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Two-dimensional semi-Dirac fermions are quasiparticles that disperse linearly in one direction and quadrat-
ically in the other. We investigate instabilities of semi-Dirac fermions toward charge and spin density wave
and superconducting orders, driven by short-range interactions. We analyze the critical behavior of the Yukawa
theories for the different order parameters using Wilson momentum shell renormalization group. We generalize
to a large number Nf of fermion flavors to achieve analytic control in 2 + 1 dimensions and calculate critical
exponents at one-loop order, systematically including 1/Nf corrections. The latter depend on the specific form
of the bosonic infrared propagator in 2+1 dimensions, which needs to be included to regularize divergencies.
The 1/Nf corrections are surprisingly small, suggesting that the expansion is well controlled in the physical
dimension. The order parameter correlations inherit the electronic anisotropy of the semi-Dirac fermions, leading
to correlation lengths that diverge along the spatial directions with distinct exponents, even at the mean-field
level. We conjecture that the proximity to the critical point may stabilize novel modulated order phases.
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I. INTRODUCTION

Dirac fermions generically describe quasiparticles with
relativistic dispersion in the vicinity of special points in the
Brillouin zone [1–4]. In two spatial dimensions, the merging
of two Dirac points results in a topological phase transition
separating the semimetallic phase from a gapped insulating
one [5,6]. At the boundary between the two phases, the system
exhibits gapless “semi-Dirac” quasiparticle excitations [7]
that disperse relativistically in one direction and quadratically
in the other (see Fig. 1).

Based on density-functional calculations, semi-Dirac
quasiparticles were predicted to occur in single layers of
black phosphorus under strain [8]. Shortly after, they were
observed when sprinkling potassium atoms onto single lay-
ers of black phosphorus [9], and more recently using sur-
face doping [10]. Semi-Dirac electrons have also been pre-
dicted to occur in BEDT-TTF2I3 salt under pressure [11],
VO2/TO2 heterostructures [12,13], and strained honeycomb
lattices [12]. Recently, it has been suggested [14,15] that
second-neighbor repulsions between Dirac fermions on the
honeycomb lattice can lead to a metallic charge density wave
(CDW) state that breaks lattice symmetries and exhibits semi-
Dirac quasiparticle excitations. Semi-Dirac fermions have
strongly anisotropic hydrodynamic transport properties [16];
e.g., the electrical conductivity is metallic in one direction
and insulating in the other direction. Even more strikingly,
one of the electronic sheer viscosity components vanishes at
zero temperature, leading to a generalization of the previously
conjectured lower bound for the viscosity to entropy density
ratio [16].

Nodal semimetals with pointlike Fermi surfaces represent
the simplest example of fermionic quantum criticality, driven

by strong short-range repulsive interactions [17]. The sym-
metry breaking leads to the opening of a gap in the fermion
spectrum and therefore goes hand in hand with a semimetal-
to-insulator transition. In the purely relativistic case of Dirac
fermions it is well understood [18–21] that the universal
behavior is described by the Gross-Neveu-Yukawa theory
[22,23] of chiral symmetry breaking. The coupling between
the order parameter fields and the gapless Dirac fermions
leads to novel fermion-induced critical behavior that falls out-
side the Landau-Ginzburg-Wilson paradigm of a pure order
parameter description. Ultimately, the study of quantum phase
transitions in nodal semimetals might serve as a stepping stone
toward an understanding of quantum criticality in metals with
extended Fermi surfaces.

The nontrivial scaling of the quasiparticle kinetic energy
of semi-Dirac fermions gives rise to novel universal behavior
[24–27]. Moreover, it is expected that the inherent electronic
anisotropy will be reflected in strongly anisotropic order pa-
rameter correlations. This can have profound effects on the
nature of broken-symmetry states. For instance, in gapped
superconducting phases, it has been suggested [28] that an
applied magnetic field may lead to the formation of a novel
smectic phase with a stripe pattern of flux domains near the
quantum critical point.

Accessing the universal critical behavior of two-
dimensional semi-Dirac fermions has proven difficult.
Because of the different dispersion along the kx and ky

directions, the generalization to arbitrary dimension and
consecutive ε expansion below an upper critical dimension is
subtle and not uniquely defined. For a model with dL linear
and dQ > 0 quadratic momentum directions, the interactions
become marginal at 2dL + dQ = 4, suggesting that the
universal critical behavior of two-dimensional semi-Dirac
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FIG. 1. Schematic phase diagram. As a function of the band
tuning parameter � the system undergoes a topological Lifshitz
transition between a Dirac semimetal (with a pair of Dirac cones)
and a band insulator. At the transition point the system exhibits
gapless “semi-Dirac” quasiparticle excitations. Sufficiently strong
short-range interactions lead to antiferromagnetic, CDW, or super-
conducting order, depending on the type of interaction. The symme-
try breaking is associated with the opening of a gap in the semi-Dirac
spectrum.

fermions (dL = dQ = 1) could be accessible within an ε

expansion with dL = 1 and dQ = 2 − ε [27]. This expansion
results in a nonanalytic ∼ε ln ε dependence of the anomalous
dimensions of the fermion and order parameter fields [27].
The nonmonotonic behavior and vanishing of the corrections
at ε = 1, nevertheless, could indicate that the semi-Dirac case
lies outside the validity of the expansion.

In a complementary approach [26] generic short-range
four-fermion interactions were analyzed in two spatial dimen-
sions with a generalized dispersion k2n

y in the nonrelativistic
direction. This construction allows for a controlled ascent
from one dimension (n → ∞). At finite n, interactions are
rendered irrelevant at weak coupling, but key aspects of
one-dimensional physics such as spin-charge separation are
preserved. Quantum fluctuations beyond 1D, controlled by
∼1/n, enter the renormalization group (RG) through loop
integrations that involve the dispersion along ky.

In this paper we revisit the criticality of semi-Dirac
fermions in 2 + 1 dimensions. We avoid tuning the dimen-
sionality or form of the dispersion but instead introduce a
large number Nf of fermion flavors for analytical control. The
additional fermion flavors are not involved in the symmetry
breaking and remain degenerate across the quantum phase
transition. We use a one-loop, momentum-shell RG to cal-
culate critical exponents to order 1/Nf . A similar procedure
was used to analyze the effects of weak, long-range Coulomb
interactions between semi-Dirac fermions in two and three
spatial dimensions [25,29]. Here we focus on strong short-
range interactions that drive antiferromagnetic, CDW, and
superconducting instabilities. This study is motivated by the
leading order RG analysis of Ref. [26], which deemed these to
be the dominant instabilities in the extended Hubbard model
with on-site (attractive and repulsive) and nearest-neighbor

repulsive interactions. These broken-symmetry phases pos-
sess a fully gapped quasiparticle spectrum and hence maxi-
mize the condensation energy gain. The results can be readily
compared to the analogous large-Nf analysis of relativistic 2D
Dirac fermions [18,21], unraveling the effects of the peculiar
form of the dispersion on the universal behavior.

We find that the 1/Nf corrections to critical exponents are
very small and considerably smaller than for the case of 2D
Dirac fermions, suggesting that the expansion is well con-
trolled. These 1/Nf corrections depend on the specific form
of the bosonic infrared (IR) propagator in 2 + 1 dimensions,
which needs to be included to regularize divergencies. As
expected, we find that the order parameter correlations inherit
the intrinsic anisotropy of the system; e.g., the correlation
lengths along different spatial directions diverge with dif-
ferent powers. We conjecture that this behavior could help
stabilize exotic modulated ordered phases near the quantum
critical point.

Even the Nf → ∞ results are significantly different from
the 2D Dirac case. This can be understood by analyzing
the mean-field Ginzburg-Landau free energy that is obtained
from integrating out the fermions in the broken-symmetry
state. Spatial anisotropies are encoded in nonanalytic gradient
terms. We find that the critical exponents derived from the
RG for Nf → ∞ are in agreement with ones obtained from
the mean-field Ginzburg-Landau functional, suggesting that
hyperscaling relations are satisfied.

The outline of the paper is a follows: In Sec. II we derive
the effective Yukawa actions for spin, charge, and supercon-
ducting instabilities. In Sec. III we explain the Wilson RG
procedure, derive the one-loop RG equations in the large-Nf

limit, and compute critical exponents to order 1/Nf . The
nonanalytic structure of the mean-field theory is discussed in
Sec. IV. Finally, in Sec. V we summarize our results, compare
them to those obtained from different expansion schemes
[26,27], and discuss their implications.

II. EFFECTIVE FIELD THEORY

In this section we motivate the effective low-energy field
theory for different instabilities of semi-Dirac fermions in
2 + 1 dimensions. The part of the action describing noninter-
acting fermions is given by

Sψ =
Nf∑

n=1

∫
�k
ψ̄n(�k)s0 ⊗

[
−ik0σ

0 + vkxσ
x

+
(

k2
y

2m
+ �

)
σy

]
ψn(�k), (1)

where �k = (k0, k) = (k0, kx, ky), with k0 the Matsubara fre-

quency, and
∫

�k ≡ ∫
d3�k

(2π )3 , subject to an ultraviolet cutoff �.

The two sets of Pauli matrices si and σ i (i = 0 for identities)
act on the spin and sublattice spaces, respectively, and the
fermionic Grassmann fields ψn(�k) are 4-component spinors.
We have generalized the action by introducing Nf flavors or
copies of Grassmann fields, labeled by n.
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From the poles of the corresponding Green’s function we
obtain the electron dispersion,

ε(k) = ±
√

(vkx )2 +
(

k2
y

2m
+ �

)2

, (2)

which is degenerate in spin s =↑,↓ and fermion flavor n. The
effect of the tuning parameter � on the electron dispersion is
illustrated in Fig. 1. For � < 0 the dispersion contains two
relativistic Dirac points K± = (0,±√

2m(−�)), while for
� > 0 the dispersion has an energy gap �. Hence � tunes a
transition between a Dirac semimetal and a band insulator. At
� = 0, the system undergoes a topological Lifshitz transition,
corresponding to the merging of two Dirac points. At this
point the system exhibits semi-Dirac quasiparticle excitations.

We aim to describe interaction-driven quantum phase
transition of semi-Dirac fermions. Enforcing � = 0 while
increasing the strength of interactions requires fine tuning.
Depending on the experimental system, this may be achieved
with strain, pressure, or surface doping [8–13].

A. CDW and SDW instabilities

To study the criticality of semi-Dirac fermions subject to
local interactions we use the Yukawa formalism. This amounts
to performing a Hubbard-Stratonovich transformation of a
generic four-fermion interaction vertex in the appropriate
order parameter channel. Here we do not address the question
of phase competition but instead focus on a particular type
of symmetry breaking, and assume an underlying fermion
interaction that would stabilize this order.

In the case of CDW and spin density wave (SDW) instabil-
ities, the Yukawa coupling between the order parameter fields
φi(�k) and the fermions ψn(�k) is given by

Sg = g
Nf∑

n=1

Nb∑
i

∫
�k, �q

φi( �q) ψ̄n(�k)Yiψn(�k + �q), (3)

where

Yi =
{

s0 ⊗ σz, CDW: i = 0,

si ⊗ σz, SDW: i = {x, y, z}. (4)

Both Yukawa couplings anticommute with the noninteracting
action. That gives rise to a fully gapped quasiparticle disper-
sion in the broken-symmetry phase,

ε(k) = ±
√

(vkx )2 + (
k2

y /2m
)2 + |gφ|2, (5)

maximizing the condensation energy gain.
In spite of their name, the CDW and the SDW states

describe a staggered field in the pseudospin space (σ z), which
could in principle be any generic quantum number in the
original lattice model, such as sublattice, valley, or orbital
quantum numbers. In the CDW state, the order parameter is a
scalar (Nb = 1), whereas in the SDW, which in this language
is equivalent to antiferromagnetism, Nb = 3.

In addition to a φ2 term that arises from the Hubbard-
Stratonovich transformation, the successive elimination of
high-energy fermion modes under the renormalization group
will generate gradient terms, as well as a φ4 vertex. The

resulting Ginzburg-Landau functional for the order parameter
is given by Sφ + Sλ with

Sφ = 1

2

∫
�q

(
c2

0q2
0 + c2

xq2
x + c2

yq2
y + m2

φ

)|φ( �q)|2, (6)

Sλ = λ

∫
r,τ

|φ(r, τ )|4, (7)

where the integral of the φ4 vertex runs over real space r =
(x, y) and imaginary time τ . The order parameter mass term
mφ is the tuning parameter for the broken-symmetry state: At
the critical point m2

φ = 0. To summarize, the effective field
theory describing the criticality of semi-Dirac fermions in 2
+ 1 dimensions is given by the sum of four terms,

S = Sψ + Sφ + Sg + Sλ. (8)

There is a caveat, however. As we will discuss in Sec. III,
the bosonic propagator Gφ( �q) develops an unphysical singu-
larity under the renormalization group scheme. It is therefore
necessary to regularize this divergence by including an IR
contribution in Sφ.

B. Superconducting instability

We also analyze a possible instability in the super-
conducting channel. In that case, we initially consider a
generic Hamiltonian H0(p) with semi-Dirac quasiparticles
that preserves time-reversal symmetry (TRS), such that
T H0(p)T −1 = H0(p), with p the momentum away from the
center of the zone. We restrict our attention to families of TRS
Hamiltonians that support an isotropic pairing gap around the
semi-Dirac points. That is allowed when pairing occurs across
two semi-Dirac points sitting in opposite sides of the Brillouin
zone, such that each Cooper pair has zero total momentum. A
concrete example of a TRS tight-binding Hamiltonian with a
pair of semi-Dirac points can be found in Ref. [28].

Due to TRS, the generic Hamiltonian can be written in
a Bogoliubov–de Gennes basis (cp,s, c†

−p,−s) with s the spin
index as

HBdG(p) = H0(p) ⊗ τ z, (9)

where τ z is a Pauli matrix in the Nambu space. Expanding this
Hamiltonian around one of the semi-Dirac points described,
the action in the Nambu basis is

Sψ =
Nf∑

n=1

∫
�k
ψ̄n(�k)s0 ⊗

[
−ik0σ

0 ⊗ τ0 + vkxσ
x ⊗ τz

+
(

k2
y

2m
+ �

)
σy ⊗ τz

]
ψn(�k), (10)

where we enforce � = 0 at the fixed point. The expansion
around the opposite Dirac point gives an equivalent copy of
the action above, which can be accounted for in the fermionic
degeneracy Nf .

The Yukawa coupling between the complex, two-
component (Nb = 2) order parameter of the s-wave supercon-
ductor and the fermions is given by Eq. (3) with the coupling
matrix

Yi = s0 ⊗ σ0 ⊗ τ i, SC: i = {x, y}, (11)
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in the enlarged Nambu space. This term anticommutes with
the noninteracting action, leading to the opening of a gap
in the semi-Dirac spectrum. Sφ and Sλ take the same form
as in the CDW/SDW case.

III. RENORMALIZATION GROUP ANALYSIS

In this section, we outline the RG approach used to analyze
the universal critical behavior of the Yukawa actions derived
in Sec. II for CDW, SDW, and superconducting instabilities.
In the case of the superconducting instability, one is required
to include the Nambu space, as indicated in the action (10),
and sum over half the number of states in the trace to avoid
double counting. For simplicity, we omit any explicit mention
to the Nambu space, which can be trivially incorporated for
the SC instability.

The universal critical behavior, e.g., the critical exponents,
should not depend on the cutoff scheme. In the following
we treat frequency and momentum on an equal footing and
impose the ultraviolet (UV) cutoff � in 2 + 1 dimensional
momentum-frequency space,∫

�k
≡

∫
d3�k

(2π )3
θ [� −

√
k2

0 + ε2(k)], (12)

where the electron dispersion ε(k) is defined in Eq. (2) with
� = 0. We will analyze the RG flow of the coupling constants
when successively integrating out high-energy modes with
momenta and frequencies from the infinitesimal shell,

�e−zd� <

√
k2

0 + ε2(k) < �, (13)

followed by a rescaling of frequency and momenta at
each step,

k0 = k′
0e−z d�, kx = k′

xe−z d�, ky = k′
ye−zy d�. (14)

In the definitions of the 2 + 1 dimensional shell (13) and
the rescaling (14), frequency k0 and the momentum kx along
the relativistic direction are treated on an equal footing and
are both rescaled with a dynamical exponent z relative to the
ky direction. One might view this as having one spacelike
and two timelike directions. For greater clarity, we have
introduced a scaling dimension zy of the momentum ky, which
we will set to 1 later. Under successive mode decimation and
rescaling, the cutoff remains invariant if

z = 2zy. (15)

The shell integration is performed using the coordinate trans-
formation

k0 = ε sin θ cos φ,

vkx = ε sin θ sin φ, (16)

k2
y

2m
= ε cos θ,

with ε ∈ [�e−zd�,�], θ ∈ [0, π
2 ], and φ ∈ [0, 2π ]. The Jaco-

bian of the transformation is

ρ(ε, θ, φ) =
√

2m

2v

sin θ√
cos θ

ε3/2. (17)

A. Tree level scaling

Let us first consider the consequences of the rescaling of
frequency and momenta (14) on the free-fermion action Sψ

(1). Since frequency k0 and momentum kx have the same
scaling dimensions, [k0] = [kx] = z, the velocity v of the
relativistic dispersion along kx does not flow. The relation
z = 2zy ensures that the mass m associated with the quadratic
ky dispersion remains constant at the tree level.

In order to keep the overall prefactor of Sψ constant, we
rescale the fermion fields as

ψn(�k) = ψ′
n( �k′)ed�(3z+zy−ηψ )/2. (18)

Here ηψ is the anomalous dimension of the fermion fields,
which will be used to absorb the renormalization due to the
decimation of high-energy modes.

Let us turn our attention to the quadratic bosonic action Sφ

(6). The distinct scaling dimensions of momenta imply that
the coefficients c2

0 and c2
x will scale differently from c2

y . If we
rescale the bosonic fields as

φ( �q) = φ′( �q′)ed�(2z+3zy−ηφ )/2, (19)

where ηφ is the anomalous dimension of the φ field, the c2
y

coefficient does not flow at tree level. Under this rescaling
both c2

0 and c2
x are irrelevant at tree level with scaling dimen-

sions [c2
0] = [c2

x ] = −z. Both parameters flow to zero and can
be omitted from the bare bosonic propagator. This omission
poses problems, as the propagator no longer depends on q0

and qx, leading to unphysical divergencies in the infrared (IR)
limit. That issue however can be fixed with an IR regulariza-
tion, as discussed next in Sec. III B.

The above field rescaling leads to the following tree level
scaling dimensions for the Yukawa and the φ4 couplings,

[g] = zy

2
, [λ] = −zy. (20)

This portrays that the φ4 term is irrelevant and can be dis-
carded, while the Yukawa coupling is a relevant perturbation
at tree level.

B. Infrared regularization

In order to regularize unphysical divergencies of the
bosonic propagator in the limit qy → 0, we augment it by an
IR contribution [30–32]. As pointed out before [25], in 2 + 1
dimensions the bosonic propagator has different asymptotic
forms in the UV and IR limits.

Since the RG flow is generated by a successive integration
of modes from a shell near the UV cutoff, the IR contribution
is not generated or renormalized under the RG. Instead it
needs to be computed separately by integrating the fermion
polarization (see Fig. 2) over the entire frequency and mo-
mentum range up to the infinitesimal shell [25],

�i j ( �q) = g2

2
Tr

∫ <

�k
YiGψ (�k)Y jGψ (�k + �q), (21)

where Yi is the Yukawa coupling for a given instability, as
defined in Eqs. (4) and (11), and

Gψ (�k) = s0 ⊗ ik0σ
0 + vkxσ

x + k2
y

2m σy

k2
0 + (vkx )2 + k4

y /(2m)2
(22)

is the fermionic propagator.
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FIG. 2. Polarization bubble diagram describing the IR regulator
of the bosonic propagator and the self-energy correction of the
bosons in the momentum shell.

For the multicomponent order parameters of the SDW
and superconducting phases, the polarization is diagonal,
�i j ( �q) = �( �q)δi j , reflecting the underlying O(3) and U(1)
symmetries. In the limit of small q0, qx and at qy = 0, the
leading term is [25]

�IR( �q) = Nf g2

√
2m

v

(
q2

0 + v2q2
x

) 1
4 , (23)

where Nf is the number of fermion flavors. This contribution
to the kernel of Sφ regularizes the bosonic propagator in the
IR at the critical surface (m2

φ = 0),

G−1
φ ( �q) = Nf g2

√
2m

v

(
q2

0 + v2q2
x

) 1
4 + c2

yq2
y . (24)

C. Self-energy and vertex corrections

Using the propagators (22) and (24) for fermionic and
bosonic fields, respectively, we can now go beyond the tree
level scaling and extract one-loop corrections to the propa-
gators and the Yukawa coupling. As mentioned before, the
bosonic φ4 is irrelevant and can be dropped.

We first concern ourselves with the one-loop renormal-
ization of the regularized bosonic propagator (24). The only
component that is of interest is in the qy direction as the
dependence on linear momentum and frequency directions in
the propagator comes from the IR, which is not renormalized
under the RG. The one-loop bosonic self-energy is depicted
in Fig. 2 and takes the form

�>( �q) = g2

2
Tr

∫ >

�k
YiGψ (�k)YiGψ (�k + �q), (25)

where
∫ >

�k means integration over the UV modes within
the frequency-momentum shell of width �z d�, as defined
in Eq. (13). Note that in the above expression, the order
parameter field component i is not summed over and that
the result is the same for all components. The leading terms
of the self-energy have the form �>( �q) = �0q2

0 + �xq2
x +

�yq2
y + �m2

φ
. Expanding the fermionic propagator to second

order in qy, then performing the coordinate transformation
(16) and integrating over the energy shell, we find that the
renormalization of the c2

y coefficient is given by

d
(
c2

y

) = 2Nf
11

21π2

√
2m

v

g2

√
�

zd� ≡ �yzd�. (26)

Although the mass of the bosons m2
φ also runs in the RG flow,

for now it will be fine tuned to zero at the critical surface.
We will address the renormalization of m2

φ in detail later on
in Secs. III F and III G, when we examine the vicinity of the
quantum multicritical point.

FIG. 3. (a) Self-energy correction to the fermionic propagator in
one loop. (b) Vertex correction diagram to the Yukawa coupling.
The bosonic propagator is represented by the wavy line while the
fermionic propagator by the straight line.

Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to

�(�k) = −g2
Nb∑
i

∫ >

�q
Gφ ( �q)YiGψ (�k + �q)Yi. (27)

After shell integration, it takes the form

�(�k) = s0 ⊗
[
�0(k0σ

0 + vkxσ
x ) + �y

k2
y

2m
σy

]
zd�, (28)

where

�0 = Nb

2Nf
F1

(
2Nf

√
2mg2

vc2
y

√
�

)
, (29)

�y = Nb

2Nf
F2

(
2Nf

√
2mg2

vc2
y

√
�

)
, (30)

with �x = �0, and

F1(x) = 1

4π2

∫ π
2

0
dθ

(cos θ )
3
2 sin θ

x−1 cos θ + √
sin θ

, (31)

F2(x) = 1

4π2

∫ π
2

0
dθ

cos 2θ + 2 cos 4θ

x−1 cos θ + √
sin θ

sin θ√
cos θ

(32)

are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,

�i = g3
Nb∑
j

∫ >

�q
Gφ ( �q)Y jGψ ( �q)YiGψ ( �q)Y j . (33)

The matrix �i is proportional to the Yukawa matrix Yi, �i =
g� Yizd�, where we have absorbed a factor of g2 in the
definition of �. Performing the shell integral we obtain

� = −2 − Nb

2Nf
F3

(
2Nf

√
2mg2

vc2
y

√
�

)
(34)

with

F3(x) = 1

4π2

∫ π
2

0
dθ

1

x−1 cos θ + √
sin θ

sin θ√
cos θ

. (35)

Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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D. RG equations

As a first step we analyze the RG flow of the fermion
propagator Sψ (1), combining the contributions from the self-
energy loop integral � (27) and the rescaling outlined in
Sec. III A. Since �0 = �x, the coefficients of the k0 and kx

terms are renormalized in the same way. We can keep the
prefactor of the two terms constant if we define the anomalous
dimension of the fermion fields as

ηψ = z�0. (36)

The resulting RG equation for m−1 is then given by

d (m−1)

d�
= m−1(z − 2zy + z�y − z�0), (37)

with the self-energy corrections �0 and �y given in Eqs. (29)
and (30), respectively. In order to keep the full fermion
propagator invariant under the RG flow, we therefore require
that

2zy = z(1 + �y − �0). (38)

In the bosonic propagator Sφ (24), the coefficient c2
y is

renormalized,

d (c2
y )

d�
= c2

y (z�y − ηφ ), (39)

but can be kept fixed if we chose the anomalous dimension of
the bosonic order parameter to be

ηφ = z�y, (40)

where the polarization shell integral is defined in Eq. (26).
Finally, the RG equation for the Yukawa coupling g at one-

loop order is given by

dg

d�
= g

(
zy

2
− ηψ − 1

2
ηφ + z�

)
, (41)

with � defined in Eq. (34).

E. Fixed point and 1/Nf expansion

With the above choices of ηψ , ηφ , and z (we fix zy = 1 in
what follows) the coefficients entering the propagators do not
flow and can be set to 1, without loss of generality. Moreover
it is convenient to define the rescaled Yukawa coupling

g̃2 = 2Nf g2

√
�

, (42)

as this combination enters in the argument of the functions Fi.
These are smooth functions of g̃2, as shown in Fig. 4. In terms
of the F functions, the RG equation for the rescaled Yukawa
coupling is given by

dg̃2

d�
= g̃2

{
1 − z

[
11

21π2
g̃2 + Nb

Nf
F1(g̃2) + 2 − Nb

Nf
F3(g̃2)

]}
(43)

and from Eq. (38)

2 = z

{
1 − Nb

2Nf
[F1(g̃2) − F2(g̃2)]

}
. (44)

FIG. 4. The integrals Fi(g̃2) as a function of the dimensionless
Yukawa coupling g̃2 = 2Nf g2/

√
�. To order 1/Nf , the critical expo-

nents at one-loop order depend on the values of Fi evaluated at the
critical point in the Nf → ∞ limit, g̃2

∞ = limNf →∞ g̃2
∗ = 21π 2/22.

The fixed point is obtained from dg̃2/d� = 0. In the limit
Nf → ∞, z = 2 and the fixed point is at

g̃2
∞ = 21π2

22
. (45)

In order to obtain the leading 1/Nf correction to the fixed
point we make an ansatz

g̃2
∗ = g̃2

∞ + δ

Nf
+ O

(
1/N2

f

)
. (46)

Since all the F functions have 1/Nf prefactors, we can replace
their arguments with g̃2

∞ and define

αi := Fi
(
g̃2

∞
)
. (47)

To order 1/Nf we obtain

z = 2 + Nb

Nf
(α1 − α2) (48)

for the scaling dimension z at the fixed point, and

g̃2
∗

g̃2∞
= 1 − Nb

2Nf
(5α1 − α2) − 2

2 − Nb

Nf
α3 (49)

for the Yukawa coupling at the fixed point. Finally, the anoma-
lous dimensions at the critical point are

ηψ = Nb

Nf
α1, ηφ = g̃2

∗
g̃2∞

. (50)

The above 1/Nf corrections are small, and about an order
of magnitude smaller than for the purely relativistic case of
Dirac fermions in 2 + 1 dimensions [21]. In the latter case,
the 1/N2

f corrections, computed at 2-loop order [33,34], are
comparable or even larger than the 1/Nf ones when Nf = 1.
For semi-Dirac fermions, on the other hand, at one-loop order,
the 1/N2

f corrections are proportional to derivatives F ′
i (g̃2

∞) �
10−4 and hence about an order of magnitude smaller than
the 1/Nf ones. This suggests that the 1/Nf expansion at
the physical dimension is better controlled for the case of
semi-Dirac fermions. However, the evaluation of two-loop
diagrams would be required to investigate this further.
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F. Critical exponents

At the nontrivial critical fixed point the bosonic anomalous
dimension ηφ = 1 + O(1/Nf ) is larger than the tree level
scaling of the Yukawa coupling. Therefore, near the critical
point g̃ flows toward g̃∗, making the fixed point stable along
the g̃ axis. Near this multicritical point there are two relevant
perturbations, � and m2

φ , which are the tuning parameters
for the topological phase transition and the broken-symmetry
state, respectively.

Semi-Dirac quasiparticle excitations emerge in the
semimetallic phase when � is fine tuned to zero. Let us
first consider the case that � remains equal to zero across
the symmetry-breaking phase transition. In this case the RG
equation for m2

φ is equal to

dm2
φ

d�
= (2 − ηφ )m2

φ. (51)

The correlation length is defined by the RG scale �∗ at which
m2

φ (�∗) � 1, ξ = e�∗
. Integrating the above differential Eq.

(51),

m2
φ (�) = m2

φ (0)e(2−ηφ )�. (52)

Using that m2
φ (0) ∼ (gc − g), we obtain ξ ∼ (gc − g)−ν with

correlation length exponent ν = 1/(2 − ηφ ). From Eq. (50),
we obtain to order 1/Nf

ν = 1 − Nb

2Nf
(5α1 − α2) − 2

2 − Nb

Nf
α3. (53)

The electronic dispersion of semi-Dirac fermions with
linear and quadratic directions is strongly anisotropic. One
therefore expects that the order parameter correlation inherits
this anisotropy. For spatially isotropic systems, the correla-
tions length along the imaginary-time direction diverges as
a power of the spatial correlation length, ξτ = ξ z, where z
is the dynamical exponent. With our choice zy = 1, the dy-
namical exponent z sets the scaling dimension of length along
the x direction. We therefore have ξτ � ξx � ξ z

y . The spatial
anisotropy of the order parameter correlations is therefore
reflected in correlation length exponents

νx = zν and νy = ν, (54)

along the x and y directions, respectively. In the limit Nf → ∞
this gives νx = 2 and νy = 1.

Assuming that the system satisfies hyperscaling, we can
use the standard scaling relations to obtain the remaining
critical exponent. The Josephson hyperscaling relation yields
the specific heat exponent,

α = 2 − ν(2z + 1)

≈ −3 + Nb

2Nf
(21α1 − α2) + 10

2 − Nb

Nf
α3. (55)

Note that the effective dimension that enters in the hyper-
scaling relation is equal to D = 2z + 1 corresponding to one
spacelike and two timelike directions. Fisher’s scaling law
gives the susceptibility exponent

γ = (2 − ηφ )ν = 1 + O
(
1/N2

f

)
. (56)

TABLE I. Critical exponents for symmetry-breaking phase tran-
sitions of semi-Dirac fermions in 2+1 dimensions, calculated at
one-loop order and including 1/Nf corrections in the number of
fermion flavors. Nb is the number of order parameter components:
Nb = 1 for the CDW, Nb = 2 for the superconducting, and Nb = 3
for the SDW instabilities.

Exponent Value

zy 1

z 2 + 0.0123 Nb
Nf

ηψ 0.0125 Nb
Nf

ηφ 1 − 0.0310 Nb
Nf

− 0.1069 2−Nb
Nf

ν 1 − 0.0310 Nb
Nf

− 0.1069 2−Nb
Nf

α −3 + 0.1307 Nb
Nf

+ 0.5345 2−Nb
Nf

γ 1

β 2 − 0.0653 Nb
Nf

− 0.2672 2−Nb
Nf

δ 3
2 + 0.0163 Nb

Nf
+ 0.0668 2−Nb

Nf

We can use Rushbrooke’s scaling law α + 2β + γ = 2 to
obtain the order parameter critical exponent

β = 1 − 1

2
(α + γ )

≈ 2 − Nb

4Nf
(21α1 − α2) − 5

2 − Nb

Nf
α3. (57)

Finally, from the Widom identity γ = β(δ − 1) we compute
the field exponent

δ = 1 + γ

β

≈ 3

2
+ Nb

16Nf
(21α1 − α2) + 5

4

2 − Nb

Nf
α3. (58)

A complete list of critical exponents with numerical values for
the coefficients αi can be found in Table I.

G. Multicriticality

In Sec. III F we have summarized the universal critical
behavior of semi-Dirac fermions associated with spontaneous
symmetry breaking due to short-range interactions. The semi-
Dirac quasiparticle excitations in the disordered, semimetallic
phase are obtained by fine-tuning the system to the point of a
topological phase transition between a Dirac semimetal with
two separate relativistic Dirac points and a band insulator. In
the free-fermion action (1) the semi-Dirac point corresponds
to � = 0. Spontaneous symmetry breaking leads to the open-
ing of a gap in the fermion spectrum, making it in practice
challenging to ensure � = 0 across the transition in any real
material.

Since the tuning parameters of the symmetry-breaking and
topological phase transitions, m2

φ and �, are both relevant
perturbations at the fixed point (g̃ = g̃∗, � = m2

φ = 0), one
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should view the fixed point as multicritical. The coupled RG
equations for m2

φ and � are

dm2
φ

d�
= (2 − ηφ )m2

φ + z�m2
φ
, (59)

d�

d�
= (2 − ηψ )� + z��, (60)

where ηφ and ηψ are the anomalous dimensions (50) of the
fermions and bosons, respectively. The renormalizations �m2

φ

and �� are coming from the bosonic self-energy (Fig. 2) and
fermionic self-energy [Fig. 3(a)] and are equal to

�m2
φ

= 2

3π2
g̃2�, (61)

�� = Nb

2Nf

[
F4(g̃2)� + F5(g̃2)m2

φ

]
. (62)

In the last equation, we have defined the functions

F4(x) = 1

π2

∫ π
2

0
dθ

cos 2θ

x−1 cos θ + √
sin θ

sin θ√
cos θ

, (63)

F5(x) = 1

π2

∫ π
2

0
dθ

√
cos θ sin θ

(x−1 cos θ + √
sin θ )2

, (64)

which are shown in Fig. 4. The coupled RG equations are of
the form

d

d�

(
m2

φ

�

)
= M

(
m2

φ

�

)
, (65)

where M is an off-diagonal matrix that we evaluate at the
multicritical fixed point. The two positive eigenvalues θ1 and
θ2 of this matrix are inversely proportional to correlation
length exponents, νi = 1/θi. Up to order 1/Nf we obtain

ν1 = 1 − Nb

2Nf

(
5α1 − α2 − 28

11
α5

)
− 2

2 − Nb

Nf
α3, (66)

ν2 = 1

2
+ Nb

4Nf

(
α1 − α4 − 14

11
α5

)
. (67)

IV. MEAN-FIELD ANALYSIS

The critical exponents are expected to recover the mean-
field values in the limit Nf → ∞. In this limit, the anoma-
lous dimension of the fermion fields vanishes, ηψ = 0, in-
dicating that Fermi-liquid behavior is recovered. However,
the anomalous dimension of the order parameter field (50)
remains finite, ηφ = 1. This results in a correlation length
exponent ν = 1/(2 − ηφ ) = 1 and, using standard scaling and
hyperscaling relations, in an unusually large order parameter
exponent β = 2. These exponents are very different from
the usual mean-field ones (ηφ = 0, ν = β = 1

2 ). This unusual
behavior is a result of the appearance of nonanalytic terms
in the mean-field free energy, which lead to unconventional
quantum criticality and arise due to the unusual scaling of the
density of states ρ(ε) ∼ √

ε around the Fermi points.
The mean-field free energy for a gapped phase of semi-

Dirac fermions is equal to

FMF(φ0) = 1

g
φ2

0 −
∫

k2
x +k4

y��2

d2k
(2π )2

√
k2

x + k4
y + φ2

0 , (68)

where we have rescaled kx and ky to absorb the prefactors v

and 1/(2m). Here � is the UV energy cutoff. Carrying out the
integral one obtains [28]

FMF(φ0) = a(δg)φ2
0 + b|φ0| 5

2 + O
(
φ4

0

)
(69)

with δg = (gc − g)/gc and a, b > 0. As in the case of rela-
tivistic Dirac fermions, the mean-field free energy contains
a nonanalytic term, |φ0| 5

2 , which arises from the evaluation
of the integral in the k → 0 limit. Minimizing FMF(φ0) with
respect to φ0 one obtains |φ0| ∼ |δg|βMF with βMF = 2, in
agreement with the RG and scaling analysis in the Nf → ∞
limit, Eq. (57). In contrast, for Dirac fermions, where the
density of states vanishes linearly [ρ(ε) ∼ ε], the nonanalytic
term has the form |φ0|3, resulting instead in the mean-field
exponent βMF = 1 [35].

The spatial anisotropy of the system, which appears in
the anisotropic dispersion of the quasiparticles, also reflects
in the form of the gradient terms in the Ginzburg-Landau
functional. These terms can be computed by allowing for
small, long-wavelength modulations of the order parameter.
For a finite homogeneous component φ0 one can expand in
the momentum q of the modulation. This gives rise to terms
q2

x

√|φ0| and q2
y |φ0| 3

2 [28], from which we can estimate the
correlation lengths ξx and ξy along the x and y directions,
respectively. Since

ξ−2
x |φ0| 1

2 � ξ−2
y |φ0| 3

2 � |δg|φ2
0 (70)

by dimensional analysis, that leads to the quantum critical
scaling

ξ 2
x ∼ |φ0|− 3

2 |δg|−1 ∼ |δg|−(1+ 3
2 βMF ) (71)

and

ξ 2
y ∼ |φ0|− 1

2 |δg|−1 ∼ |δg|−(1+ 1
2 βMF ). (72)

Using βMF = 2, this simple scaling analysis of the mean-field
free energy recovers the correlation length exponents νx = 2
and νy = 1 derived in Eq. (54), in agreement with the RG
result in the limit Nf → ∞.

The anisotropic scaling of the correlation length along the
x and y directions could have very interesting implications
for ordered phases in the vicinity of the quantum critical
point. In general, the order parameter becomes relatively
softer to spatial modulations along the direction where the
quasiparticles have parabolic dispersion, and more rigid in
the other direction, permitting the emergence of modulated
order and stripe phases [28]. In the superconducting case, the
system may effectively respond to a external magnetic field as
a type II superconductor in one direction and as a type I in the
other [28]. This unconventional state could stabilize stripes of
magnetic flux rather than conventional vortex lattices.

V. DISCUSSION

We have analyzed the critical behavior of quantum phase
transitions in semi-Dirac fermion systems that are driven
by strong short-range interactions. Here we have focused
on SDW, CDW, and superconducting instabilities that fully
gap the quasiparticle spectrum in the broken-symmetry state.
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Those instabilities are generically expected to be energetically
favorable compared to gapless states.

This criticality was previously studied using an ε ex-
pansion in the number of quadratically dispersing directions
within the Yukawa formalism [27] and by generalizing the
quadratic dispersion to k2n

y , facilitating a 1/n expansion in
generic four-fermion interactions around the one-dimensional
limit [26]. In our complementary approach, we have avoided
the tuning of dimensionality but instead introduced a large
number Nf of fermion flavors for analytic control in two
spatial dimensions. Using a one-loop renormalization group
analysis of the effective Yukawa actions, we have computed
critical exponents up to order 1/Nf .

The 1/Nf corrections to critical exponents depend on the
peculiar form of the IR order parameter propagator in 2 + 1 di-

mensions, GIR
φ ∼ (q2

0 + v2q2
x )−

1
4 . This IR contribution, which

is not renormalized by integrating out electronic UV modes,
needs to be incorporated to regularize unphysical divergen-
cies [25]. Our RG equations are derived from integrating
UV modes from an infinitesimal 2 + 1 dimensional shell
in momentum-frequency space, followed by a rescaling of
frequency and momenta to the original cutoff. We have treated
frequency k0 and the momentum kx along the relativistic direc-
tion on an equal footing and introduced a single “dynamical”
exponent z that describes the scaling of k0, kx relative to the
quadratically dispersing direction ky. One might view this as
having one spacelike and two timelike directions.

We have found that the 1/Nf corrections to critical expo-
nent are smaller than for the case of Dirac fermions and seem
to fall off more rapidly when increasing the order of 1/Nf .
This suggests that the 1/Nf expansion is well controlled even
when the number of flavors Nf is of the order of 1. However,
calculations beyond one-loop order are required to confirm
this conjecture.

In the mean-field limit Nf → ∞, the anomalous dimension
ηψ of the fermion fields vanishes, signaling a recovery of
conventional Fermi-liquid behavior. On the other hand, the
anomalous dimension of the order parameter fields remains
finite, ηφ = 1. This has important consequences. It gives
rise to a correlation length exponent of ν = 1 instead of
the conventional mean-field ν = 1/2. Since we have defined
the y direction as reference length (zy = 1, zx = z = 2), this
corresponds to νy = zyν = 1 and νx = zxν = 2 along the two
spatial directions.

The atypical correlation length exponent and the unusually
large order parameter exponent β = 2 + O(1/Nf ) suggest that
the mean-field order parameter theory is highly unusual [28].
As we discussed, the vanishing density of states at the Fermi
level gives rise to a nonanalytic |φ0|5/2 term in the Landau
free energy. This results in βMF = 2, in agreement with the

RG result for Nf → ∞. The highly anisotropic order param-
eter correlations correspond to different nonanalytic gradient
terms in the mean-field theory.

We now briefly compare to previous results [26,27] in
the literature. The freedom in how to define the scaling
dimensions in semi-Dirac systems explains the apparent con-
tradiction with Ref. [26] that reports ν = 2 at leading order,
compared to ν = 1 here and in Ref. [27]. A close inspection
shows that in this work the relativistic direction was used
to define the reference length scale. In our notation this
corresponds to the choice z = zx = 1 and zy = 1/2, leading
to the same correlation length exponents νx = 2 and νy = 1.
Hence, to leading order there is complete agreement on the
correlation length exponent.

However, there is a strong disparity in the order parameter
anomalous dimension found here ηφ = 1 + O(1/Nf ), and in
Ref. [27], ηφ ∼ 1

Nf
ε ln ε. Not only does the latter vanish for

ε = 1, but it is also of order 1/Nf . As discussed in Sec. IV,
our result ηφ ≈ 1 leads to the order parameter exponent β =
2 in the Nf → ∞ limit, in complete agreement with the
nonanalytic mean-field free energy. This acts as a consistency
check of our RG analysis. Likewise, the fermion anomalous
dimension ηψ ∼ 1

Nf
ε ln ε calculated in Ref. [27] vanishes at

ε = 1, whereas ours is finite ηψ = O(1/Nf ). These discrep-
ancies may arise from the lack of validity in the extrapolation
of their ε expansion to the physical dimension at ε = 1. We
also note that at the leading one-loop order it is not possible
to extract the anomalous dimensions from the RG analysis
of the model containing four-fermion interactions studied in
Ref. [26]. In the future it will be interesting to compare beyond
leading order results for the critical exponents in this difficult
problem.

Semi-Dirac fermions correspond to an intermediate case
between Dirac fermions and ordinary metals in two spatial
dimensions. The quadratic dispersion along one of the mo-
mentum directions leads to an increased density of states at
low energies as compared to Dirac fermions, making insta-
bilities comparatively easier due to the enlarged phase space
for quantum fluctuations. An interesting question for future
studies is whether the enhanced electronic fluctuations near
the quantum critical point combined with the anisotropy of the
correlations could stabilize novel phases such as modulated
order.
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