Risk processes with tax

Dalal Al Ghanim Ronnie Loeffen Alex Watson UCL Stats Internal Seminar, 17 July 2020

Taxation

1

Taxation

• Loss-carry-forward: tax paid at the maximum

Taxation

- Loss-carry-forward: tax paid at the maximum
- What is the best tax rate to maximise revenue?

• Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$,

• Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$, with N_t Poisson process, ξ_i i.i.d.

• Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$, with N_t Poisson process, ξ_i i.i.d.

· Can include Brownian part and fast, small jumps: Lévy process

• Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$, with N_t Poisson process, ξ_i i.i.d.

· Can include Brownian part and fast, small jumps: Lévy process

- Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$, with N_t Poisson process, ξ_i i.i.d.
- · Can include Brownian part and fast, small jumps: Lévy process
- Wealth of insurance company: c is premium rate, ξ_i are claims

- Risk process: $X_t = X_0 + ct + \sum_{i=1}^{N_t} \xi_i$, with N_t Poisson process, ξ_i i.i.d.
- · Can include Brownian part and fast, small jumps: Lévy process
- Wealth of insurance company: c is premium rate, ξ_i are claims
- · Intrinsic motivation: continuous equivalent of random walk

Reflected risk process

$$Y_t = X_t - (\bar{X}_t - \bar{X}_0)$$

$$\bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_0$$

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_0$$

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_t$$

 $\cdot \delta$ is the tax rate in loss-carry-forward taxation

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_t$$

- \cdot δ is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_t$$

- \cdot δ is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_t$$

- \cdot δ is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way

$$V_t = X_t - \int_0^t \delta(V_s) \, d\bar{X}_s, \qquad \bar{X}_t = \sup_{s \le t} X_s \lor \bar{X}_0$$

- \cdot δ is the tax rate in loss-carry-forward taxation
- · Introduces spatial dependence in a tractable way
- Questions: existence? computation of functionals? optimal δ ?

•
$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s$$

• $V_t = X_t - \int_0^t \delta(V_s) d\bar{X}_s$ • $V'_t = X_t - \int_0^t \gamma(X_s) d\bar{X}_s$

•
$$V_t = X_t - \int_0^t \delta(V_s) d\bar{X}_s$$
 – not obvious it exists
• $V'_t = X_t - \int_0^t \gamma(X_s) d\bar{X}_s$

- $V_t = X_t \int_0^t \delta(V_s) d\bar{X}_s$ not obvious it exists
- $V_t' = X_t \int_0^t \gamma(X_s) \, d\bar{X}_s$ clear that it exists

• $V_t = X_t - \int_0^t \delta(V_s) d\bar{X}_s$ - not obvious it exists - (V, \bar{V}) is Markov • $V'_t = X_t - \int_0^t \gamma(X_s) d\bar{X}_s$ - clear that it exists

•
$$V_t = X_t - \int_0^t \delta(V_s) d\bar{X}_s$$
 – not obvious it exists – (V, \bar{V}) is Markov

•
$$V'_t = X_t - \int_0^t \gamma(X_s) d\bar{X}_s$$
 – clear that it exists – (V', \bar{V}') is not Markov

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

has a unique solution, then the equation

$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s, \quad X_0 = x, \bar{X}_0 = \bar{x},$$

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

has a unique solution, then the equation

$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s, \quad X_0 = x, \bar{X}_0 = \bar{x},$$

has a unique solution V.

• Let $\gamma(s) = \delta(y(s - \bar{x}))$.

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

has a unique solution, then the equation

$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s, \quad X_0 = x, \bar{X}_0 = \bar{x},$$

- Let $\gamma(s) = \delta(y(s \bar{x}))$.
- $V'_t = X_t \int_0^t \gamma(X_s) d\bar{X}_s$ satisfies the equation for V: existence

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

has a unique solution, then the equation

$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s, \quad X_0 = x, \bar{X}_0 = \bar{x},$$

- Let $\gamma(s) = \delta(y(s \bar{x}))$.
- $V'_t = X_t \int_0^t \gamma(X_s) d\bar{X}_s$ satisfies the equation for V: existence
- Converse direction: uniqueness

Theorem – Al Ghanim, Loeffen, W. (2020)

If the differential equation

$$y'(t) = 1 - \delta(y(t)), \quad y(0) = \bar{x},$$

has a unique solution, then the equation

$$V_t = X_t - \int_0^t \delta(V_s) \, \mathrm{d}\bar{X}_s, \quad X_0 = x, \bar{X}_0 = \bar{x},$$

- Let $\gamma(s) = \delta(y(s \bar{x}))$.
- $V'_t = X_t \int_0^t \gamma(X_s) d\bar{X}_s$ satisfies the equation for V: existence
- Converse direction: uniqueness
- Core idea: look at V and X while they are drifting at the maximum

Present value of tax collected until exiting [0, *a*]:

$$\begin{split} w(x,\bar{x}) &= \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs} \delta(V_s) \, \mathrm{d}\bar{X}_s \; \middle| \; X_0 = x, \bar{X}_0 = \bar{x}\right], \\ \tau_0^a &= \inf\{t \ge 0 : V_t \notin [0,a]\}, \end{split}$$

$$w(x,\bar{x}) = \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs} \delta(V_s) \, \mathrm{d}\bar{X}_s \, \Big| \, X_0 = x, \bar{X}_0 = \bar{x}\right],$$

Theorem – Al Ghanim, Loeffen, W. (2020+)

Assume $(x, \overline{x}) \mapsto f(x, \overline{x})$, for $x \leq \overline{x}$, satisfies:

• $f(x, \overline{x}) = 0$ if x < 0 or $x \ge a$,

$$w(x,\bar{x}) = \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs} \delta(V_s) \, \mathrm{d}\bar{X}_s \, \Big| \, X_0 = x, \bar{X}_0 = \bar{x}\right],$$

Theorem – Al Ghanim, Loeffen, W. (2020+)

Assume $(x, \bar{x}) \mapsto f(x, \bar{x})$, for $x \leq \bar{x}$, satisfies:

•
$$f(x, \overline{x}) = 0$$
 if $x < 0$ or $x \ge a$,

•
$$(\mathcal{L} - q)f(x, \bar{x}) = 0$$
 if $0 \le x \le a$,

where \mathcal{L} is the generator of X (acting on coordinate x).

$$w(x,\bar{x}) = \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs}\delta(V_s) \,\mathrm{d}\bar{X}_s \,\Big|\, X_0 = x, \bar{X}_0 = \bar{x}\right],$$

Theorem – Al Ghanim, Loeffen, W. (2020+)

Assume $(x, \bar{x}) \mapsto f(x, \bar{x})$, for $x \leq \bar{x}$, satisfies:

- $f(x, \overline{x}) = 0$ if x < 0 or $x \ge a$,
- $(\mathcal{L} q)f(x, \bar{x}) = 0$ if $0 \le x \le a$,
- $\cdot \ \delta(\bar{x})\partial_x f(\bar{x},\bar{x}) + (\delta(\bar{x})-1)\partial_{\bar{x}} f(\bar{x},\bar{x}) = \delta(\bar{x})$

where \mathcal{L} is the generator of X (acting on coordinate x).

$$w(x,\bar{x}) = \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs} \delta(V_s) \, \mathrm{d}\bar{X}_s \, \Big| \, X_0 = x, \bar{X}_0 = \bar{x}\right],$$

Theorem – Al Ghanim, Loeffen, W. (2020+)

Assume $(x, \bar{x}) \mapsto f(x, \bar{x})$, for $x \leq \bar{x}$, satisfies:

- $f(x, \overline{x}) = 0$ if x < 0 or $x \ge a$,
- $(\mathcal{L} q)f(x, \bar{x}) = 0$ if $0 \le x \le a$,
- $\cdot \ \delta(\bar{x})\partial_x f(\bar{x},\bar{x}) + (\delta(\bar{x})-1)\partial_{\bar{x}} f(\bar{x},\bar{x}) = \delta(\bar{x})$

where \mathcal{L} is the generator of X (acting on coordinate x). Then, f = w.

$$w(x,\bar{x}) = \mathbb{E}\left[\int_0^{\tau_0^a} e^{-qs} \delta(V_s) \, \mathrm{d}\bar{X}_s \, \Big| \, X_0 = x, \bar{X}_0 = \bar{x}\right],$$

Theorem – Al Ghanim, Loeffen, W. (2020+)

Assume $(x, \bar{x}) \mapsto f(x, \bar{x})$, for $x \leq \bar{x}$, satisfies:

- $f(x, \overline{x}) = 0$ if x < 0 or $x \ge a$,
- $(\mathcal{L} q)f(x, \bar{x}) = 0$ if $0 \le x \le a$,
- $\cdot \ \delta(\bar{x})\partial_x f(\bar{x},\bar{x}) + (\delta(\bar{x})-1)\partial_{\bar{x}} f(\bar{x},\bar{x}) = \delta(\bar{x})$

where \mathcal{L} is the generator of X (acting on coordinate x). Then, f = w.

 $\delta \cdot \partial_x g + (\delta - 1) \cdot \partial_{\bar{x}} g = 0$ for $x = \bar{x}$ is the condition for g to be in the domain of the generator of (V, \bar{V})

 \cdot Apply to get

$$w(x,\bar{x}) = \frac{W^{(q)}(x)}{W^{(q)}(\bar{x})} \int_{\bar{x}}^{a} \exp\left(-\int_{\bar{x}}^{y} \frac{W^{(q)'}(r)}{W^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

• Apply to get

$$w(x,\bar{x}) = \frac{W^{(q)}(x)}{W^{(q)}(\bar{x})} \int_{\bar{x}}^{a} \exp\left(-\int_{\bar{x}}^{y} \frac{W^{(q)'}(r)}{W^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

where $W^{(q)}$ are scale functions (with known Laplace transform).

• Not the only way, but:

 \cdot Apply to get

$$w(x,\bar{x}) = \frac{W^{(q)}(x)}{W^{(q)}(\bar{x})} \int_{\bar{x}}^{a} \exp\left(-\int_{\bar{x}}^{y} \frac{W^{(q)'}(r)}{W^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

- Not the only way, but:
 - Flexible

 \cdot Apply to get

$$w(x,\bar{x}) = \frac{W^{(q)}(x)}{W^{(q)}(\bar{x})} \int_{\bar{x}}^{a} \exp\left(-\int_{\bar{x}}^{y} \frac{W^{(q)'}(r)}{W^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

- Not the only way, but:
 - Flexible
 - Can guess w with some dodgy method, and verify with the theorem

 \cdot Apply to get

$$w(x,\bar{x}) = \frac{W^{(q)}(x)}{W^{(q)}(\bar{x})} \int_{\bar{x}}^{a} \exp\left(-\int_{\bar{x}}^{y} \frac{W^{(q)'}(r)}{W^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

- Not the only way, but:
 - Flexible
 - Can guess w with some dodgy method, and verify with the theorem
 - Reduces need for excursion theory or approximation by bounded variation processes

Taxation with bail-outs

· Process reflected below at zero: 'capital injections' or 'bail-outs'

Taxation with bail-outs

- · Process reflected below at zero: 'capital injections' or 'bail-outs'
- Conditions for 'f = w' are:
 - $f(x,\overline{x}) = f(0,\overline{x})$ if x < 0, and $f(x,\overline{x}) = 0$ if $x \ge a$,
 - $(\mathcal{L} q)f(x, \bar{x}) = 0$ if $0 \le x \le a$,
 - $\cdot \ \delta(\bar{x})\partial_x f(\bar{x},\bar{x}) + (\delta(\bar{x})-1)\partial_{\bar{x}} f(\bar{x},\bar{x}) = \delta(\bar{x})$
- Only change is in boundary conditions

Taxation with bail-outs

$$w(x,\bar{x}) = \frac{Z^{(q)}(x)}{Z^{(q)}(\bar{x})} \int_{\bar{x}}^{\infty} \exp\left(-\int_{\bar{x}}^{y} \frac{Z^{(q)'}(r)}{Z^{(q)}(r)(1-\delta(r))} \, \mathrm{d}r\right) \frac{\delta(y)}{1-\delta(y)} \, \mathrm{d}y$$

10

• What is the best tax rate to maximise revenue?

- What is the best tax rate to maximise revenue?
- For *H* a predictable process, define \mathbb{P}^{H} , under which $V_t = X_t \int_0^t H_s \, \mathrm{d}\bar{X}_s$

- What is the best tax rate to maximise revenue?
- For *H* a predictable process, define \mathbb{P}^{H} , under which $V_t = X_t \int_0^t H_s \, \mathrm{d}\bar{X}_s$
- If $H_t = \delta(V_t)$, this is a tax process

- What is the best tax rate to maximise revenue?
- For *H* a predictable process, define \mathbb{P}^{H} , under which $V_t = X_t \int_0^t H_s \, \mathrm{d}\bar{X}_s$
- If $H_t = \delta(V_t)$, this is a tax process

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right] ?$$

Optimal control

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right]$$

Optimal control

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right]$$

- If totally free to choose: reflection above (at some level), i.e. $H^* = \overline{X} \lor b$

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right]$$

- If totally free to choose: reflection above (at some level), i.e. $H^* = \bar{X} \vee b$
- If tax rate constrained to $H_t \in [\alpha, \beta]$: switch from α to β when V crosses some level *b*, i.e. $H_t^* = \delta(V_t)$,

$$\delta(x) = \begin{cases} \alpha, & x \leq b, \\ \beta, & x > b \end{cases}$$

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right]$$

- If totally free to choose: reflection above (at some level), i.e. $H^* = \bar{X} \vee b$
- If tax rate constrained to $H_t \in [\alpha, \beta]$: switch from α to β when V crosses some level *b*, i.e. $H_t^* = \delta(V_t)$,

$$\delta(x) = \begin{cases} \alpha, & x \le b, \\ \beta, & x > b \end{cases}$$

• Extension to maximising tax revenue minus bail-out cost, etc. – many possibilities

$$H^* = \arg \max_{H} \mathbb{E}^{H} \left[\int_{0}^{\tau_{0}^{\infty}} e^{-qs} H_{s} \, \mathrm{d}\bar{X}_{s} \right]$$

- If totally free to choose: reflection above (at some level), i.e. $H^* = \bar{X} \vee b$
- If tax rate constrained to $H_t \in [\alpha, \beta]$: switch from α to β when V crosses some level *b*, i.e. $H_t^* = \delta(V_t)$,

$$\delta(x) = \begin{cases} \alpha, & x \le b, \\ \beta, & x > b \end{cases}$$

- Extension to maximising tax revenue minus bail-out cost, etc. many possibilities
- Solutions are explicit (in terms of scale functions)

Optimal control: explicit result

• Assumption: the tail of the Lévy measure is log-convex

Optimal control: explicit result

- Assumption: the tail of the Lévy measure is log-convex
- Think of the Lévy measure as $\lambda F(dx)$, where λ is the rate of the Poisson process of jumps, and *F* is the distribution of the jumps

- Assumption: the tail of the Lévy measure is log-convex
- Think of the Lévy measure as $\lambda F(dx)$, where λ is the rate of the Poisson process of jumps, and F is the distribution of the jumps
- \cdot Optimal taxation is of form

$$\delta(x) = \begin{cases} \alpha, & x \le b, \\ \beta, & x > b \end{cases}$$

- Assumption: the tail of the Lévy measure is log-convex
- Think of the Lévy measure as $\lambda F(dx)$, where λ is the rate of the Poisson process of jumps, and F is the distribution of the jumps
- \cdot Optimal taxation is of form

$$\delta(x) = \begin{cases} \alpha, & x \le b, \\ \beta, & x > b \end{cases}$$

• Let

$$R(x) = \int_{x}^{\infty} \frac{W^{(q)}(s)^{1-\frac{1}{1-\beta}}W^{(q)\prime\prime}(s)}{W^{(q)\prime}(s)^{2}} ds$$

- Assumption: the tail of the Lévy measure is log-convex
- Think of the Lévy measure as $\lambda F(dx)$, where λ is the rate of the Poisson process of jumps, and F is the distribution of the jumps
- \cdot Optimal taxation is of form

$$\delta(x) = \begin{cases} \alpha, & x \le b, \\ \beta, & x > b \end{cases}$$

• Let

$$R(x) = \int_{x}^{\infty} \frac{W^{(q)}(s)^{1-\frac{1}{1-\beta}}W^{(q)\prime\prime}(s)}{W^{(q)\prime}(s)^{2}} ds$$

• b = 0 iff $R(0) \ge 0$, otherwise b is the unique root of R(b) = 0

• Wang and Hu (IME, 2012): optimal control of tax rates $\gamma(X_s)$

- \cdot Wang and Hu (IME, 2012): optimal control of tax rates $\gamma(X_{\rm s})$
- Their solution is equivalent to ours

- \cdot Wang and Hu (IME, 2012): optimal control of tax rates $\gamma(X_{\rm s})$
- Their solution is equivalent to ours
- But it is expressed in terms of an optimal $\gamma^*(X_s)$

- \cdot Wang and Hu (IME, 2012): optimal control of tax rates $\gamma(X_{\rm s})$
- Their solution is equivalent to ours
- But it is expressed in terms of an optimal $\gamma^*(X_s)$
- Years later we showed $\gamma(X_s)$ and $\delta(V_s)$ tax rates are equivalent (1st theorem from today)

- Wang and Hu (IME, 2012): optimal control of tax rates $\gamma(X_s)$
- Their solution is equivalent to ours
- But it is expressed in terms of an optimal $\gamma^*(X_s)$
- Years later we showed $\gamma(X_s)$ and $\delta(V_s)$ tax rates are equivalent (1st theorem from today)
- We optimise over all tax rates (predictable H_s)

- $X_t = ct + \sum_{i=1}^{N_t} \xi_i$,
- N_t a λ -Poisson process; $-\xi_i$ i.i.d. exponential with rate μ (mean $1/\mu$)

- $\cdot \ X_t = \frac{ct}{\sum_{i=1}^{N_t} \xi_i},$
- · N_t a λ-Poisson process; $-\xi_i$ i.i.d. exponential with rate μ (mean 1/ μ)
- $c = (1 + \theta)\lambda/\mu$

- $X_t = ct + \sum_{i=1}^{N_t} \xi_i,$
- N_t a λ -Poisson process; $-\xi_i$ i.i.d. exponential with rate μ (mean $1/\mu$)
- $c = (1 + \theta)\lambda/\mu$
- θ is 'loading factor': $\mathbb{E}[X_1 \mid X_0 = 0] = \theta \lambda \mathbb{E}[-\xi_1] = \theta \lambda / \mu$,

- $X_t = Ct + \sum_{i=1}^{N_t} \xi_i$,
- N_t a λ -Poisson process; $-\xi_i$ i.i.d. exponential with rate μ (mean $1/\mu$)
- $c = (1 + \theta)\lambda/\mu$
- θ is 'loading factor': $\mathbb{E}[X_1 \mid X_0 = 0] = \theta \lambda \mathbb{E}[-\xi_1] = \theta \lambda / \mu$,
- $\mathbb{P}(X_t > 0 \text{ forever } | X_0 = 0) = 1 \frac{1}{1+\theta}$

- $X_t = Ct + \sum_{i=1}^{N_t} \xi_i$,
- N_t a λ -Poisson process; $-\xi_i$ i.i.d. exponential with rate μ (mean $1/\mu$)
- $c = (1 + \theta)\lambda/\mu$
- θ is 'loading factor': $\mathbb{E}[X_1 \mid X_0 = 0] = \theta \lambda \mathbb{E}[-\xi_1] = \theta \lambda / \mu$,
- $\mathbb{P}(X_t > 0 \text{ forever } | X_0 = 0) = 1 \frac{1}{1+\theta}$

D. Al Ghanim, R. Loeffen and A. R. Watson The equivalence of two tax processes Insurance Math. Econom., 2020. doi:10.1016/j.insmatheco.2019.10.002.

📄 ...and forthcoming work.

D. Al Ghanim, R. Loeffen and A. R. Watson **The equivalence of two tax processes** *Insurance Math. Econom.*, 2020. doi:10.1016/j.insmatheco.2019.10.002.

📄 ...and forthcoming work.

Thank you!