume that the distribuƟon forWm

mi is sufficiently well-

behaved, and that the number of adult descendants of a male stays bounded as populaƟons size (N ) tends to

infinity (or that E◦[Wm
mi

x], x ≥ 0, remains bounded as N → ∞), we find that none of the terms in Ξ3♂3m are

of order 1/N or more, i.e. Ξ3♂3m = 0 + O(1/N2), so the probability that three randomly sampled adult males

have the same father can be approximated to being zero whenN is large. Similarly, we find that all probabiliƟes

of sibship three genes in the same individual are approximately zero, Ξ3♂x = Ξ3
♀
x = 0 + O(1/N2) for x ∈

{3m, 3f, 2m, 2f}.

Rather than calculaƟng Ξ2♂3m the probability that out of three males only two have the same father directly, it is

easier to consider the probability that out of three males, none have the same father. These two probabiliƟes are

related by 1− Ξ3♂3m − Ξ2♂3m = 1− Ξ2♂3m (since Ξ3♂3m = 0+O(1/N2)). The probability that out of three males,

none have the same father is given by the expected value of the raƟo of the number of ways three individuals

may be sampled from the male offspring of three different adult males to the number of ways of sampling three

males out of the enƟre male populaƟon 1−Ξ2♂3m = [
∑Nm

i,j,k W
m
miW

m
mjW

m
mk/
(
Nm
3

)
]i̸=j ̸=k ̸=i, which aŌer taking the

sum and denominator outside reduces to E◦[Wm
miW

m
mjW

m
mk]i̸=j ̸=k ̸=i. Again by assuming that the number of adult

descendants of a male stays bounded as populaƟons size tends to infinity, using the delta method (Oehlert 1992),

and observing that E◦[Wm
mi] = 1, we obtain 1− Ξ2♂3m = 1 + 3C◦

[
Wm

mi,W
m
mj

]
i̸=j

+O(1/N2).

The covariance term C◦
[
Wm

mi,W
m
mj

]
i̸=j

may be expressed in terms of Θ♂
m . The probability that two males do

not have the same father is, by definiƟon, 1 − Θ♂
m , but it is also given by E◦[

∑
i

∑
j ̸=i W

m
miW

m
mj/
(
Nm
2

)
] =

E◦[Wm
mi,W

m
mj ]i̸=j = C◦[Wm

miW
m
mj ]i̸=j + 1, so that C◦

[
Wm

mi,W
m
mj

]
i̸=j

= −Θ♂
m . Hence subsƟtuƟng back into

the probability that out of three males none have the same father, and solving for Ξ2♂3m, we obtain that the

probability that out of three males only two have the same father is

Ξ2♂3m = 3Θ♂
m +O(1/N2). (SI.40)

The remaining probabiliƟes can be derived by using the same argument, and that E◦[W f
mi] = Nf/Nm, produc-

ing

Ξ2♂3f = 3Θ♂
f +O(1/N2)

Ξ2♂2m =
2

3Nm
+

4

3
Θ♂

c +
1

3
Θ♂

m +O(1/N2)

Ξ2♂2f =
2

3

(
2

Nm
− 1

Nf

)
+

4

3
Θ♂

c +
1

3
Θ♂

f +O(1/N2).

(SI.41)
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By symmetry, we find that the probabiliƟes of sibship of three maternal genes are given to the order O(1/N)

by

Ξ2
♀
3m = 3Θ

♀
m +O(1/N2)

Ξ2
♀
3f = 3Θ

♀
f +O(1/N2)

Ξ2
♀
2m =

2

3

(
2

Nf
− 1

Nm

)
+

4

3
Θ♀

c +
1

3
Θ

♀
m +O(1/N2)

Ξ2
♀
2f =

2

3Nf
+

4

3
Θ♀

c +
1

3
Θ

♀
f +O(1/N2).

(SI.42)

So assuming the populaƟon is large, the iteraƟon of eq. (SI.18) over many generaƟons depends only on the six

probabiliƟes of sibships over two individuals, Θ♂
x andΘ

♀
x (x ∈ {m, c, f}).

Solving for Km and Kf in terms of the probabiliƟes of sibships of two individuals. Having expressed the eight

probabiliƟes of sibships of three individuals in terms of the probabiliƟes of sibships of two individuals Θu
v , the

matrixA◦ nowonly depends on these laƩer six probabiliƟes of sibships, and therefore, so doKm andKf (eq. SI.38).

Despite this simplificaƟon, solving explicitly forKm andKf sƟll requires inverƟng a 23x23matrix, (I− A◦ + Q◦)
−1,

which is computaƟonally expensive and unlikely to yield results easy to interpret. Numerical results for Km and

Kf with arbitrary dominance are shown in fig. 4.D of themain text. However, if h = 1/2, only the first nine entries

of pt are required to generate the expected frequency change over many generaƟons, and hence the probability

of fixaƟon. Thus, A◦ reduces to a 9×9matrix. In this case, (I− A◦ + Q◦)
−1 can be inverted analyƟcally, and using

(SI.38) with h = 1/2,Km andKf are as eq. (A.2) in the main text.

ProbabiliƟes of sibship of two individuals. The probability of fixaƟon of a mutant depends on the probabiliƟes

of sibship of two individuals in the resident populaƟon. Here, the probabiliƟes of sibship are expressed in terms

of the first (µ's) and second (ν and ρ) moments of the distribuƟon of offspring produced by a resident male and a

resident female to give table 1 of the main text.

The probability that two randomly sampled adult males have the same father, Θ♂
m , is given by the expected

value of the raƟo of the number of ways two individuals may be sampled from the number of adult males pro-

duced by each male, to the number of ways of sampling two males out of the enƟre male populaƟon, i.e.,

Θ♂
m = E◦[

∑Nm
i=1

(
Wm

mi
2

)
/
(
Nm
2

)
], where Wm

mi is the random variable for the number of male breeders produced

by male i. In the absence of phenotypic differences in the populaƟon, each male has the same distribuƟon for

their reproducƟve output, so the summay be taken out inΘ♂
m , and the subscript i now denotes a randomly sam-

pled male: 1/(Nm − 1) [V◦[Wm
mi] + E◦[Wm

mi](E
◦[Wm

mi]− 1)]. The expected number of male adults produced by a

male in the absence of phenotypic differences, E◦[Wm
mi] = 1, so the probability that two randomly sampled adult

males have the same father reduces toΘ♂
m = V◦[Wm

mi]/(Nm − 1). CondiƟoning on the number of male juveniles

produced in the populaƟon, and using the law of total variance, this gives

Θ♂
m =

1

Nm − 1

(
N2

mV
◦
[
Jm
mi

Jm

]
+ E◦ [V◦[Wm

mi|Jm
mi, Jm]]

)
. (SI.43)

The second variance term in eq. (SI.43) depends on how culling or regulaƟon is assumed to take place, which is
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assumed here to occur by sampling juveniles without replacement. In this case, Wm
mi follows a hypergeometric

distribuƟonwithNm draws and parameters given by the realizaƟon of Jmm, with iniƟal probability of success Jm
mi/Jm

and a total populaƟon size of Jm. Then, E◦[V◦[Wm
mi|Jm

mi, Jm]] = E◦[NmJ
m
mi(Jm − Jm

mi)(Jm −Nm)/(J
2
m(Jm − 1))].

Both variance terms in eq. (SI.43) are approximated omiƫng terms of order 1/N2 using the delta method. With

assumpƟon eq. (A.1) in the main text, the second variance term can be approximated as

1

Nm − 1
E◦
[
NmJ

m
mi(Jm − Jm

mi)(Jm −Nm)

J2
m(Jm − 1)

]
≈ E◦[Jm

mi]

E◦[Jm]
=

µm
mi

µm
T

=
1

Nm
. (SI.44)

Then, using the delta method with the variance operator, the first variance term in eq. (SI.43) is

N2
m

Nm − 1
V◦[

Jm
mi

Jm
] = Nm

V◦[Jm
mi]

E◦[Jm]2
+O(1/N2) = Nm

νm
mii

µm
T
2 +O(1/N2). (SI.45)

Finally, subsƟtuƟng eqs. (SI.44)(SI.45) into eq. (SI.43) gives Θ♂
m in table 1 of the main text. Using the same argu-

ment, we find a similar form for the probabiliƟes that two females have the father Θ♂
f , that two males have the

same motherΘ♀
m and that two females have the same motherΘ♀

f (see table 1 in the main text).

The probability that amale and a female have the same fatherΘ♂
c is given by E◦[

∑Nm
i=1 W

m
miW

f
mi/(NmNf)], where

W f
mi is the randomvariable for the number of female breeders produced bymale i. By condiƟoning on the juvenile

producƟon of every individual and using the assumpƟon that male and female offspring are culled independently,

we have Θ♂
c = NmE◦[Jm

miJ
f
mi/(JmJf)]. The delta method is used to approximate the laƩer. Then, expanding

about the means of Jm
mi, J

f
mi, Jm and Jf and using condiƟon eq. (A.1) in the main text, we have

Θ♂
c =

1

Nm
+Nm

C[Jm
mi, J

f
mi]

E[Jm]E[Jf]
=

1

Nm

(
1 +

ρm,f
mii

µm
miµ

f
mi

)
, (SI.46)

where ρm,f
mii = C[Jm

mi, J
f
mi] is the covariance between the number of male and offspring juveniles fathered by a

male. Using a similar argument, the probability that a male and a female have the same mother is found as in

table 1 of the main text.
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