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- Risk process: X, = X, + ct + Zﬁ} &, with N, Poisson process, §; i.i.d.
- Can include Brownian part and fast, small jumps: Lévy process

- Wealth of insurance company: c is premium rate, & are claims

- Intrinsic motivation: continuous equivalent of random walk



Reflected risk process

— X

Xo =X, =

Y= X — (X, — Xo),
X; = supXs v X,

sst



Tax process - partially reflected

—X

4 —v

3]

1 X():)_(o:1,
0 650.6

t
vt=><t—/O S(Vo)dX, X, =supX, VX,

s<t



Tax process - partially reflected

—X

4 —v

3]

1 X():)_(o:1,
0 650.6

t
vt=><t—/O S(Vo)dX, X, =supX, VX,

s<t

- 0 is the tax rate in loss-carry-forward taxation



Tax process - partially reflected

—X

4 —v

3]

1 X():)_(o:1,
0 650.6

t
vt=><t—/O S(Vo)dX, X, =supX, VX,

s<t

- 0 is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way



Tax process - partially reflected

—X

3

1 XO = >_<O = 'I,

0 0.6, x<2,
6(x) =

- 09, x=z22

t
vt=><t—/O S(Vo)dX, X, =supX, VX,

s<t

- 0 is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way



Tax process - partially reflected

—X

4 —v

3

1 XO = >_<O = 1,
2 5(X) =0V (x—1)2A09

t
vt=><t—/O S(Vo)dX, X, =supX, VX,

s<t

- 0 is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way



Tax process - partially reflected
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1 XO = >_<O = 1,
2 5(X) =0V (x—1)2A09

t
V, = X, —/ S(Vo)dX, X, =supX, VX,
0 s<t
- 0 is the tax rate in loss-carry-forward taxation
- Introduces spatial dependence in a tractable way
- Questions: existence? computation of functionals? optimal 67
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Theorem - Al Ghanim, Loeffen, W. (2020)
If the differential equation

y' () =1-56((®), y(0)=X
has a unique solution, then the equation
t — —
V, = X, —/ S(V) dX,  Xo=xX, =X,
0
has a unique solution V.

- Lety(s) = &(y(s —X)).

V=X — _/;7()(5) dX; satisfies the equation for V: existence

- Converse direction: uniqueness

- Core idea: look at V and X while they are drifting at the maximum
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Theorem - Al Ghanim, Loeffen, W. (2020+)
Assume (x,Xx) — f(x,x), for x < X, satisfies:

- f(x,x)=0ifx<0orx=aq,
c(L—q)f(x,x)=0if0<x<aq,
= 69 f (X, X) + (6(X) — 1S (X, X) = &(X)

where £ is the generator of X (acting on coordinate x).

6-0,g+(6—1)-0;g =0forx=xisthe condition for g to be in the
domain of the generator of (V,V)
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- Apply to get

W@ o y W’ (r) 6(y)
W<X'X>‘w<q><x>l exp([ w<q><r><16<r>>dr)1—6<y> v

where W@ are scale functions (with known Laplace transform).

- Not the only way, but:
- Flexible
- Can guess w with some dodgy method, and verify with the
theorem
- Reduces need for excursion theory or approximation by
bounded variation processes
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—V
3 — V+reflection

- Process reflected below at zero: ‘capital injections’ or ‘bail-outs’
- Conditions for ’f = w’ are:
- f(x,x) =f(0,x) ifx<0,and f(x,X) =0 ifx = q,
c(L—=q)f(x,x)=0if0<x<aq,
© 6(X)O,f (X, X) + (6(X) — N)Oef (X, %) = 6(X)
- Only change is in boundary conditions



Taxation with bail-outs

 Z0(x) = y 7@ (1) 6(y)
w(x,X) = z(q>(i>/x exP(‘[ 7@ (1= 6(r)) dr)w — &) .
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T5° B
H* = arg max,, E" [/ e 9 H, dXS}
0

- If totally free to choose: reflection above (at some level), i.e.
H*=XVb

- If tax rate constrained to H, € [a, B]: switch from o to B when V
crosses some level b, i.e. Hf = 6(V,),

a, X<b,
o(x) =
B, x>b

- Extension to maximising tax revenue minus bail-out cost, etc. -
many possibilities
- Solutions are explicit (in terms of scale functions)
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Optimal control: explicit result

- Assumption: the tail of the Lévy measure is log-convex

- Think of the Lévy measure as AF(dx), where A is the rate of the
Poisson process of jumps, and F is the distribution of the jumps

- Optimal taxation is of form

a, x<b,
6(x) =
B, x>b

- Let

oo W@ ()" TEW@” (s
R0 - / (s) (s)
: W@ (s)2
- b=0iff R(0) = 0, otherwise b is the unique root of R(b) =0
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- Wang and Hu (IME, 2012): optimal control of tax rates v(X;)
- Their solution is equivalent to ours
- Butitis expressed in terms of an optimal v (X;)

- Years later we showed v(X,) and 6(V,) tax rates are equivalent (1st
theorem from today)

- We optimise over all tax rates (predictable H.)

14
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CXp=cty Z,Aiﬁ Sin
- N, a A-Poisson process; —¢; i.i.d. exponential with rate y (mean 1/p)
- c=(1+0)A/p
- Bis ‘loading factor” E[X, | X, = 0] = OAE[—&;] = O/,
- P(X, > 0 forever | X, =0) =1—
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