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• Loss-carry-forward: tax paid at the maximum
• What is the best tax rate to maximise revenue?
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Risk process
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• Risk process: Xt = X0 + ct + ∑Nt
i=1 ξi,

with Nt Poisson process, ξi i.i.d.
• Can include Brownian part and fast, small jumps: Lévy process
• Wealth of insurance company: c is premium rate, ξi are claims
• Intrinsic motivation: continuous equivalent of random walk
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Reflected risk process
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X0 = ̄X0 = 1

Yt = Xt − ( ̄Xt − ̄X0),
̄Xt = sup

s≤t
Xs ∨ ̄X0
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Tax process – partially reflected
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X0 = ̄X0 = 1,
δ ≡ 0.6

Vt = Xt − ∫
t

0
δ(Vs) d ̄Xs, ̄Xt = sup

s≤t
Xs ∨ ̄X0

• δ is the tax rate in loss-carry-forward taxation
• Introduces spatial dependence in a tractable way
• Questions: existence? computation of functionals? optimal δ?
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Types of tax rate

Two ideas in literature:

• Vt = Xt − ∫t
0 δ(Vs) d ̄Xs

– not obvious it exists – (V , ̄V) is Markov
• V′

t = Xt − ∫t
0 𝛾(Xs) d ̄Xs

– clear that it exists – (V′, ̄V′) is not Markov
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Existence

Theorem – Al Ghanim, Loeffen, W. (2020)
If the differential equation

y′(t) = 1 − δ(y(t)), y(0) = ̄x,

has a unique solution,

then the equation

Vt = Xt − ∫
t

0
δ(Vs) d ̄Xs, X0 = x, ̄X0 = ̄x,

has a unique solution V .

• Let 𝛾(s) = δ(y(s − ̄x)).
• V′

t = Xt − ∫t
0 𝛾(Xs) d ̄Xs satisfies the equation for V : existence

• Converse direction: uniqueness
• Core idea: look at V and X while they are drifting at the maximum
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Functionals

Present value of tax collected until exiting [0, a]:

w(x, ̄x) = 𝔼[∫
τa0

0
e−qsδ(Vs) d ̄Xs ∣ X0 = x, ̄X0 = ̄x],

τa0 = inf{t ≥ 0 : Vt ∉ [0, a]},
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Functionals: computation

w(x, ̄x) = 𝔼[∫
τa0

0
e−qsδ(Vs) d ̄Xs ∣ X0 = x, ̄X0 = ̄x],

Theorem – Al Ghanim, Loeffen, W. (2020+)
Assume (x, ̄x) ↦ f (x, ̄x), for x ≤ ̄x, satisfies:

• f(x, ̄x) = 0 if x < 0 or x ≥ a,

• (ℒ − q)f (x, ̄x) = 0 if 0 ≤ x ≤ a,
• δ( ̄x)𝜕xf( ̄x, ̄x) + (δ( ̄x) − 1)𝜕 ̄xf ( ̄x, ̄x) = δ( ̄x)

where ℒ is the generator of X (acting on coordinate x). Then, f = w.

δ ⋅ 𝜕xg + (δ − 1) ⋅ 𝜕 ̄xg = 0 for x = ̄x is the condition for g to be in the
domain of the generator of (V , ̄V)
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Functionals: discussion

• Apply to get

w(x, ̄x) =
W(q)(x)
W(q)( ̄x)

∫
a

̄x
exp(− ∫

y

̄x

W(q)′(r)
W(q)(r)(1 − δ(r))

dr)
δ(y)

1 − δ(y) dy

where W(q) are scale functions (with known Laplace transform).

• Not the only way, but:

• Flexible
• Can guess w with some dodgy method, and verify with the
theorem

• Reduces need for excursion theory or approximation by
bounded variation processes
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Taxation with bail-outs
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• Process reflected below at zero: ‘capital injections’ or ‘bail-outs’

• Conditions for ‘f = w’ are:
• f (x, ̄x) = f(0, ̄x) if x < 0, and f (x, ̄x) = 0 if x ≥ a,
• (ℒ − q)f (x, ̄x) = 0 if 0 ≤ x ≤ a,
• δ( ̄x)𝜕xf ( ̄x, ̄x) + (δ( ̄x) − 1)𝜕 ̄xf ( ̄x, ̄x) = δ( ̄x)

• Only change is in boundary conditions
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Taxation with bail-outs
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w(x, ̄x) =
Z(q)(x)
Z(q)( ̄x)
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Optimal control

• What is the best tax rate to maximise revenue?

• For H a predictable process, define ℙH, under which
Vt = Xt − ∫t

0 Hs d ̄Xs
• If Ht = δ(Vt), this is a tax process

H∗ = argmaxH 𝔼H [∫
τ∞
0

0
e−qsHs d ̄Xs] ?

11



Optimal control

• What is the best tax rate to maximise revenue?
• For H a predictable process, define ℙH, under which
Vt = Xt − ∫t

0 Hs d ̄Xs

• If Ht = δ(Vt), this is a tax process

H∗ = argmaxH 𝔼H [∫
τ∞
0

0
e−qsHs d ̄Xs] ?

11



Optimal control

• What is the best tax rate to maximise revenue?
• For H a predictable process, define ℙH, under which
Vt = Xt − ∫t

0 Hs d ̄Xs
• If Ht = δ(Vt), this is a tax process

H∗ = argmaxH 𝔼H [∫
τ∞
0

0
e−qsHs d ̄Xs] ?

11



Optimal control

• What is the best tax rate to maximise revenue?
• For H a predictable process, define ℙH, under which
Vt = Xt − ∫t

0 Hs d ̄Xs
• If Ht = δ(Vt), this is a tax process

H∗ = argmaxH 𝔼H [∫
τ∞
0

0
e−qsHs d ̄Xs] ?

11



Optimal control

H∗ = argmaxH 𝔼H [∫
τ∞
0

0
e−qsHs d ̄Xs]

• If totally free to choose: reflection above (at some level), i.e.
H∗ = ̄X ∨ b

• If tax rate constrained to Ht ∈ [α, β]: switch from α to β when V
crosses some level b, i.e. H∗

t = δ(Vt),

δ(x) = {
α, x ≤ b,
β, x > b

• Extension to maximising tax revenue minus bail-out cost, etc. –
many possibilities

• Solutions are explicit (in terms of scale functions)

12
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Optimal control: explicit result

• Assumption: the tail of the Lévy measure is log-convex

• Think of the Lévy measure as λF(dx), where λ is the rate of the
Poisson process of jumps, and F is the distribution of the jumps

• Optimal taxation is of form

δ(x) = {
α, x ≤ b,
β, x > b

• Let

R(x) = ∫
∞

x

W(q)(s)1−
1

1−βW(q)′′(s)
W(q)′(s)2

ds

• b = 0 iff R(0) ≥ 0, otherwise b is the unique root of R(b) = 0
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A quirk, or, didn’t someone do this 8 years ago?

• Wang and Hu (IME, 2012): optimal control of tax rates 𝛾(Xs)

• Their solution is equivalent to ours
• But it is expressed in terms of an optimal 𝛾∗(Xs)
• Years later we showed 𝛾(Xs) and δ(Vs) tax rates are equivalent (1st
theorem from today)

• We optimise over all tax rates (predictable Hs)
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Optimal control: example

• Xt = ct + ∑Nt
i=1 ξi,

• Nt a λ-Poisson process; −ξi i.i.d. exponential with rate μ (mean 1/μ)

• c = (1 + θ)λ/μ
• θ is ‘loading factor’: 𝔼[X1 ∣ X0 = 0] = θλ𝔼[−ξ1] = θλ/μ,
• ℙ(Xt > 0 forever ∣ X0 = 0) = 1 − 1

1+θ
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Further reading

D. Al Ghanim, R. Loeffen and A. R. Watson
The equivalence of two tax processes
Insurance Math. Econom., 2020. doi:10.1016/j.insmatheco.2019.10.002.

...and forthcoming work.

Thank you!
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