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CORRECTING FOR SAMPLING BIAS IN QUANTITATIVE MEASURES OF SELECTION WHEN
FITNESS IS DISCRETE
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Abstract.—We show with a simulation that nonrepresentative sampling of two discrete fitness classes leads to biased
estimates of selection. Systematic underestimation occurs if the selected class is overrepresented in the sample and
overestimation if the unselected class is overrepresented. The bias is greater the stronger the selection intensity, the
smaller the true fraction of individuals favored by selected, and the lower the sample size. We present a simple method
that allows a posteriori statistical correction in cases of biased sampling given a separate estimate of the actual class
representation, describe its practical implementation, and show that it works.
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Natural selection is one of the primary mechanisms of
organismic evolution. Although selection had been studied
long before (see Manly 1985), two seminal papers by Lande
and Arnold (1983) and Arnold and Wade (1984a) defined a
standardized statistical machinery for measuring selection.
The major advance was threefold. First, these quantitative
measures of selection are closely linked with formal evolu-
tionary theory as found in standard textbooks of evolution
(e.g., Maynard Smith 1992) and quantitative genetics (e.g.,
Falconer 1989), and hence can be interpreted in these con-
texts. Second, the measures are typically standardized and
therefore comparable across fitness components, selection ep-
isodes, and even species. Third, they can be easily computed
using standard statistical packages. These methods have since
been refined and elaborated in several ways (Manly 1985;
Endler 1986; Mitchell-Olds and Shaw 1987; Schluter 1988;
Kingsolver and Smith 1995; Brodie and Janzen 1996; see
Brodie et al. 1995), and many studies have quantified selec-
tion and furthered our understanding of evolution in natural
systems.

Despite their overall success, quantitative measures of se-
lection are not without problems. As we shall elaborate be-
low, there are several different but related measures of se-
lection, and often regression of fitness on trait values is em-
ployed in their estimation (Lande and Arnold 1983; Arnold
and Wade 1984a,b; Brodie et al. 1995). One problem is that
the major fitness components estimated may take either dis-
crete (often binary) or continuous values. The former is fre-
quently the case for sexual selection, where a male may be
scored as having mated or not having mated with a small
number of females, and for viability selection, where indi-
viduals may be scored as dead or alive (Lande and Arnold
1983; Arnold and Wade 1984b; Brodie and Janzen 1996). In
contrast, fitness, in terms of number of offspring, is often a
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continuous function of a trait (e.g., fecundity or fertility se-
lection as a function of body size in bullfrogs; Howard 1979;
Arnold and Wade 1984b). Despite assertions by Lande and
Arnold (1983) and Arnold and Wade (1984b) that fitness need
not be normally distributed, the statistical assumptions of
least-squares regression used for its estimation may be vio-
lated if it is not (Mitchell-Olds and Shaw 1987), particularly
when fitness is binary. This problem is largely one of sig-
nificance testing as opposed to parameter estimation (Lande
and Arnold 1983; but see Mitchell-Olds and Shaw 1987) and
this has been extensively discussed (Lande and Arnold 1983;
Manly 1985; Endler 1986; Mitchell-Olds and Shaw 1987;
Kingsolver and Smith 1995; Brodie and Janzen 1996). The
consensus so far was succinctly stated by Brodie et al. (1995,
p- 318): ““Generalized linear models (e.g., logistic regression)
are more appropriate for some data sets than linear regression,
but the coefficients from such models are not yet interpretable
in the context of equations for evolutionary change.” There-
fore, researchers now often report selection coefficients de-
rived from ordinary least-squares regression, but supply sig-
nificances derived from logistic regression (e.g., Fairbairn
and Preziosi 1994) or using jackknifed standard errors (e.g.,
Brodie and Janzen 1996).

Sampling bias (nonrandom sampling) is a second problem
that potentially afflicts the measurement of selection (Manly
1985). This is particularly obvious when dealing with binary
fitness values in studies of viability or sexual selection. As
Arnold and Wade (1984b, p. 722) put it: “to accurately es-
timate the sexual selection differential from cross-sectional
data, it is essential to sample mated and unmated males in
proportion to their actual representation in the population. In
contrast, nonsystematic samples of the two fractions with
greater effort generally devoted to the rarer fraction often
suffice for hypothesis testing but not for parameter estima-
tion.” In other words, biased sampling leads to inaccurate
estimates, but has little bearing on significance testing. This
problem in measuring selection has thus far received much
less attention, perhaps because sampling classes of individ-
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uals (mated/unmated or alive/dead) in proportion to their ac-
tual occurrence is possible in several species (e.g., water
striders: Arnqvist 1992; Fairbairn and Preziosi 1994) and thus
believed to constitute no problem. This is not the case. In
many animal systems, different classes of individuals are not
equally accessible, for example, nonbreeding (as opposed to
breeding) birds or mammals that have no fixed site. Sampling
classes in proportion to their occurrence is then simply not
possible, ultimately precluding the use of quantitative selec-
tion measures. Furthermore, even when all classes are ac-
cessible, proportional sampling can be very restrictive when
population sizes are low because only few individuals of the
rarer class may be sampled, which impedes the quality of the
estimates and their statistical significance. Such situations
occur frequently when the entity relevant for reproductive
competition is not the population as a whole, for example,
an entire pond or stream (e.g., Howard 1979; Fairbairn and
Preziosi 1994), but instead particular mating sites like food
plants of hemipterans (McLain 1992; McLain et al. 1993),
oviposition sites of dung flies (i.e., a dung pat; e.g., Borgia
1982), or leks of vertebrates (see Andersson 1994), all of
which may feature relatively few individuals. In such cases
it would be desirable to sample as many individuals of the
rarer class as possible. However, it is usually easy to acquire
reasonable estimates of the proportional representation of the
typically two classes of individuals (mated/unmated and
breeders/nonbreeders). These can be obtained just prior to
sampling by simply counting the number of paired and un-
paired males at a particular mating site (e.g., a host plant or
a dung pat; Carroll and Salamon 1995; Blanckenhorn et al.
1999) or from separate behavioral observations or experi-
ments in cases where these proportions are reasonably con-
sistent over space and time (e.g., Zuk 1988). From separate,
more extensive mark-recapture or mark-resight datasets it
should also often be possible to acquire a more accurate
estimate of the proportion of dead individuals within a large
study population when estimating viability selection using a
smaller subsample (cf. examples in Lande and Arnold 1983
and Manly 1985).

Here we present and evaluate a simple method that allows
a posteriori statistical correction when sampling is biased, as
just outlined. We first derive our correction method and then
describe its practical implementation, which depends on the
statistical methods used to generate selection coefficients. We
then present the results of a simulation showing that the
correction works. The simulation also shows that Arnold and
Wade’s (1984b) abovecited, intuitive, but unsubstantiated as-
sertion is correct: biased sampling indeed leads to incorrect
estimates of selection coefficients, unless corrected as de-
scribed here. Our method is of importance primarily for the
practical aspects of measuring selection in nature.

CORRECTING SELECTION COEFFICIENTS FOR SAMPLING Bi1as
Coefficients of Selection

There are several quantitative measures of selection (listed
in Brodie et al. 1995), the most common being the oppor-
tunity for selection / (which shall not be further treated here),
the selection differential, and the selection gradient. These
coefficients are of different historical origin and can be com-
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puted in different ways, but they are intimately related math-
ematically (Wade and Arnold 1980; Lande and Arnold 1983;
Arnold and Wade 1984a,b; Endler 1986; Brodie et al. 1995;
see below). The selection differential S calculated on traits
standardized to a population mean of zero and a standard
deviation of one (Z-scores) is called the selection intensity i
(Endler 1986; Falconer 1989; Brodie et al. 1995). (Note that
there is another measure with that name; Schluter 1988; Bro-
die et al. 1995.) In the univariate case, when selection on
only one standardized trait is considered, the selection dif-
ferential, the selection intensity, and the selection gradient
are all identical (Endler 1986; Brodie et al. 1995). In general,
these coefficients can serve to estimate linear (directional),
nonlinear (disruptive or stabilizing), and correlational (in the
multivariate case) components of selection (Lande and Ar-
nold 1983; Arnold and Wade 1984a,b; Brodie et al. 1995).

The Z-Score Method

Restricting ourselves to the univariate linear case for the
moment, the selection differential S can be defined as the
difference in trait means before and after selection, describing
the total change in the mean phenotype within a generation
(Brodie et al. 1995). This is the definition common in text-
books of quantitative genetics and evolution (Falconer 1989;
Maynard Smith 1992). If the trait is standardized, as should
be generally the case, the selection differential of a contin-
uous trait x is

Xger — Xpop

SDpop

S=i=1Zsel — Zppp = Zsyy = (1)
because the standardized population mean Zpop by definition
is zero. We refer to this method of calculation as the Z-score
method, as opposed to the regression method described be-
low. This simple calculation method can only be applied if
one indeed can identify a selected (and an unselected) group
of individuals, for example, alive or mated individuals as
opposed to dead or unmated ones. If we have such a sample
of M = 2 discrete fitness classes with a fraction p of the
individuals belonging to the selected group, the population trait
mean can easily be expressed as the weighted or stratified mean
of the trait means of the selected and unselected groups as

M=2
xpop = E PioX;i =PprXg T (1 - p)'xunseh (2)

i=1

(the p; sum to one) with the population variance being

Varpop

M=2 M=2
2‘1 pi'Vari+ 21 pi'(’fi"-x“pop)2
i= iz

i

p-Varg + (1 — p)- Var s + P (Fger — Xpop)z

+ (1 - P) ' (-funsel - xpop)z- (33)
Substituting equation (2) in (3) and rearranging yields
Varpop =p-Varg + (1 - D) Varunsel )
+p- a- P) : (xsel - funxel)z- (3b)

Just as in analysis of variance, the population variance can
be partitioned as the sum of the weighted variances of the
individual groups plus the weighted between-group variance.
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Substituting equations (2) and (3b) into (1) and rearranging
yields a formula for the selection differential that is a function
only of the proportion of selected individuals p and the means
and variances of the selected and unselected groups:

- (1 _ P) . (xsel — xunsel)
SD o
— (1 — P) i (xsel - x-unsel)
\/p Varsel +(1 - P) Varunsel +p (1- P) (-f.rel - xllrzsel)z

4)

This argument and the correction generalize to cases with M
= 2 fitness classes, but this is the rarer case (cf. Brodie and
Janzen 1996).

Now suppose we obtained a biased sample containing a
nonrepresentative fraction of individuals belonging to the
selected group p, but we have a separate, more accurate es-
timate of that fraction, p*. As we shall show with our sim-
ulation below, using p in equation (4) to calculate S, which
is what statistical packages with automated Z-score calcu-
lation would perform, will yield a biased estimate; but using
p* instead would correct for this bias. Zuk (1988) had used
a similar correction but this remained largely unnoticed. It
is practical to use equation (3b) instead of (3a) for calculation
of the corrected $* because equation (2) shows that the pop-
ulation mean changes when p* is substituted, whereas the
group means remain the same.

S=1i

The Regression Method

In the majority of cases, selection coefficients are calcu-
lated using regression. This method is more general and
equally easy to implement with standard statistical packages.
Fitness may be discrete or continuously distributed, and both
linear and nonlinear selection coefficients can be estimated
for univariate and multivariate datasets (Lande and Arnold
1983; Arnold and Wade 1984a,b). Our correction should
therefore also work for selection coefficients calculated using
regression. Again, we treat the univariate linear case without
loss of generality.

A second definition of the linear selection differential S
(and i) is the covariance between relative fitness and the
standardized trait,

a _ Wx—x
S=i=COV(w, 7) = COV(W’ SD(x))

_ COV(W, x)

 W-SD(x) v

where relative fitness w is absolute fitness W divided by mean
fitness W, and z is the standardized trait x (Lande and Arnold
1983; Arnold and Wade 1984a,b; Brodie et al. 1995). This
directly relates to the regression coefficient b, the general
formula for which is

COV(y, x) COV(y, x)
SD2(x) Var(x)
For standardized trait values z, the regression coefficient

equals the covariance because the variance Var(z) = SD?(z)
is one.

b(y, x) = ©6)
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Returning to our case of two groups of individuals of which
p are in the selected group, we in the simplest case (and
typically) assign the absolute fitnesses W,,; = 1 and W,
= 0; mean fitness W then equals p and the corresponding
relative fitnesses are 1/p and zero (Brodie and Janzen 1996).
Using equation (5) and the familiar theorem for the covari-
ance (e.g., DeGroot 1986, p. 215), the covariance definition
of § indeed turns out to be identical to that given by equation

(1):
COVW, x) _ E(W-x) — E(W)-E()

It

COV(w, 2)

p-SD(x) p-SD(x)
_ D Xy — P 'fpop — Xger — fpop (7)
p-SD(x) SD(x) ’

where SD(x) = SD,.p- If, as above, we have a sample con-
taining a nonrepresentative fraction of individuals belonging
to the selected group p and a more accurate estimate of that
fraction p*, the regression (and selection) coefficient is bi-
ased. When regressing relative fitness w on the standardized
trait z based on the actual data, we obtain from equation (4)

(1 - 128 (x_sel - Xunsel)

b A = — s
wz2==S SD,,, (8a)
whereas we are interested in
(1 - P*) - (xsel _ -funsel)
b*w, ) = S* = s 8b
w, 2) SDz,, (8b)

where the asterisks denote the population mean and variance
corrected according to equations (2) and (3). Solving equation
(8a) for (f,5; — X,u5e1), which is the stable entity, and substi-
tuting into equation (8b) and rearranging yields the corrected
regression coefficient b* as a function of the biased regression
coefficient b = S, the sample and corrected population stan-
dard deviations, and the actual and estimated fractions p and
p*:

bt = S* = Q.__.p.i).S_D_Pﬂ.b.
a- P) SD;{op

Consequently, after calculating the regression coefficient
with a statistical package using the actual, nonrepresentative
dataset, the corrected value b* = S$* can be easily obtained
using equation (8c). In the univariate case b* is identical to
the corrected linear selection gradient B* and the selection
intensity i*. Following Lande and Arnold (1983), this cor-
rection directly extends to multivariate studies of selection,
where the partial regression coefficients from multiple re-
gression are the linear selection gradients 3.

The correction formulas for the nonlinear and the corre-
lational selection differentials can be derived analogously
from the formulas given in Brodie et al. (1995). The uni-
variate nonlinear (quadratic) selection coefficient is

(80)

Var (x:el )

C = Var(ze) — Var(z,,,) + S2 = - 1+S2, (9a)

varop
and, because Var(z,,,) = 1, the corrected coefficient becomes

Var,,
C* = —E2(C+1-82) -1+ §%2.

%
Var},,

(9b)
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The bivariate nonlinear (correlational) selection coefficient
for two variables x and y is

Cx,y = COV[z(X)ses Z()’)sez] - COV[Z(x)pop’ Z(y)pop] +S,- Sy

COV(xsel’ ysel) _

+S
SD,-SD, '™

S (10a)

X y?

and, because COV[z(x)p0p, Z(V)popl = 7,y (the Pearson product-
moment correlation coefficient), the corrected coefficient be-
comes

C¥. = SD.- 8D,

** = SD%- SDy (Coy + 1y

~ 8,-8,) —

Fry

+ §%.8%. (10b)
The asterisks again denote the corrected parameters. This
correction also extends to the nonlinear selection gradients
8 derived using multiple regression (Lande and Arnold 1983;
Brodie et al. 1995).

Having established an a posteriori correction for quanti-
tative measures of selection in case of biased sampling, we
now use a simulation to show that this correction works.

SIMULATION METHODS

The simulation mimicked a population of individuals under
directional selection for one continuous trait that influences
an individual’s chance of being mated. The program sampled
from a total population of 400 individuals whose trait values
were normally distributed with a mean of zero and a standard
deviation of one. Of those, either 200 (50%), 100 (25%), or
40 (10%) individuals were randomly sampled to study the
effect of sample size N on the selection coefficients obtained.
Each replicate run generated an independent population of N
individuals consisting of two subpopulations of selected and
unselected individuals. For this purpose, all individuals were
ranked in descending order of their trait values and then
assigned to the selected (as opposed to the unselected) group
with a probability decreasing linearly with rank. The slope
of this probability function could be changed to simulate
different expected selection intensities at any given number
of individuals belonging to the selected and unselected
groups. We simulated a range of selection differentials S (=
intensities /) commonly measured in nature (Endler 1986):
0.05, 0.2, and 0.5.

The parameter crucial to evaluating the correction method
is the fraction p of individuals that belong to the selected
group (see previous section). We simulated three such frac-
tions spanning a range that should be common in nature: Y,
Y4, and Y. For each replicate run within a treatment com-
bination, we took two independent samples of the same total
sample size N to compare the representative (unbiased ac-
cording to Arnold and Wade 1984b) and the nonrepresen-
tative (biased) sampling methods. For the representative
method, the numbers of individuals belonging to the selected
and unselected groups were sampled in proportion to the
fraction p simulated. For the nonrepresentative method, we
took samples of about equal numbers of individuals belong-
ing to the selected and unselected groups. So as to not always
sample the exact same number of individuals in the selected
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group for a given total sample size N, the fraction of N as-
signed to the selected group was actually a random variable
with a mean of 0.5 * 0.125 (range).

Our design was thus a three S by three N by three p factorial
design with two sets of 100 (independent) replicate simu-
lation runs for each treatment combination that served to
compare the two different sampling methods. This sample
size per treatment combination was chosen to simulate a typ-
ical sample size obtainable in nature. For each simulation
run § was calculated using the Z-score method, that is, equa-
tion (4) above. In the case of representative sampling, p was
the “true’ fraction sampled, that is, %, %, or Y. In the case
of nonrepresentative sampling, we used the nonrepresentative
fraction p actually sampled to calculate (a biased) S, but we
also calculated a corrected S* by substituting the “‘true’’ frac-
tion p* of Y, Y, or Y. The program was written in C and
performed on a UNIX system. The code is available upon
request from MR.

SIMULATION RESULTS

The 2 X 2700 values of S and S* obtained by simulation
ranged from —1.18 to +1.38. This spans the bulk of the
values typically measured in nature (Endler 1986). When
using representative sampling, the selection differential es-
timates obtained did not differ from the ‘“‘true” S we at-
tempted to simulate (Fig. 1A; Table,1A). This shows that our
simulation worked.

When sampling was nonrepresentative, that is, when the
fraction of the rarer, in this case the selected group, was
overrepresented, the “true”” S was underestimated in a way
that seems intuitive: The bias was stronger the higher the
“true” selection differential, the smaller the fraction of se-
lected individuals, and the lower the sample size (Fig. 1B),
which resulted in significant effects of nearly all factor com-
binations tested in an analysis of variance (Table 1B). This
proves Arnold and Wade’s (1984b) abovecited assertion cor-
rect. However, when the values obtained in Figure 1B were
corrected as described above using our accurate estimate of
p*, this bias disappeared: The corrected values of S were not
different from those simulated and therefore statistically in-
distinguishable from those obtained when sampling was rep-
resentative (Fig. 1C; Table 1C). The correction appears to
work equally well for all three sample sizes N tested, so there
is little reason to suppose it would not also work for sample
sizes less than 40, though we did not specifically test this.

DiscussioN

As pointed out by Arnold and Wade (1984b) and dem-
onstrated by simulation here, sampling bias leads to biased
estimates of selection coefficients. This is particularly true
when fitness classes are binary or, more generally, few and
discrete, as is often the case when studying sexual or viability
selection. This bias is predictable (i.e., directional). When
the individuals favored by selection are the rare class, as is
more typically the case in sexual selection, and greater sam-
pling effort is invested in obtaining them so that this class
is overrepresented in the sample, selection coefficients will
generally be underestimated. The underestimate is greater the
stronger the selection intensity, the smaller the true fraction
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$=0.05 S$=0.20 S$=0.50 TABLE 1. Analysis of variance results for the deviation of the
p= = p= obtained selection differential from that simulated, as depicted in
0.10 116 1/4 1/2 16 1/4 1/2 1/6 14 1/2 Figure 1.
] i; Variable MS F P
0'05-: A. Representative sample
] E ll E E E[ S 2 0.070 1.955 0.142
-0.00 p 2 0.060 1.659 0.191
3 }_l N 2 0.010 0.290 0.749
' Sbyp 4 0.019 0.523 0.719
-0.05 1 Sby N 4 0031 0.860 0.487
_ ] pby N 4 0.056 1.559 0.183
& -0.107 SbypbyN 8 0.026 0.719 0.675
s Residual 2673 0.036
¢  .0.151 B. Nonrepresentative sample: not corrected
9 A s 2 1.605 92.667 <0.001
= 0201 p 2 1.347 77.811 <0.001
© N 2 0.254 14.684 <0.001
Sbyp 4 0.383 22.143 <0.001
g 0.107 Sby N 4 0.068 3.919 0.004
= ] pby N 4 0.151 8.735 <0.001
S 0057 Sbypby N 8 0032 1.835 0.066
< _} Residual 2673 0.017
9% 0.00 _ -I- _F T C. Nonrepresentative sample: corrected
- ] F S 2 0.001 0.049 0.952
@ h P 2 0.056 2.124 0.120
w0057 F I N 2 0.030 1.146 0.318
5 ] % Sbyp 4 0.042 1.607 0.170
2 0101 ¥ Sby N 4 0025 0.952 0.433
v 1 pby N 4 0.019 0.737 0.567
@ ] % SbypbyN 8 0.038 1.460 0.167
& 0151 5 i Residual 2673 0.026
2 020
S 0.10 of those alive are sampled (cf. examples in Lande and Arnold
= 1983).
© 0.051 In any case, we have offered a method that permits a pos-
5 T ]E} E { teriori statistical correction of such sampling bias. All that
a : I& # l it requires is an additional good estimate of the true repre-
-0.00 ] ‘f I f‘ sentation of the different fitness classes in nature. Such an
] estimate may be obtained from separate studies or from the
'0'05-: same study using different methods (Zuk 1988; Carroll and
] Salamon 1995; Blanckenhorn et al. 1999); sampling may
'0'10': thereafter proceed freely and unconstrained. As pointed out
] in the introduction, the major advantages of our correction
-0.15 B are that sampling without restriction is easier to carry out in
1C the field, the problem of accessibility of different classes is
-0.20

Fig. 1. Mean (= SE) deviation of the selection differential S ob-
tained from that simulated for three different simulated S, three
fractions p of individuals in the selected group, and three sample
sizes N of 40, 100, and 200 (from left to right in every group of
three): (A) representative sample; (B) nonrepresentative sample, not
corrected; and (C) nonrepresentative sample, corrected.

of individuals favored by selection, and the lower the sample
size. By extension, the converse case, where the individuals
favored by selection are the common class and may be un-
derrepresented in a sample relative to those not favored, leads
to overestimates of selection coefficients. This case may be
rarer in nature but may occur in studies of viability selection
when most or all individuals that died but only a subsample

circumvented, and it maximizes sample size in situations of
low population densities. The correction is easy to implement
after having calculated the selection coefficients with either
method. To do this, the somewhat cumbersome equations are
best entered in a spreadsheet.

Once again, we stress that our correction does not affect
the significance level of the selection coefficient (Arnold and
Wade 1984b), whether it be determined with one-sample #-
tests (in case of the Z-score method) or regression. Qur cor-
rection also does not bear upon the issue of whether least-
squares regression is the appropriate statistical technique to
generate selection coefficients and to test for their signifi-
cance (Lande and Arnold 1983; Manly 1985; Endler 1986;
Mitchell-Olds and Shaw 1987; Fairbairn and Preziosi 1994;
Brodie et al. 1995; Kingsolver and Smith 1995; Brodie and
Janzen 1996) or on the issue of which of several possible
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numerical fitness values are best assigned if fitness classes
are discrete (Brodie and Janzen 1996). However, our correc-
tion does accommodate cases with more than two discrete
fitness classes (Brodie and Janzen 1996) and can therefore
be useful for a wide range of conditions likely to be en-
countered in the field.
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