\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\let \symnormal \mathit \)
\(\let \symliteral \mathrm \)
\(\let \symbb \mathbb \)
\(\let \symbbit \mathbb \)
\(\let \symcal \mathcal \)
\(\let \symscr \mathscr \)
\(\let \symfrak \mathfrak \)
\(\let \symsfup \mathsf \)
\(\let \symsfit \mathit \)
\(\let \symbfsf \mathbf \)
\(\let \symbfup \mathbf \)
\(\newcommand {\symbfit }[1]{\boldsymbol {#1}}\)
\(\let \symbfcal \mathcal \)
\(\let \symbfscr \mathscr \)
\(\let \symbffrak \mathfrak \)
\(\let \symbfsfup \mathbf \)
\(\newcommand {\symbfsfit }[1]{\boldsymbol {#1}}\)
\(\let \symup \mathrm \)
\(\let \symbf \mathbf \)
\(\let \symit \mathit \)
\(\let \symtt \mathtt \)
\(\let \symbffrac \mathbffrac \)
\(\newcommand {\mathfence }[1]{\mathord {#1}}\)
\(\newcommand {\mathover }[1]{#1}\)
\(\newcommand {\mathunder }[1]{#1}\)
\(\newcommand {\mathaccent }[1]{#1}\)
\(\newcommand {\mathbotaccent }[1]{#1}\)
\(\newcommand {\mathalpha }[1]{\mathord {#1}}\)
\(\def\upAlpha{\unicode{x0391}}\)
\(\def\upBeta{\unicode{x0392}}\)
\(\def\upGamma{\unicode{x0393}}\)
\(\def\upDigamma{\unicode{x03DC}}\)
\(\def\upDelta{\unicode{x0394}}\)
\(\def\upEpsilon{\unicode{x0395}}\)
\(\def\upZeta{\unicode{x0396}}\)
\(\def\upEta{\unicode{x0397}}\)
\(\def\upTheta{\unicode{x0398}}\)
\(\def\upVartheta{\unicode{x03F4}}\)
\(\def\upIota{\unicode{x0399}}\)
\(\def\upKappa{\unicode{x039A}}\)
\(\def\upLambda{\unicode{x039B}}\)
\(\def\upMu{\unicode{x039C}}\)
\(\def\upNu{\unicode{x039D}}\)
\(\def\upXi{\unicode{x039E}}\)
\(\def\upOmicron{\unicode{x039F}}\)
\(\def\upPi{\unicode{x03A0}}\)
\(\def\upVarpi{\unicode{x03D6}}\)
\(\def\upRho{\unicode{x03A1}}\)
\(\def\upSigma{\unicode{x03A3}}\)
\(\def\upTau{\unicode{x03A4}}\)
\(\def\upUpsilon{\unicode{x03A5}}\)
\(\def\upPhi{\unicode{x03A6}}\)
\(\def\upChi{\unicode{x03A7}}\)
\(\def\upPsi{\unicode{x03A8}}\)
\(\def\upOmega{\unicode{x03A9}}\)
\(\def\itAlpha{\unicode{x1D6E2}}\)
\(\def\itBeta{\unicode{x1D6E3}}\)
\(\def\itGamma{\unicode{x1D6E4}}\)
\(\def\itDigamma{\mathit{\unicode{x03DC}}}\)
\(\def\itDelta{\unicode{x1D6E5}}\)
\(\def\itEpsilon{\unicode{x1D6E6}}\)
\(\def\itZeta{\unicode{x1D6E7}}\)
\(\def\itEta{\unicode{x1D6E8}}\)
\(\def\itTheta{\unicode{x1D6E9}}\)
\(\def\itVartheta{\unicode{x1D6F3}}\)
\(\def\itIota{\unicode{x1D6EA}}\)
\(\def\itKappa{\unicode{x1D6EB}}\)
\(\def\itLambda{\unicode{x1D6EC}}\)
\(\def\itMu{\unicode{x1D6ED}}\)
\(\def\itNu{\unicode{x1D6EE}}\)
\(\def\itXi{\unicode{x1D6EF}}\)
\(\def\itOmicron{\unicode{x1D6F0}}\)
\(\def\itPi{\unicode{x1D6F1}}\)
\(\def\itRho{\unicode{x1D6F2}}\)
\(\def\itSigma{\unicode{x1D6F4}}\)
\(\def\itTau{\unicode{x1D6F5}}\)
\(\def\itUpsilon{\unicode{x1D6F6}}\)
\(\def\itPhi{\unicode{x1D6F7}}\)
\(\def\itChi{\unicode{x1D6F8}}\)
\(\def\itPsi{\unicode{x1D6F9}}\)
\(\def\itOmega{\unicode{x1D6FA}}\)
\(\def\upalpha{\unicode{x03B1}}\)
\(\def\upbeta{\unicode{x03B2}}\)
\(\def\upvarbeta{\unicode{x03D0}}\)
\(\def\upgamma{\unicode{x03B3}}\)
\(\def\updigamma{\unicode{x03DD}}\)
\(\def\updelta{\unicode{x03B4}}\)
\(\def\upepsilon{\unicode{x03F5}}\)
\(\def\upvarepsilon{\unicode{x03B5}}\)
\(\def\upzeta{\unicode{x03B6}}\)
\(\def\upeta{\unicode{x03B7}}\)
\(\def\uptheta{\unicode{x03B8}}\)
\(\def\upvartheta{\unicode{x03D1}}\)
\(\def\upiota{\unicode{x03B9}}\)
\(\def\upkappa{\unicode{x03BA}}\)
\(\def\upvarkappa{\unicode{x03F0}}\)
\(\def\uplambda{\unicode{x03BB}}\)
\(\def\upmu{\unicode{x03BC}}\)
\(\def\upnu{\unicode{x03BD}}\)
\(\def\upxi{\unicode{x03BE}}\)
\(\def\upomicron{\unicode{x03BF}}\)
\(\def\uppi{\unicode{x03C0}}\)
\(\def\upvarpi{\unicode{x03D6}}\)
\(\def\uprho{\unicode{x03C1}}\)
\(\def\upvarrho{\unicode{x03F1}}\)
\(\def\upsigma{\unicode{x03C3}}\)
\(\def\upvarsigma{\unicode{x03C2}}\)
\(\def\uptau{\unicode{x03C4}}\)
\(\def\upupsilon{\unicode{x03C5}}\)
\(\def\upphi{\unicode{x03D5}}\)
\(\def\upvarphi{\unicode{x03C6}}\)
\(\def\upchi{\unicode{x03C7}}\)
\(\def\uppsi{\unicode{x03C8}}\)
\(\def\upomega{\unicode{x03C9}}\)
\(\def\italpha{\unicode{x1D6FC}}\)
\(\def\itbeta{\unicode{x1D6FD}}\)
\(\def\itvarbeta{\unicode{x03D0}}\)
\(\def\itgamma{\unicode{x1D6FE}}\)
\(\def\itdigamma{\mathit{\unicode{x03DD}}}\)
\(\def\itdelta{\unicode{x1D6FF}}\)
\(\def\itepsilon{\unicode{x1D716}}\)
\(\def\itvarepsilon{\unicode{x1D700}}\)
\(\def\itzeta{\unicode{x1D701}}\)
\(\def\iteta{\unicode{x1D702}}\)
\(\def\ittheta{\unicode{x1D703}}\)
\(\def\itvartheta{\unicode{x1D717}}\)
\(\def\itiota{\unicode{x1D704}}\)
\(\def\itkappa{\unicode{x1D705}}\)
\(\def\itvarkappa{\unicode{x1D718}}\)
\(\def\itlambda{\unicode{x1D706}}\)
\(\def\itmu{\unicode{x1D707}}\)
\(\def\itnu{\unicode{x1D708}}\)
\(\def\itxi{\unicode{x1D709}}\)
\(\def\itomicron{\unicode{x1D70A}}\)
\(\def\itpi{\unicode{x1D70B}}\)
\(\def\itvarpi{\unicode{x1D71B}}\)
\(\def\itrho{\unicode{x1D70C}}\)
\(\def\itvarrho{\unicode{x1D71A}}\)
\(\def\itsigma{\unicode{x1D70E}}\)
\(\def\itvarsigma{\unicode{x1D70D}}\)
\(\def\ittau{\unicode{x1D70F}}\)
\(\def\itupsilon{\unicode{x1D710}}\)
\(\def\itphi{\unicode{x1D719}}\)
\(\def\itvarphi{\unicode{x1D711}}\)
\(\def\itchi{\unicode{x1D712}}\)
\(\def\itpsi{\unicode{x1D713}}\)
\(\def\itomega{\unicode{x1D714}}\)
\(\let \lparen (\)
\(\let \rparen )\)
\(\newcommand {\cuberoot }[1]{\,{}^3\!\!\sqrt {#1}}\,\)
\(\newcommand {\fourthroot }[1]{\,{}^4\!\!\sqrt {#1}}\,\)
\(\newcommand {\longdivision }[1]{\mathord {\unicode {x027CC}#1}}\)
\(\newcommand {\mathcomma }{,}\)
\(\newcommand {\mathcolon }{:}\)
\(\newcommand {\mathsemicolon }{;}\)
\(\newcommand {\overbracket }[1]{\mathinner {\overline {\ulcorner {#1}\urcorner }}}\)
\(\newcommand {\underbracket }[1]{\mathinner {\underline {\llcorner {#1}\lrcorner }}}\)
\(\newcommand {\overbar }[1]{\mathord {#1\unicode {x00305}}}\)
\(\newcommand {\ovhook }[1]{\mathord {#1\unicode {x00309}}}\)
\(\newcommand {\ocirc }[1]{\mathord {#1\unicode {x0030A}}}\)
\(\newcommand {\candra }[1]{\mathord {#1\unicode {x00310}}}\)
\(\newcommand {\oturnedcomma }[1]{\mathord {#1\unicode {x00312}}}\)
\(\newcommand {\ocommatopright }[1]{\mathord {#1\unicode {x00315}}}\)
\(\newcommand {\droang }[1]{\mathord {#1\unicode {x0031A}}}\)
\(\newcommand {\leftharpoonaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\rightharpoonaccent }[1]{\mathord {#1\unicode {x020D1}}}\)
\(\newcommand {\vertoverlay }[1]{\mathord {#1\unicode {x020D2}}}\)
\(\newcommand {\leftarrowaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\annuity }[1]{\mathord {#1\unicode {x020E7}}}\)
\(\newcommand {\widebridgeabove }[1]{\mathord {#1\unicode {x020E9}}}\)
\(\newcommand {\asteraccent }[1]{\mathord {#1\unicode {x020F0}}}\)
\(\newcommand {\threeunderdot }[1]{\mathord {#1\unicode {x020E8}}}\)
\(\newcommand {\Bbbsum }{\mathop {\unicode {x2140}}\limits }\)
\(\newcommand {\oiint }{\mathop {\unicode {x222F}}\limits }\)
\(\newcommand {\oiiint }{\mathop {\unicode {x2230}}\limits }\)
\(\newcommand {\intclockwise }{\mathop {\unicode {x2231}}\limits }\)
\(\newcommand {\ointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\ointctrclockwise }{\mathop {\unicode {x2233}}\limits }\)
\(\newcommand {\varointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\leftouterjoin }{\mathop {\unicode {x27D5}}\limits }\)
\(\newcommand {\rightouterjoin }{\mathop {\unicode {x27D6}}\limits }\)
\(\newcommand {\fullouterjoin }{\mathop {\unicode {x27D7}}\limits }\)
\(\newcommand {\bigbot }{\mathop {\unicode {x27D8}}\limits }\)
\(\newcommand {\bigtop }{\mathop {\unicode {x27D9}}\limits }\)
\(\newcommand {\xsol }{\mathop {\unicode {x29F8}}\limits }\)
\(\newcommand {\xbsol }{\mathop {\unicode {x29F9}}\limits }\)
\(\newcommand {\bigcupdot }{\mathop {\unicode {x2A03}}\limits }\)
\(\newcommand {\bigsqcap }{\mathop {\unicode {x2A05}}\limits }\)
\(\newcommand {\conjquant }{\mathop {\unicode {x2A07}}\limits }\)
\(\newcommand {\disjquant }{\mathop {\unicode {x2A08}}\limits }\)
\(\newcommand {\bigtimes }{\mathop {\unicode {x2A09}}\limits }\)
\(\newcommand {\modtwosum }{\mathop {\unicode {x2A0A}}\limits }\)
\(\newcommand {\sumint }{\mathop {\unicode {x2A0B}}\limits }\)
\(\newcommand {\intbar }{\mathop {\unicode {x2A0D}}\limits }\)
\(\newcommand {\intBar }{\mathop {\unicode {x2A0E}}\limits }\)
\(\newcommand {\fint }{\mathop {\unicode {x2A0F}}\limits }\)
\(\newcommand {\cirfnint }{\mathop {\unicode {x2A10}}\limits }\)
\(\newcommand {\awint }{\mathop {\unicode {x2A11}}\limits }\)
\(\newcommand {\rppolint }{\mathop {\unicode {x2A12}}\limits }\)
\(\newcommand {\scpolint }{\mathop {\unicode {x2A13}}\limits }\)
\(\newcommand {\npolint }{\mathop {\unicode {x2A14}}\limits }\)
\(\newcommand {\pointint }{\mathop {\unicode {x2A15}}\limits }\)
\(\newcommand {\sqint }{\mathop {\unicode {x2A16}}\limits }\)
\(\newcommand {\intlarhk }{\mathop {\unicode {x2A17}}\limits }\)
\(\newcommand {\intx }{\mathop {\unicode {x2A18}}\limits }\)
\(\newcommand {\intcap }{\mathop {\unicode {x2A19}}\limits }\)
\(\newcommand {\intcup }{\mathop {\unicode {x2A1A}}\limits }\)
\(\newcommand {\upint }{\mathop {\unicode {x2A1B}}\limits }\)
\(\newcommand {\lowint }{\mathop {\unicode {x2A1C}}\limits }\)
\(\newcommand {\bigtriangleleft }{\mathop {\unicode {x2A1E}}\limits }\)
\(\newcommand {\zcmp }{\mathop {\unicode {x2A1F}}\limits }\)
\(\newcommand {\zpipe }{\mathop {\unicode {x2A20}}\limits }\)
\(\newcommand {\zproject }{\mathop {\unicode {x2A21}}\limits }\)
\(\newcommand {\biginterleave }{\mathop {\unicode {x2AFC}}\limits }\)
\(\newcommand {\bigtalloblong }{\mathop {\unicode {x2AFF}}\limits }\)
\(\newcommand {\arabicmaj }{\mathop {\unicode {x1EEF0}}\limits }\)
\(\newcommand {\arabichad }{\mathop {\unicode {x1EEF1}}\limits }\)
\( \newcommand {\iu }{\mathsf {i}} \newcommand {\diff }[1]{\mathsf {d}#1} \newcommand {\PP }{\mathbb {P}} \newcommand {\EE }{\mathbb {E}} \newcommand {\RR }{\mathbb {R}} \newcommand {\CC }{\mathbb {C}} \newcommand
{\NN }{\mathbb {N}} \newcommand {\ZZ }{\mathbb {Z}} \newcommand {\FF }{\mathcal {F}} \newcommand \Aa {\mathcal {A}} \newcommand \Ll {\mathcal {L}} \newcommand \Dd {\mathcal {D}} \newcommand \ip [2]{\langle
#1,#2\rangle } \newcommand \Ind {\mathbb {1}} \newcommand {\Indic }[1]{\Ind _{\{#1\}}} \DeclareMathOperator {\supp }{supp} \newcommand {\ee }{\mathrm {e}} \DeclareMathOperator {\Exp }{Exp} \)
\( \definecolor {tPrim}{RGB}{0,95,107} \definecolor {TolDarkBlueAcc}{RGB}{43,87,130} \definecolor {TolDarkPink}{RGB}{136,34,85} \newcommand \alert [1]{{\color {tPrim}#1}} \newcommand \Zb {\mathbf {Z}} \newcommand
\dd {\mathrm {d}} \DeclareMathOperator {\oRe }{Re} \DeclareMathOperator {\oIm }{Im} \renewcommand {\Re }{\oRe } \renewcommand {\Im }{\oIm } \)
\(\let \symsf \symsfup \)
\(\def\Alpha{\unicode{x0391}}\)
\(\def\Beta{\unicode{x0392}}\)
\(\def\Gamma{\unicode{x0393}}\)
\(\def\Digamma{\unicode{x03DC}}\)
\(\def\Delta{\unicode{x0394}}\)
\(\def\Epsilon{\unicode{x0395}}\)
\(\def\Zeta{\unicode{x0396}}\)
\(\def\Eta{\unicode{x0397}}\)
\(\def\Theta{\unicode{x0398}}\)
\(\def\Vartheta{\unicode{x03F4}}\)
\(\def\Iota{\unicode{x0399}}\)
\(\def\Kappa{\unicode{x039A}}\)
\(\def\Lambda{\unicode{x039B}}\)
\(\def\Mu{\unicode{x039C}}\)
\(\def\Nu{\unicode{x039D}}\)
\(\def\Xi{\unicode{x039E}}\)
\(\def\Omicron{\unicode{x039F}}\)
\(\def\Pi{\unicode{x03A0}}\)
\(\def\Varpi{\unicode{x03D6}}\)
\(\def\Rho{\unicode{x03A1}}\)
\(\def\Sigma{\unicode{x03A3}}\)
\(\def\Tau{\unicode{x03A4}}\)
\(\def\Upsilon{\unicode{x03A5}}\)
\(\def\Phi{\unicode{x03A6}}\)
\(\def\Chi{\unicode{x03A7}}\)
\(\def\Psi{\unicode{x03A8}}\)
\(\def\Omega{\unicode{x03A9}}\)
\(\def\alpha{\unicode{x1D6FC}}\)
\(\def\beta{\unicode{x1D6FD}}\)
\(\def\varbeta{\unicode{x03D0}}\)
\(\def\gamma{\unicode{x1D6FE}}\)
\(\def\digamma{\mathit{\unicode{x03DD}}}\)
\(\def\delta{\unicode{x1D6FF}}\)
\(\def\epsilon{\unicode{x1D716}}\)
\(\def\varepsilon{\unicode{x1D700}}\)
\(\def\zeta{\unicode{x1D701}}\)
\(\def\eta{\unicode{x1D702}}\)
\(\def\theta{\unicode{x1D703}}\)
\(\def\vartheta{\unicode{x1D717}}\)
\(\def\iota{\unicode{x1D704}}\)
\(\def\kappa{\unicode{x1D705}}\)
\(\def\varkappa{\unicode{x1D718}}\)
\(\def\lambda{\unicode{x1D706}}\)
\(\def\mu{\unicode{x1D707}}\)
\(\def\nu{\unicode{x1D708}}\)
\(\def\xi{\unicode{x1D709}}\)
\(\def\omicron{\unicode{x1D70A}}\)
\(\def\pi{\unicode{x1D70B}}\)
\(\def\varpi{\unicode{x1D71B}}\)
\(\def\rho{\unicode{x1D70C}}\)
\(\def\varrho{\unicode{x1D71A}}\)
\(\def\sigma{\unicode{x1D70E}}\)
\(\def\varsigma{\unicode{x1D70D}}\)
\(\def\tau{\unicode{x1D70F}}\)
\(\def\upsilon{\unicode{x1D710}}\)
\(\def\phi{\unicode{x1D719}}\)
\(\def\varphi{\unicode{x1D711}}\)
\(\def\chi{\unicode{x1D712}}\)
\(\def\psi{\unicode{x1D713}}\)
\(\def\omega{\unicode{x1D714}}\)
The Wiener-Hopf factorisation of Lévy processes
1 The Wiener-Hopf factorisation
An ‘elementary’ question
-
• Let \(Y>0\), \(Z<0\) be independent with full support, and \(X = Y+Z\)
-
• Is such a decomposition unique?
-
• In general, the answer is no: the Laplace distribution can be factored in many different ways
-
• \(X\) has an infinitely divisible distribution if for any \(n\ge 1\) there exist iid \(X^{(k)}\) such that \(X \overset {d}{=} X^{(1)}+\dotsb +X^{(n)}\)
-
• When restricting to infinitely divisible distributions, the answer is yes
Lévy processes
-
• \(X\) is a Lévy process if it has stationary, independent increments
-
• Its one-dimensional distributions \(X_t\) are infinitely divisible
-
• \(\psi \) given by \(\EE e^{\iu z X_t} = e^{t\psi (z)}\) is the characteristic exponent (CE) of \(X\)
-
• Lévy–Khintchine formula: \(\psi (z) = \iu a z - \frac {1}{2}\sigma ^2 z^2 + \int _{\RR } \bigl ( e^{\iu z x} - 1 - \iu z x\Ind _{[-1,1]}(x)\bigr ) \Pi (\dd x)\)
-
• \(a\) incorporates drift, \(\sigma \) the Gaussian coefficient, jumps of size \(\dd x\) occur at rate \(\Pi (\dd x)\)
Wiener-Hopf factorisation (version 1)
-
• Let \(\ee _q \sim \Exp (q)\) and \(\bar {X}_t = \sup _{s\le t} X_s\)
-
• \(X_{\ee _q} = \bar {X}_{\ee _q} + (X-\bar {X})_{\ee _q}\)
-
• \(X_{\ee _q}\) is infinitely divisible
-
• Summands are independent, infinitely divisible and have disjoint support
-
• Therefore, such a factorisation is unique
Wiener-Hopf factorisation (version 2, path picture)
\(H^\pm \) are subordinators (increasing Lévy processes), possibly killed
Wiener-Hopf factorisation (version 2, analytic picture)
-
• Let \(\psi \) be the characteristic exponent of \(X\), and \(\kappa _\pm \) the characteristic exponents of \(H^\pm \)
-
• Then
\[ - \psi (z) = \kappa _+(z) \kappa _-(-z), \quad z\in \symbb {R}\]
-
• Warning! This does not mean \(X_t = H^+_t - H^-_t\)!
The result: the Wiener-Hopf factorisation is unique
-
Theorem 1 (DSTW, 2023+). Let \(\kappa _\pm '\) be the characteristic
exponents of two subordinators, such that
\[ -\psi (z) = \kappa _+(z) \kappa _-(-z) = \kappa _+'(z)\kappa _-'(-z), \quad z\in \symbb {R}. \]
Then \(\kappa _+(z) = c\kappa _+'(z)\) and \(\kappa _-'(z) = c\kappa _-(z)\) for some \(c>0\).
We also proved an analogous result for random walks.
Prior art: killed Lévy process, I
-
• Fix \(q>0\)
-
• \(z\mapsto \psi (z)-q\) is the characteristic exponent of \(X\) killed at rate \(q\)
-
• Path and analytic pictures still valid
-
• \(\kappa _\pm (q,\cdot )\) are characteristic exponents of some ladder height processes, and
\[ q-\psi (z) = \kappa _+(q,z)\kappa _-(q,-z), \quad z \in \symbb {R}. \]
-
Theorem 2 (Rogozin (1966) or earlier). Fix \(q>0\) and let \(\kappa _\pm
(q,\cdot )\) and \(\kappa '_\pm (q,\cdot )\) be characteristic exponents of subordinators, such that
\[ q -\psi (z) = \kappa _+(q,z) \kappa _-(q,-z) = \kappa _+'(q,z)\kappa _-'(q,-z), \quad z\in \symbb {R}. \]
Then \(\kappa _+(q,z) = c\kappa _+'(q,z)\) and \(\kappa _-'(q,z) = c\kappa _-(q,z)\) for some \(c>0\) and all \(z \in \RR \).
Prior art: killed Lévy process, II
Sketch proof
-
• \(\kappa (q,z)\) can be extended to holomorphic functions on \(\Im z \ge 0\) (where \(\kappa \in \{\kappa _+,\kappa _-,\kappa _+',\kappa _-'\}\))
-
• \(\Re \kappa (q,z) \le \kappa (q,0) < 0\)
-
• \(\kappa (q,z) = O(z)\) as \(\lvert z\rvert \to \infty \)
-
• \(F(z) = \begin {cases} \kappa _+(q,z)/\kappa _+'(q,z), & \Im z \ge 0, \\ \kappa _-'(q,-z)/\kappa _-(q,-z), & \Im z \le 0 \end {cases}\)
-
• \(F\) is entire and non-zero
-
• \(\log F(z) = \log \kappa _+(q,z) - \log \kappa _+'(q,z)\) for \(\Im z \ge 0\)
-
• \(\log F(z) = o(z)\) as \(\lvert z\rvert \to \infty \)
-
• Liouville’s theorem: \(F(z) = c\)
Prior art: killed Lévy process, III
-
• When \(q = 0\), may have \(\liminf _{\lvert z\rvert \to \infty , z\in \RR }\lvert \kappa (z)\rvert = 0\)
-
• Then \(\log \kappa (z)\) is unbounded and Liouville argument fails
2 Why is it important?
The inverse problem
-
• Let \(H^\pm \) be a pair of subordinators with CEs \(\kappa _\pm \)
-
• When is there a Lévy process \(X\) with CE \(\psi \) such that \(-\psi (z) = \kappa _+(z)\kappa _-(-z)\)?
-
• When such \(X\) exists, we call \(H^\pm \) friends
Philanthropy
A subordinator \(H\) is called a philanthropist if its Lévy measure admits a decreasing density.
Construction of Lévy processes
If we have philanthropists with CEs \(\kappa _\pm \), then
\[ \psi (z) = -\kappa _+(z)\kappa _-(-z) \]
is the CE of a Lévy process.
-
Example 4 (Kuznetsov and Pardo, 2013). Let \(\beta _\pm \ge 0, \gamma
_\pm \in (0,1)\). Then
\[ \kappa _\pm (z) = \protect \frac {\Gamma (\beta _\pm +\gamma _\pm -\mathsf {i}z)}{\Gamma (\beta _\pm -\mathsf {i}z)} \]
gives rise to a hypergeometric Lévy process.
Fluctuations of constructed Lévy processes
-
• First passage times: \(\tau _Z(x) = \inf \{ t\ge 0: Z_t > x \}\), where \(Z \in \{X, H^+\}\)
-
• First passage distributions: \(\PP (X_{\tau _X(x)} \in \cdot ) = \PP (H^+_{\tau _{H^+}(x)} \in \cdot )\)
-
• If \(X\) is constructed via friendship, does \(H^+\) have CE \(\kappa _+\)?
3 Proving uniqueness
Tempered distributions
-
• Rapidly decaying functions: \(\mathcal {S} = \{ \phi \colon \RR \to \CC : \forall \alpha ,\beta \in \NN \cup \{0\} \ \lim _{\lvert x\rvert \to \infty } \lvert x^\alpha \phi ^{(\beta )}(x) \rvert < \infty \}\)
-
• Tempered distributions: \(\mathcal {S}' = \{ \text {continuous linear functionals } h \colon \mathcal {S}\to \CC \}\)
-
• Notation: \(\langle h,\phi \rangle = h(\phi ) = \langle h(x), \phi (x) \rangle \)
Examples
-
• Radon measures with slow growth near \(\pm \infty \): \(\langle \mu ,\phi \rangle = \int \phi (x) \, \mu (\dd x)\)
-
• \(\langle \delta , \phi \rangle = \phi (0)\)
-
• \(\langle D\delta , \phi \rangle = -\phi '(0)\)
Tempered distributions: operations
-
• Reflection: \(\langle \hat {h},\phi \rangle = \langle h(x), \phi (-x)\rangle \)
-
• Differentiation: \(\langle Dh, \phi \rangle = -\langle h, \phi '\rangle \)
-
• Fourier transform:
-
– \(\mathcal {F}\phi (z) = \int e^{\iu x z} \phi (x) \, \dd x\); then \(\mathcal {F} \colon \mathcal {S} \to \mathcal {S}\)
-
– \(\langle \mathcal {F}h, \phi \rangle = \langle h, \mathcal {F}\phi \rangle \)
Some useful representations
Lévy–Khintchine formula
For \(H^+\) we have
\[ \kappa _+(z) = -q_+ + \mathsf {i}d_+ z + \int _{(0,\infty )} (e^{\mathsf {i}x z} - 1) \, \mu _+(\mathrm {d}x). \]
Let
\[ \langle G_+, \phi \rangle = -q_+\langle \delta , \phi \rangle - d_+\langle D\delta , \phi \rangle + \int _{(0,\infty )} \protect \bigl ( \phi (x)-\phi (0)\protect \bigr ) \mu _+(\mathrm {d}x). \]
Then \(G_+ \in \mathcal {S}'\) and \(\mathcal {F} G_+(z) = \kappa _+(z)\).
Potentials
The potential of \(H^+\): \(U_+(\dd x) = \int _0^\infty \PP (H^+\in \dd x) \, \dd t\).
Then \(U_+\in \mathcal {S}'\) and \(\mathcal {F}U_+ = 1/\kappa _+\) (away from zero)
Sketch of the proof
-
• Focus on non-lattice case (only zero of \(\psi \) is \(0\))
-
• \(\CC \setminus \{0\} \ni z \mapsto F(z) = \begin {cases} \kappa _+(z)/ \kappa _+'(z), & \Im z \ge 0, \\ \kappa _-'(-z)/ \kappa _-(-z), & \Im z \le 0 \end {cases}\)
(to show: \(F\) is constant)
-
• \(W_+ = G_+*U_+'\) and \(W_- = \widehat {G_-'*U_-}\)
-
• \(\mathcal {F}W_+(z) = F(z) = \mathcal {F}W_-(z)\) for \(z\in \RR \) ‘away from zero’
Sketch of the proof, II
-
• \(\mathcal {F}(W_+-W_-)\) has support \(\{0\}\) and hence \(\mathcal
{F}(W_+-W_-) = \sum _{n=0}^N a_n D^n\delta \)
-
• \((W_+-W_-)(x) = \sum _{n=0}^N \frac {a_n}{2\pi } (-\iu x)^n\), and in
fact \(a_1=\dotsb = a_N = 0\). (The probability happens here!)
-
• So \((W_+-W_-)(x) = \frac {a_0}{2\pi }\)
Sketch of the proof, III
-
• So \(W_+ - \frac {a_0}{2\pi }\Ind _{\RR _+} = W_- + \frac {a_0}{2\pi }\Ind _{\RR _-}\)
-
• LHS has support \([0,\infty )\) and RHS has support \((-\infty ,0]\), so both have support \(\{0\}\)
-
• Repeat idea from before and more trickery yields \(W_+ = \frac {a_0}{2\pi } \Ind _{\RR _+} + b_0\delta \)
-
• \(F(z) = \mathcal {F}W_+(z) = -\frac {a_0}{2\pi \iu z} + b_0\) for \(z\in \RR \) ‘away from zero’
-
• Asymptotics of \(F\) near zero and comparison with \(W_-\) (again) yield \(F(z) = b_0\): we are done.
The probability happens where?
-
• Let \(h_+ = (\bar {\mu }_+ + d_+\delta + q_+\Ind _{\RR _+})*U_+'\), a measure with support \([0,\infty )\)
where \(\bar {\mu }_+(x) = \mu _+(x,\infty )\)
-
• \(- Dh_+ = W_+\)
-
• The renewal theorem implies \(\int _{[0,\infty )} (1\wedge x^{-(2+\epsilon )}) h_+(\dd x) < \infty \)
-
• So \((W_+-W_-)(x) = \sum _{n=0}^N \frac {a_n}{2\pi } (-\iu x)^n = \frac {a_0}{2\pi }\)
Swept under the carpet
-
• Convolvability of distributions is tricky
-
• When \(X\) is lattice valued, \(\psi \) has zeroes on \(\eta \ZZ \) for some \(\eta >0\): support arguments are trickier
4 The outlook
Return to the probabilistic approach
-
• We saw that \(X_{\mathrm {e}_q} = \bar {X}_{\mathrm {e}_q} + (X-\bar {X})_{\mathrm {e}_q}\) is a unique decomposition
-
• But \(\not \exists \lim _{q\to 0} X_{\mathrm {e}_q} \in \RR \)
-
• \(q^{-1} \PP (X_{\mathrm {e}_q} \in A) \to U(A) \coloneqq \int _0^\infty \PP (X_t\in A)\,\dd t = U_+*\widehat {U_-}(A)\),
where \(U_+\) and \(\widehat {U_-}\) are potentials of \(H^+\) and \(-H^-\) (but if \(X\) is recurrent, \(U\) is very bad!)
-
• In Fourier space, this decomposition reads:
\[ - \protect \frac {1}{\psi (z)} = - \protect \frac {1}{\kappa _+(z)}\times -\protect \frac {1}{\kappa _-(-z)} \]
and we prove that it is unique (among potentials of subordinators)
Factorising the potential
-
• Consider \(U = U_+*\widehat {U_-}\)
-
• For infinitely divisible finite measures the Lévy–Khintchine formula is invaluable
-
• \(U\), \(U_+\) and \(\widehat {U_-}\) are all ‘infinitely divisible infinite measures’
-
• Is there a representation of these, other than \(\mathcal {F}U_+ = 1/\kappa _+\) etc.?
Markov additive processes
-
• A Markov additive process (MAP) with finite phase space is a collection of Lévy processes with Markovian regime-switching.
-
• There are ‘matrix exponents’ with a WHF of the form
\[ -\symbfup {\Psi }(z) = \symbfup {\Delta }_{\symbfup {\pi }}^{-1} \symbfup {\kappa }_-(-z)^\top \symbfup {\Delta }_{\symbfup {\pi }} \symbfup {\kappa }_+(z) \]
where \(\mathbfup {\pi }\) is the stationary distribution of the phase, and there is a notion of friendship (DTW 2023+).
-
• Uniqueness holds when the MAP is killed and under certain absolute continuity conditions (DTW 2023+).
-
• Does it hold in general?