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Abstract
Whole-brain structural connectivity matrices extracted from Diffusion
Weighted Images (DWI) is a systematic way of representing anatomical brain
networks. They are equivalent to weighted graphs that encode both the
topology of the network as well as the strength of connection between each
pair of regions of interest (ROIs). These matrices contain a significant amount
of information for each subject that remains unexplored. In this work, we
investigate whether connectivity matrices derived from ROIs with atlas-based
parcellation and further sub-parcellations exhibit hierarchical organization.
Furthermore, we exploit this topological property to enhance the
classification performance in age and gender paradigms. Our results suggest
that in DWI of 64-directions hierarchical organization can be exploited to
improve classification. However, hierarchical organization in structural brain
networks is confounded by atlas-based ROIs with uneven volumes. The low
angular resolution of DWI in 15 non-collinear directions can also limit the
ability to detect hierarchy in structural networks. Nevertheless, our results
show that the topology of these brain networks encodes adequate information
to characterize the age and gender of each subject. In our results, both gender
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and age classification relays on the topology of the network, whereas

connectional strength has a minor role.

Keywords: brain connectivity, hierarchical organization, age classification, gender
classification, brain network organization.

1 Introduction

Disruption in cortical connectivity has been implicated in a number of disorders and
pathologies, such as schizophrenia [Burns, 2004], ADHD [Konrad and Eickhoff, 2010],
autism [Miiller, 2007], brain trauma [Kou et al., 2010, Pollonini et al., 2010] and so on. As a
result there is a shift of research attention from localised brain abnormalities to
dysfunction in network organization. Therefore, the investigation of structural brain
connectivity, network topology and dynamics have become critical.

Anatomical brain connectivity refers to the existence of axonal connections between
two brain areas. In non-human primates, it has been investigated extensively with the use
of invasive tracing [Modha and Singh, 2010]. Typically, the extracted networks consist of
regions located in gray matter that are hierarchically organized via axonal connections
through white matter. Gray matter mostly consists of neuronal cell bodies, whereas white
matter contains myelinated axons. This organization results in a small world topology
with highly interconnected hubs and modularity both in a cellular and neuroimaging
scale. With the advent of Diffusion Tensor Imaging (DTI), information regarding local
connectivity is obtained non-invasively. Reconstructing and quantifying neuronal
pathways based on this information remains a considerable challenge.

Diffusion Weighted MR Images (DWI) measure the mobility of brain water molecules
in vivo [Beaulieu, 2002, Le Bihan et al., 2001]. Most MR visible water is enclosed within
neuronal axons. With DWI diffusion anisotropy effects can be fully extracted and
characterized, providing useful information about tissue microstructure. Structures such
as myelin sheaths, axonal membranes, and micro-filaments cause the water diffusion to be
slower perpendicular to axons than parallel to them. Within tissue with an oriented
structure, such as white matter, the diffusion of water is higher in the direction of the fiber
tracts. This directional dependence of water diffusion is called diffusion anisotropy.
Diffusion anisotropy is thought to be partially correlated with barriers presented by axonal
membranes and nerve myelination. Diffusion Tensor Imaging (DTI) exploits this property
to estimate a vector field that represents the direction and the strength of anisotropy in
each voxel.

There is an inherent complexity of connecting this directional information of each
voxel and reproducing the neuronal pathways. These limitations originate from the fact
that DTI is a macroscopic technique utilised to infer microscopic tissue properties.
Furthermore, tracking accuracy may be affected by the background noise and partial
volume effects in the raw images. Currently, there are several techniques to reconstruct
fiber tracts [Behrens et al., 2003b, Mori and van Zijl, 2002]. Among the most successful is
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probabilistic tractography, which utilises a probabilistic framework to propagate local
probability density functions on parameters in the diffusion model. Unlike other
techniques, probabilistic tractography has been successfully used to extend fiber tracking
even in gray matter [Behrens et al., 2003a, Lazar and Alexander, 2005, Parker and Haroon,
2003].

In probabilistic tractography a number of connections emerge that may or may not
represent real fibers. It is important to understand that in a probabilistic framework, such
as FSL [Behrens et al., 2003b], it is not straightforward to interpret probability. This is
because it does not depend only on the likelihood of two brain areas to be connected but
also on the uncertainty in the DWI data as well as the volume of the underlying ROIs
[Robinson et al., 2008, Robinson et al., 2010]. Therefore, distance between ROIs and noise
affects its values and prohibits comparisons across subjects and different populations.
Recent techniques have been developed to model whole-brain connectivity and to assign a
connectional strength between two brain regions based on measurements of diffusion
anisotropy [Iturria-Medina and Canales-Rodriguez, 2007, Robinson et al., 2008].

Whole-brain structural networks carry a vast amount of information that it is hugely
unexplored. Robinson et al. demonstrated that age classification can be performed with
high accuracy based on whole-brain structural networks derived from diffusion tensor
images [Robinson et al., 2010]. Their results are indicative of how informative whole-brain
networks are about an individual. In their approach, they used a combined 83 ROIs atlas-
based segmentation and soft-tissue segmentation to extract gray matter ROIs. Probabilistic
tractography was employed to identify the tracts that connect each pair of regions.
Connectivity was characterized based on localized measures of fractional anisotropy,
which has been shown to be an indicator of fiber integrity and packing. Therefore, the
regions’ size has limited influence on connectivity characterization compared to
probability measures. Gong et al. explored age and gender differences on the structural
connectivity patterns derived from DWI [Gong et al., 2009]. Changes in the degree of local
and global efficiency have been identified in anatomical networks derived based on a 78
ROIs cortical parcellation and probabilistic tractography.

Here we are interested in the hierarchical organization of these networks. Anatomical
brain networks exhibit hierarchical organization starting from global systems of networks
and ending in columnar subdivisions within these areas [Bullmore and Sporns, 2009,
Golland et al., 2008, Salvador et al., 2005]. However, it is unclear whether this organization
is maintained under different parcellations and scales in neuro-imaging studies. Zalesky et
al. demonstrated that scale in brain networks can have a significant effect on their
topological properties, such as small world, clustering and so on [Zalesky et al., 2010].
Furthermore, in probabilistic tractography a number of connections emerge that may or
may not represent real fibers. Can we exploit the hierarchical organization of brain
networks to redefine and eventually refine whole-brain connectivity matrices?

We propose inferring hierarchical structures from the observed anatomical
connectivity with a technique that has been developed recently and has been tested in both
biological and social networks [Clauset et al., 2008]. This technique uses statistical
inference with Markov Chain Monte Carlo (MCMC) sampling algorithm to derive
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Figure 1: Whole-brain connectivity matrix for a subject. It has been extracted from a subject
based on DWI in 64 directions and Robinson et al. methodology in estimating connectivity
strength [Robinson et al., 2010]. This shows direct structural connections between each
pair of cortical regions. The colormap reflects the strength of each connection with deep
blue representing the absence of a structural connection between two regions. Regions of
interest (ROIs) are plotted by cerebral hemispheres, with right-hemispheric ROIs in the
lower left quadrant, left-hemispheric ROIs in the top right quadrant, and inter-
hemispheric connections in the upper left and lower right quadrants.

hierarchical models, also called dendrograms, with probability proportional to the
likelihood that they generate the observed network. Based on this approach a consensus
dendrogram can be build that contains only the dendrogram’s features that appear in the
majority of the sampled models. This model allows the assignment of a probability for
each connection that reflects the confidence in its existence based on the whole-brain
network topology and the assumption that it is hierarchically organized. Spurious as well
as missing connections can be identified based on their probability.

We use this methodology to analyze whole-brain connectivity matrices derived from a
number of different sub-parcellations. A sub-parcellation strategy has been developed to
subdivide each atlas-based ROI in sub-regions surrounded by a relatively equal portion of
white matter voxels and an indicative number of voxels per area. We assume that
improvement in the classification performance when whole-brain connectivity matrices
are derived based on the MCMC algorithm reflects the hierarchical organization of the
underlying network. We apply our approach in two paradigms of age (DWI in 15-
directions) and gender (DWI in 15-directions and 64-directions) classification and we
compare the performance of classification with and without the application of the
hierarchical algorithm.
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2 Materials and Methods

2.1 Whole-bram connectivity - Overview

Atlas-based Segmentation

30 manually
segmented i
Non-rigid Fused :
Registration Segmentation [ Ittt “
subjects b 1,
| Mtvespece |
j 2009, A |

Soft-tissue Segmentation N
. DTI [
Gray-matter o ROIs H

I White-matter I ;

I CSF I

Figure 2: The combination of atlas-based segmentatlon and soft-tissue segmentation
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allows the delineation of anatomically sensible ROIs in gray matter. Atlas-based
segmentation is based on established work [Aljabar et al., 2009], where 30 manually
segmentations are propagated to the new subjects by non-rigid registration. SPM has been
used for soft-tissue segmentation [J. Friston, 2007].

A structural connectivity matrix is a compact and systematic way to represent a brain
network. In Figure 1, we show an example of a connectivity matrix extracted from a
subject based on DWI in 64 directions and Robinson et al. methodology in estimating
connectivity strength [Robinson et al.,, 2010]. This shows direct structural connections
between each pair of cortical regions. Regions of interest (ROIs) are plotted by cerebral
hemispheres, with right-hemispheric ROIs in the lower left quadrant, left-hemispheric
ROIs in the top right quadrant, and inter-hemispheric connections in the upper left and
lower right quadrants. The exact permutation of the ROIs follows established work in
literature [Hagmann et al., 2008].

In this section, we provide an overview of how we extract whole-brain connectivity
matrices from DWI. Firstly, we preprocess the DWI as well as the structural T1 images for
each subject. This is followed by defining ROIs based on an 83-ROIs atlas-based
segmentation, combined with soft-tissue segmentation. Based on these 83 ROIs a number
of sub-parcellations can be obtained by subdividing each of these regions in sub-regions
with equal number of voxels. Finally, an adapted framework of probabilistic tractography
is employed to recover tracts between each pair of region and assign a weight that
characterizes the strength of the connection.
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2.2 Preprocessing

FSL was the main tool for image pre-processing of DWI [Smith et al., 2004]. This involved
eddy current correction of DWI and brain extraction. Brain extraction was manually
refined later. Bias correction was applied to T1 and B0 images to improve the robustness of
the non-rigid registration tools [Rueckert et al., 1999]. Intra-subject registration is usually
accurate since both T1 and B0 have the exact same anatomy. However, we found that non-
homogeneities of the 3T magnetic field can cause severe intensity bias in both T1s and B0s,
which results in higher registration errors. For this reason we used bias correction for both
T1s [Friston, 2007] and BOs [Sled et al., 1998]. The application of non-rigid registration is a
major advantage of our methodology. Inter-subject label correspondence relies on accurate
estimation of brain regions in diffusion space. Furthermore, fiber tracking is more reliable
in white matter than gray matter. Therefore, it is critical to achieve highly accurate intra-
subject registration between T1 and diffusion space (B0) that guarantees gray/white matter
correspondence. Due to the 3T spatial distortions of diffusion imaging, affine registration
is inadequate. Bias correction removed instabilities in the registration performance and
allowed highly accurate and fully automated registration. We verified that the automatic
atlas-based segmentation and transformation to native space was successful for all subject.

2.3 Brain Graphs Construction

Brain network construction was based on the fusion of atlas based segmentation and soft-
tissue segmentation Figure 2. This facilitated the extraction of atlas-based ROIs that are
located in gray-matter. Firstly, label propagation based on multiple atlases was used to
segment each T1 image into 83 cortical and sub-cortical regions [Aljabar et al., 2009,
Heckemann et al., 2006]. This is a highly accurate, automated approach that uses non-rigid
registration [Rueckert et al., 1999] to propagate segmentation from 30 manually segmented
images to new individuals. We utilized a state-of-the-art segmentation that selects the
manual segmented images with the highest similarity to the new subject in order to
achieve the best possible sub-folds/gyrus correspondence [Aljabar et al., 2007]. Atlas-based
segmentation approaches are based on anatomical landmarks and they do not explicitly
guarantee consistent underlying connectivity. However, they have been extensively used
to define regions for the estimation of both structural and functional connectivity
[Hagmann et al., 2008, Honey et al., 2009]. Compared to voxel-based approaches they do
not require explicit inter-subject registration and they allow characterization of
connectivity in native space. Recent work shows high reproducibility of structural
connectivity matrices produced based on atlas-based segmentation [Cammoun et al.,
2012]. Robustness has been demonstrated based on scanning data from the same subject as
well as across subjects.

Neuronal activation is profound in gray matter, while DTI is more reliable in
delineating white matter fibers [Koch et al., 2002]. Hence, probabilistic tissue segmentation
was performed with SPM to classify gray matter, white matter and cerebrospinal fluid
(CSF) [Friston, 2007]. Subsequently, atlas-based and tissue-based segmentation was fused
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to provide the final ROIs in native space. Segmentations were transformed to diffusion
space with non-rigid registration [Rueckert et al., 1999].

2.4 Sub-Parcellation of ROIs
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Figure 3: Axial, sagittal and coronal views of the original 83-ROIs parcellation as well as
the four sub-parcellations in 243, 295, 381 and 564 ROIs. The sub-parcellations are
produced based on the original 83-ROIs parcellation with the methodology that it has been
described in details in section 2.4.

To sub-parcellate the 83 segmented ROIs, Figure 3, we transformed the segmentations
from diffusion space into standard (MNI) space with affine registration. We counted the
voxels within each region and across subjects and we predefined the number of sub-areas
based on an indicative number of voxels per area. Each area was sub-divided in a number
of regions, according to the average number of voxels across subjects divided by the
indicative size and rounded to the closest integer. Subsequently, we extracted the
boundary voxels of each ROI with white matter and we applied eigen-decomposition of
the covariance matrix to define the plane that these points lay. The coordinates of each
voxel in the ROI were projected on the first eigen-vector so that we could sub-divide them
based on their projected position. Finally, they were subdivided into the predefined
number of sub-regions so that each sub-region has equal number of voxels (+1). This way
guarantees that all sub-regions within the original ROI are surrounded with relatively
equal number of white matter voxels. Therefore, tracts between each sub-region and the
rest ROIs can be identified.

2.5 Extraction of Structural Networks

Here, tracts between regions are identified using a standard probabilistic algorithm
available as part of FSL [Behrens et al., 2003b, Smith et al., 2004]. However, we estimate the
local diffusion anisotropy by determining the diffusive transfer between voxels using the
orientation distribution function (ODF) [Iturria-Medina and Canales-Rodriguez, 2007,
Robinson et al., 2010]. Note that the local diffusion anisotropy reflects changes in
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myelination, fiber density and packing [Madler et al., 2008]. For these reasons it has been
used to quantify structural integrity in developmental, ageing and neurodegenerative
studies [Kochunov et al., 2007, McKinstry et al., 2002, O'Sullivan et al., 2001]. In this
framework, connectional strength can be compared across subjects and different
populations.

2.6 From Brain Graphs to Hierarchical Random Graphs
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Figure 4: From graphs to dendrograms. a) An example graph with six nodes. b) Possible
re-arrangements of a randomly chosen sub-tree during sampling. Once a random node is
chosen (red circle), any of its children can exchange position with the parent node. c) A
random dendrogram with leaves the nodes of the graph a) and five internal nodes. This
can be the starting point of the MCMC algorithm. The numbers for each internal node of
the dendrogram correspond to the probability p, Eq. (1) and the intermediate terms in the
product of Eq. (2) (black and red font respectively). d-e) Two examples of dendrograms
that maximizes the likelihood Eq. (2) to represent the data in graph a). Note that re-
arrangements of the nodes a,b,c or the nodes d,e,f within their sub-trees will not change
the overall likelihood of the dendrogram.

In networks with hierarchical organization, nodes are subdivided into groups that are
further subdivided into more groups and so forth over multiple scales. In brain networks,
this implies that connections are dense within groups of areas and sparse between them.
Clauset et al. showed that this property alone is able to explain both qualitatively and
quantitatively a number of topological and statistical properties of the original graph, such
as their degree distribution, clustering coefficient, distribution of shortest path lengths
between pairs of vertices and so on [Clauset et al., 2008]. Their approach offers two major
strengths: Firstly, it can capture both clusters of nodes, assortative, and disassociated
nodes, disassortative structures, as well as arbitrary mixtures of the two, at all scales and
parts of the network. Secondly, it does not depend on one hierarchical model but it
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generates a series of hierarchical models, dendrograms, and samples along them to create
a consensus dendrogram that expresses the network’s topology.

Let represent a structural brain network as a graph G with n nodes. The observed
network data can be fitted to a random binary dendrogram based on a Monte Carlo
sampling algorithm over a maximum-likelihood approach. A binary dendrogram has n
leaves corresponding to the n nodes of the graph G, Figure 4a and each of the n—1
internal nodes has exactly two descendants, Figure 4(c-e). Each internal node r is
associated with a probability p,.. Under a maximume-likelihood approach the probability p,
is estimated as the fraction of edges between the two sub-trees:

_ E,
Pr=14

(1)

Where E, are the edges between left and right sub-trees and L, and R, are the number of
nodes in left and right sub-tree, respectively. The likelihood of the dendrogram at this
maximum is given below:

L(D) = Myep [P (1 — p)tPr] "™

(2)
The overall likelihood of the dendrogram reflects how well the dendrogram fits the graph
data under the assumption that the original graph has hierarchical organization. Here we
used the logarithm of the likelihood to avoid numerical instabilities due to very small
numbers.

logL(D) = - ZrED LrRrh(p_r) (3)

Where h is the Gibbs-Shannon entropy function for a binary system: h(p) = —plogp —
(1 —p)log(1 — p). From this equation, we note that dendrogram with high probability are
those that partition the vertices into groups that are either very well interconnected or
disconnected.

Subsequently, the Markov Chain Monte Carlo (MCMC) method is used to sample
dendrograms with probability proportional to their likelihood. In a Monte Carlo
simulation, it is important to generate an appropriate random set of states according to
Boltzmann probability distribution. A Markov process is the generating engine of this set.
According to this process the probability from one state u to another v depends only on
steps u and v. This Markov process should follow certain conditions. For example, it
should be possible to reach any state of the system from any other. Here, the Markov chain
consists of re-arrangements of subtrees of the dendrogram as shown in Figure 3b. An
internal node r is chosen with a uniform random distribution. Subsequently, any of the
two configurations can apply at random to transform the dendrogram to a new state. This
state is accepted or rejected according to the Metropolis-Hasting rules. According to this a
transition between two dendrograms D — D is accepted either if the dendrogram D has
higher likelihood than D or with probability equal to the ratio of their likelihoods:
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exp(logAL) = L(D)/L(D) (4)

These rules guarantee detailed balance, which implies that the system will reach
equilibrium. Equilibrium is defined as the condition where the rate at which the system
makes transitions into and out of any state must be equal. The condition of detailed
balance also guarantees that the MCMC is not trapped into a limit cycle, in which the
probability distribution rotates around a number of different values, dynamic equilibrium.
MCMC is commonly used in the context of Bayesian statistics along with a uniform prior
distribution. In our work, specification of a uniform prior distribution on the space of
dendrograms is not necessary.

2.7 Construction of Probability Maps of Brain Connectivity

Once MCMC reaches equilibrium, dendrograms can be sampled at regular interval from
the Markov chain. For each sampled dendrogram a probability connectivity matrix can be
created with values that reflect the probability of each pair of nodes/areas to be connected.
The probability between each pair of nodes i and j is equal to the probability p, of the
lowest common ancestor of the nodes i and j in the sampled dendrogram. A consensus
probability matrix is estimated by averaging these matrices across dendrogram samples.

3 Results

We implemented the MCMC algorithm in MATLAB and tested our approach with DWI in
64 and 15 directions. In this section, we describe firstly our main methodology steps
applied in 64 directions data for gender classification of 20 subjects. Subsequently, we used
MCMC to create probability connectivity matrices and evaluate how informative they are
in both age and gender classification paradigms of 90 subjects and DWI in 15 directions.
Classification performed in a number of different parcellations with the application of the
MCMC methodology and based on the original connectivity matrices alone.

3.1 64-Directions DWI Data: Gender Classification

We used diffusion weighted images (DWI) that have been acquired from 20 normal
volunteers (10 males, 10 females) with the following imaging parameters: 64 non-collinear
directions, in 72 slices, slice thickness 2 mm, FOV 224mm, matrix 128x128, voxel size
1.75x1.75x2mm?3, b value 1000 s/mm? (Philips 3Tesla).

In this paradigm, we aimed to explore whether different parcellation of the cortex
would affect the efficiency of the hierarchical clustering and subsequently the overall
classification rate. Based on the original 83-ROIs segmentation, we created four sub-
parcellations with an indicative size of region of 500, 400, 300 and 200 voxels per area,
Table 1. This resulted in four segmentations with 243, 295, 381 and 564 regions,
respectively, Figure 3. We run the adapted probabilistic tractography [Robinson et al.,
2010], which estimated the connectional strength between each pair of regions and
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Figure 5: Structural connectivity matrices of the same subject that correspond to the sub-
parcellations in Figure 4 and they are obtained based on the Robinson et al. methodology
in estimating connectional strength [Robinson et al., 2010].

provided with the corresponding connectivity matrices for each sub-parcellation, Figure 5.
It is apparent that each of these connectivity matrices exhibits hierarchical organization
compared to the original parcellation, since the smaller areas within the larger original 83-
ROIs are highly interconnected, Figure 5.

For each subject and each parcellation, we run the MCMC method till the algorithm
reached equilibrium. The algorithm can reach its minimum, zero, only when there are no
missing links in the graph and the graph is hierarchical. In other words, it consists of
clusters of nodes that are fully interconnected or completely disconnected. Otherwise, it
settles to an equilibrium state, during which it samples along dendrograms of similar
likelihood. Once the MCMC has reach equilibrium, the probability that there is a
connection between each pair of nodes, i and j, is estimated as the probability p, of the
lowest common ancestor that connects i and j. This probability is averaged across a
predefined number of dendrogram (5000) in equilibrium stage. These new connectivity
matrices depict the probability that two nodes are connected.

We performed gender classification by separating subjects into two groups according
to their gender and averaging the mean-subject probability connectivity matrices
[Deligianni et al., 2011]. We used leave-one-out cross validation to classify the subjects
based on the normalised Euclidean distance between the average probability maps of each
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group and the leave-one-out subject. If the subject’s distance from the male group is higher
than its distance from the female group, we classify the subject as female and vice-versa.
To demonstrate the efficiency of our methodology we also performed classification with
the original connectivity matrices and the same classifier [Robinson et al., 2010]. In Figure
6, the Receiver Operating Characteristic (ROC) curve is shown for each of the sub-
parcellations with and without MCMC. The Area Under the Curve (AUC) is a measure of
the optimum performance of the classifier. Our results suggest that age classification is not
successful based on the original parcellation alone neither with the application of the
MCMC algorithm (41% classification rate) or without (56% classification rate). However,
when we analyzed the sub-parcelated connectivity matrices with the MCMC approach, we
could classify the subjects with up to 82% classification rate. Gender classification based on
the original connectivity matrices was unsuccessful for all the different sub-parcellation
scenarios. Since MCMC has as input binary matrices (one when a connection exist, zero for
the absence of connection), we also classified the binarised version of the original
connectivity matrices. This would clarify whether classification performance is due to the
original topology or the additional information of connectional strength. The results (not
shown) are similar to Figure 6 (b).

a) ROC for gender classification with MCMC (64Dir) b) ] ROC for gender classification based on the original malrices (64 Dir)
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Figure 6: Receiver Operating Characteristic (ROC) curve is plot of the sensitivity versus 1-
specificity for a binary classifier as its discrimination threshold is varied. Here the area
under the curve (AUC) is a measure of the optimum performance of the classifier. a) ROC
for gender classification with the MCMC methodology for each of the parcellations in
Figure 3. b) ROC for gender classification based on the original connectivity matrices of
each parcellation scenarios in Figure 3.

3.2 15-Directions DWI Data: Age and Gender Classification

We used data that are available publically under the IXI database: http://www.ixi.org.uk.
The T1 and T2 images were acquired using 3D MRPRAGE and dual echo weighted
imaging. We used DWI that have been acquired from 90 normal volunteers with the
following imaging parameters: Single shot echo planar DTI in 15 non-collinear directions,
TR 12,000msec, TE 51msec, slice thickness 2mm, voxel size 1.75x1.75x2mm?3 (Philips
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3Tesla). Analysis was performed on 90 adult healthy volunteers. In this section, we tried
both age (41 young subjects, 20-30 years old, 49 old subjects, 60-90 years old) and gender
(52 females, 38 males) classification.

We followed the methodology in section 3.1 with leave-one-out cross validation. In Table 2
are the number of sub-parcelated areas along with the mean, max and min number of
voxels across all areas and subjects. Age and gender classification results are summarized
in Figure 7, which shows the AUC results based on ROC curves. The age classification
based on the original sub-parcelated connectivity matrices outperforms the results
obtained from the 83-ROlIs parcellation. Since MCMC has as input binary matrices (one
when a connection exist, zero for the absence of connection), we also classified the
binarised version of the original connectivity matrices. This would clarify whether
classification performance is due to the original topology or the additional information of
connectional strength. Gender classification performs well without any information about
the fractional anisotropy along the tracts. For age classification is less clear whether
connectional strength has the potential to improve classification.

Table 1: Sub-parcellation (64-Dir Data): number of sub- areas, mean-max-min of number
of voxels in each area.

Original 500 400 300 200

Parcellation voxels/area voxels/area voxels/area voxels/area
numSubAreas | 83 243 295 381 564
MeanNumVox | 1424+1786 486+143 401+100 31067 210435
MaxNumVox | 8135 814 608 490 318
MinNumVox 28 28 28 28 28

Table 2: Sub-parcellation (15-Dir Data): number of sub-areas, mean-max-min of number of
voxels in each areq.

Original 500 400 300 200

Parcellation voxels/area voxels/area voxels/area voxels/area
numSubAreas | 83 194 239 299 438
MeanNumVox | 1042+1250 446+153 362+102 289+70 197+35
MaxNumVox | 5098 741 607 440 297
MinNumVox | 21 21 21 21 21
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Figure 7: ROC curves for age classification (top row) and gender classification (bottom
row) for each of the different subparcellation scenarios. a) ROC curves for age
classification with the application of the MCMC methodology, b) ROC curves for age
classification on the original matrices, c) ROC curves for gender classification with the
application of the MCMC methodology. d) ROC curves for gender classification based on
the original matrices, e) ROC curves for age classification based on the binarised
connectivity matrices (0 if there is no connection and 1 if there is a connection), f) ROC
curves for gender classification based on the binarised connectivity matrices.



F. DELIGIANNI et al.: HIERARCHY IN ANATOMICAL BRAIN NETWORKS 15
Annals of the BMVA Vol. 2012, No. ?, pp 1-? (2012)

4 Discussion

Here we use a hierarchical algorithm (MCMC) [Clauset et al., 2008] to infer probability of
connection between each pair of brain region based on the assumption that brain networks
exhibit hierarchical organization. This approach is powerful in detecting missing links and
false positives based only on the topology of the network. We were interested in testing
how a variety of sub-parcellations and angular resolution of diffusion data can affect the
age and gender classification performance with or without the application of MCMC. We
hypothesized that enhancement of the classification performance is an indication that the
underline network is hierarchically organized and the MCMC is able to improve its
topology. We used a novel approach to sub-parcelate each from the original 83-ROlIs in
sub-regions that are surrounded with relatively equal number of white matter voxels. This
sub-parcellation aimed to split gray matter in ROIs that have relatively equal number of
voxels and also respect the boundaries between the original 83-ROIs atlas. In this way, we
could investigate how hierarchy is expressed in different scales.

We applied our approach successfully in a gender classification paradigm of 20
subjects with diffusion data in 64 directions. Our results showed that although
classification performance did not improve in the case of the original 83-region
parcellation, it was significantly enhanced in all other sub-parcellations. This suggests that
hierarchical organization of anatomical networks derived from DWI can be confounded by
the uneven sub-parcellation in 83-regions with size that varies from 20 to over 8000 voxels.
On the other hand, MCMC applied on connectivity matrices derived from the sub-
parcellation has a significant improvement in classification over the original connectivity
matrices. It is important to note that the MCMC started with binary matrices (one for a
connection and zero for the absence of a connection) and thus operates based only on the
topology of the network. The original connectivity matrices are more informative, since
their weights are related to fractional anisotropy. However, the MCMC was capable of
outperforming gender classification only based on the network’s organization. This may
suggest that gender differences are not only due to differences in the strength of the
connections between different thalamo-cortical areas but they are also profound in the
topology of the network.

Subtle differences between males and females have been also reported in the
organization and microstructure of specific brain connections. Sex differences in the
organization of the corpus callosum have been found and they may be linked to
differences in functional lateralization between men and women [Oh et al., 2007]. A recent
study has also confirmed these results with a combination of DTI and myelin-water
fraction imaging [Liu et al, 2010]. Animal studies have been also demonstrated
significantly greater oligodendrocyte density in the corpus callosum of male rodents,
relative to females [Cerghet et al., 2009]. These results suggest that there are sex differences
in the microstructural composition and organization of the inter-hemispheric tracts.

Gender classification in 90 subjects with diffusion data in 15 non-collinear directions
did not performed better than directly classifying the original connectivity matrices,
Figure 7. We argue that this is because of missing connections due to the limited angular
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Figure 8: Connectivity matrices obtained based on: a) 83-ROIs anatomical atlas for the
diffusion data in 15 non-collinear directions, b) ‘500" sub-parcellation for the same DWI
data as a), ¢) 83-ROIs anatomical atlas for diffusion data in 64 non-collinear directions, d)
‘500" sub-parcellation for the same diffusion data c).

resolution of the diffusion data (15 non-collinear directions). For example, Figure 8 shows
a typical example of connectivity matrices derived from diffusion data of 15 directions
compared with connectivity matrices derived from diffusion data in 64 directions. Note
that probabilistic tractography fails to recover a substantial number of inter-hemispheric
connections. This problem is particularly profound in the sub-parcellations, which results
in severally affecting the topology of the network. The inability to track inter-hemispheric
connections may also explain why gender classification with MCMC is not particularly
successful in the 15-directions dataset, since significant sex differences have been
identified in inter-hemispheric connections [Cerghet et al., 2009]. It is encouraging though
that the sub-parcellation improves the performance of classification with or without the
application of MCMC.

We also used an age classification paradigm in order to be able to draw conclusions
about how well our approach performs compared to results published in literature
[Robinson et al., 2010]. It is widely accepted that ageing has profound effects in brain
connectivity as well as diffusion anisotropy. There are several studies that show the effect
of ageing in human anatomy and function [Esposito et al., 1999, Kochunov et al., 2007,
O'Sullivan et al., 2001, Stark and Pakkenberg, 2004]. It has been shown that anisotropy
within the white matter of the brain increases dramatically during early stages of
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development and myelination [McKinstry et al, 2002]. This continues throughout
childhood [138] into early adulthood. Subsequently, it declines slowly till 50-60 years old
and rapidly thereafter. Healthy ageing is also characterised by decreased white matter
anisotropy between frontal and posterior regions of the brain [O'Sullivan et al., 2001].
Furthermore, decreased anisotropy in frontal white matter during ageing is correlated
with reduced executive functions such as problem solving and working memory
[O'Sullivan et al., 2001]. These demonstrate a link between white matter anisotropy and
cognitive decline in normal ageing. Gender differences in literature have been more
controversial than differences due to ageing, which may explain why gender classification
performance is lower than age classification performance under all scenarios.

Evidence in current literature [Cammoun et al., 2012] show high reproducibility of
structural connectivity matrices based on atlas-based segmentations and sub-parcellated
versions. This indicates that even a simple Euclidean distance can capture differences in
normal populations. Bernadette et al. notes that methods that compare networks based on
topological measures, such as clustering coefficient and characteristic path length should
account for the different size (number of nodes) and graph density (number of edges)
[Wijk et al., 2010]. To alleviate this problem, we derive fully connected graphs from the
MCMC algorithm that reflect probability of connection for each pair of regions. Note that
the number of nodes is identical in each graph. Subsequently, we form a Euclidean
measure that estimates the difference between each corresponding edge. This is a naive
measure of graph distance, which can be seen as an extension of Hamming distance in
weighted graphs. This formulation can extend to address heteroscedastically-distributed
connections and, subsequently, outliers, which are profound in population groups with
pathology. Further work should investigate similarity measures between weighted
connectivity graphs.

Analyzing weighted graphs constitute a tremendous challenge in current literature.
Simply thresholding these networks results in topology, which is indeed intertwined with
connectional strength [Ginestet et al., 2011]. It is important to note that, in our work,
binarised structural networks are not derived using an arbitrary threshold. Instead, the
absence of a connection reflects the lack of directional information to support a pathway
between two regions. Therefore, it is an inherent topological property of the underlying
imaging data.

5 Conclusions

Originally the MCMC model has been suggested for examining missing connections as
well as false positive by inferring hierarchical structure from the observed anatomical
connectivity [Clauset et al., 2008]. Here we showed that this approach has the potential to
improve the topology of brain connectivity matrices. In fact, we examined whether whole-
brain connectivity matrices exhibit hierarchical organization under different parcellations.
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A gender and age classification paradigms were employed to explore how informative the
underline brain network topology is with regard to the gender and age of each individual.
Our results suggest that the connectivity matrices of the sub-parcelated ROIs, but not the
original 83-ROls segmentation, exhibit hierarchical organization. This organization can be
exploited to improve classification in diffusion data in 64 non-collinear directions.
However, the topology of networks derived from diffusion data in 15 non-collinear
directions is corrupted to an extent that it cannot be fully recovered from the MCMC
algorithm. Further work with a larger dataset of diffusion data in 64-directions data
should be conducted to be able to confirm whether age classification can be improved with
the application of our approach.
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