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processes



The Wiener-Hopf factorisation

The Wiener-Hopf factorisation Proving uniqueness
Why is it important? The outlook



An ‘elementary’ question

P LetY >0,Z <0beindependent with full support,and X =Y +Z
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An ‘elementary’ question

P LetY >0,Z <0beindependent with full support,and X =Y +Z
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An ‘elementary’ question

P LetY >0,Z <0beindependent with full support,and X =Y +Z
P> Is such a decomposition unique?

P> In general, the answer is no: the Laplace distribution can be factored in many
different ways
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An ‘elementary’ question

P LetY >0,Z <0beindependent with full support,and X =Y +Z
P> Is such a decomposition unique?

P> In general, the answer is no: the Laplace distribution can be factored in many
different ways

P X hasaninfinitely divisible distribution if for any n = 1 there exist iid X® such that
X LW 4y
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An ‘elementary’ question

P LetY >0,Z <0beindependent with full support,and X =Y +Z
P> Is such a decomposition unique?

P> In general, the answer is no: the Laplace distribution can be factored in many
different ways

P X hasaninfinitely divisible distribution if for any n = 1 there exist iid X® such that
X LW 4y

P> When restricting to infinitely divisible distributions, the answer is yes
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Lévy processes

P Xisalévy processif it has stationary, independent increments
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Lévy processes

P Xisalévy processif it has stationary, independent increments
P Its one-dimensional distributions X; are infinitely divisible

C
o
1%}
2
©
=
=
<
<<
[
c
9]
=
©
(%2}
=
9]
&
O
[
S
o
1o
)
T
g
(9}
C
g
=

3/26



Lévy processes

P Xisalévy processif it has stationary, independent increments
P Its one-dimensional distributions X; are infinitely divisible
P ¥ given by Ee'?t = %@ js the characteristic exponent (CE) of X
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Lévy processes

P Xisalévy processif it has stationary, independent increments

P Its one-dimensional distributions X; are infinitely divisible

P ¥ given by Ee'?t = %@ js the characteristic exponent (CE) of X

P Lévy-Khintchine formula: (z) = iaz — %0222 + [ (e =1 —izx1;_; 100)N(dx)
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Lévy processes

P Xisalévy processif it has stationary, independent increments

P Its one-dimensional distributions X; are infinitely divisible

P ¥ given by Ee'?t = %@ js the characteristic exponent (CE) of X

P Lévy-Khintchine formula: (z) = iaz — %0222 + [ (e =1 —izx1;_; 100)N(dx)

P aincorporates drift, o the Gaussian coefficient, jumps of size dx occur at rate M(dx)
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Wiener-Hopf factorisation (version 1)

P Lete, ~ Exp(q) and X; = supg. X;
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Wiener-Hopf factorisation (version 1)

P Lete, ~ Exp(g) and X; = sups; X;
> Xeq :)?eq + (X —)?)eq
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Wiener-Hopf factorisation (version 1)

P Lete, ~ Exp(q) and X; = sup, X;
> Xeq = Xeq + (X _X)eq
> Xog IS infinitely divisible
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Wiener-Hopf factorisation (version 1)

P Lete, ~ Exp(q) and X; = sup, X;
> Xeq = Xeq + (X _X)eq
> Xog IS infinitely divisible

P> Summands are independent, infinitely divisible and have disjoint support
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Wiener-Hopf factorisation (version 1)

P Lete, ~ Exp(q) and X; = sup, X;

P Ko, =Koyt X=X,

> Xog IS infinitely divisible

P> Summands are independent, infinitely divisible and have disjoint support
P> Therefore, such a factorisation is unique
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Wiener-Hopf factorisation (version 2, path picture)

W

—— X, a Lévy process
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Wiener-Hopf factorisation (version 2, path picture)

LA /f . M
Y

—— X, a Lévy process
— X; = sups; X, the running supremum
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Wiener-Hopf factorisation (version 2, path picture)

—— X, a Lévy process
— X; = sups; X, the running supremum
---------- H:, the ascending ladder height process: suprema ‘stitched together’
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Wiener-Hopf factorisation (version 2, path picture)

Ty .

—— X, a Lévy process

— X; = sups; X, the running supremum

---------- H:, the ascending ladder height process: suprema ‘stitched together’
---------- H; , the descending ladder height process
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Wiener-Hopf factorisation (version 2, path picture)

Ty .

—— X, a Lévy process

— X; = sups; X, the running supremum

---------- H:, the ascending ladder height process: suprema ‘stitched together’
---------- H; , the descending ladder height process

H* are subordinators (increasing Lévy processes), possibly killed
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Wiener-Hopf factorisation (version 2, analytic picture)

P> Let ¢ be the characteristic exponent of X, and k. the characteristic exponents of H*
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Wiener-Hopf factorisation (version 2, analytic picture)

P> Let ¢ be the characteristic exponent of X, and k. the characteristic exponents of H*

P Then
@) =K (Dk_(-2), z€R
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Wiener-Hopf factorisation (version 2, analytic picture)

P> Let ¢ be the characteristic exponent of X, and k. the characteristic exponents of H*

P Then
@) =K (Dk_(-2), z€R

P> /\ This does not mean X, = H; — H; !
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The result: the Wiener-Hopf factorisation is unique

Theorem (DSTW, 2023+)

Let K, be the characteristic exponents of two subordinators, such that
—Y(2) = K (2K_(-2) = k(D)K. (=2), Z€R.
Then k,(2) = cki(z) and k' (z) = ck_(z) for some ¢ > 0.

We also proved an analogous result for random walks.
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Prior art: killed Lévy process, |

p Fixg=>0

C
o
1%}
2
©
=
=
<
<<
[
c
9]
=
©
(%2}
=
9]
&
O
[
S
o
1o
)
T
g
(9}
C
g
=

8/26



Prior art: killed Lévy process, |

p Fixg=>0
P z — Y(2) — qis the characteristic exponent of X killed at rate g
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Prior art: killed Lévy process, |

p Fixg=>0
P z — Y(2) — qis the characteristic exponent of X killed at rate g
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Prior art: killed Lévy process, |

p Fixg=>0

P z — Y(2) — qis the characteristic exponent of X killed at rate g

P> Path and analytic pictures still valid

P k.(q,-) are characteristic exponents of some ladder height processes, and

q—v2) =k(q,2k_(q,-2), zZ€R.
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Prior art: killed Lévy process, |

p Fixg=>0

P z — Y(2) — qis the characteristic exponent of X killed at rate g

P> Path and analytic pictures still valid

P k.(q,-) are characteristic exponents of some ladder height processes, and

q- Y2 =k.(q,2k_(q,-2), z€R.

Theorem (Rogozin (1966) or earlier)

Fixq > 0and let k,(q,-) and k'(q, -) be characteristic exponents of subordinators, such that
q — ¥(2) = k.(q,2)k_(q, —2) = K(q,2)k.(q,~2), z €E€R.

Then k,(q,2) = cki(q,z) and k' (q,z) = ck_(q,z) forsomec > 0and all z € R.
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Prior art: killed Lévy process, Il

Sketch proof

P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
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Prior art: killed Lévy process, Il

Sketch proof

P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) <k(g,0)<0
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Prior art: killed Lévy process, Il

Sketch proof
P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) < k(q,0)<0
P k(g,2) = 0(2) as |z| —» =
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Sketch proof
P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) < k(q,0)<0
P k(g,2) = 0(2) as |z| —» =

p F2)= {K+(q, 2)/k.(q,2), Imz=>0,
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Prior art: killed Lévy process, Il

Sketch proof
P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) < k(q,0)<0
P k(g,2) = 0(2) as |z| —» =

p F2)= {K+(q, 2)/k.(q,2), Imz=>0,
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Prior art: killed Lévy process, Il

Sketch proof
P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) < k(q,0)<0
P k(g,2) = 0(2) as |z| —» =

S

5 k. (q,2)/k.(q, 2), Imz=0,

: > F2)- T(q )/K.(q,2)

=< K—(q, _Z)/K—(q7 —Z), Imz=<0 ( Imz )
I P> Fisentire and non-zero «.(4.2)

5 P logF(2) = logk.(q,2) — logk;(q,2) forimz 2 0 ki(4.2)
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Prior art: killed Lévy process, Il

Sketch proof
P> (g, z) can be extended to holomorphic functions on Imz = 0 (where k € {k,,k_,k},k"})
P Rek(q,z) < k(q,0)<0
P k(g,2) = 0(2) as |z| —» =

5

S K.(q,2)/K}(q, 2), Imz 20,

§ > F2)= { ’: ) | <0

< K2(q, =2)/K_(q,=2), Imz= r P )
l P> Fisentire and non-zero @)

S P logF(z) = logk,(q,2) — logki(q,z) forimz >0 «1(q.2)

H D logF@=o@aslz| - e -
& P> Liouville’s theorem: F(z) = ¢ boundary\#ﬂ(q,—z)
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Prior art: killed Lévy process, lli

» When g = 0, may have liminf ;. ,cr|k(2)| =0
P Then logk(z) is unbounded and Liouville argument fails
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Why is it important?

The Wiener-Hopf factorisation Proving uniqueness
Why is it important? The outlook



The inverse problem

P> Let H* be a pair of subordinators with CEs k.
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The inverse problem

P> Let H* be a pair of subordinators with CEs k.
P> When is there a Lévy process X with CE ¢ such that —(2) = k,(2)k_(-2)?
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The inverse problem

P> Let H* be a pair of subordinators with CEs k.
P> When is there a Lévy process X with CE ¢ such that —(2) = k,(2)k_(-2)?
P> When such X exists, we call H* friends
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Philanthropy

A subordinator H is called a philanthropist if its Lévy measure admits a decreasing density.
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Philanthropy

A subordinator H is called a philanthropist if its Lévy measure admits a decreasing density.

Theorem (Vigon, 2002)

Any two philanthropists can be friends.
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Construction of Lévy processes

If we have philanthropists with CEs k_, then

() = —Kk (DK_(=2)

is the CE of a Lévy process.

Example (Kuznetsov and Pardo, 2013)

LetB,.20,y, €(0,1). Then

- M(B, +y, - i2)
rB, —iz)

K (2) =

gives rise to a hypergeometric Lévy process.
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Fluctuations of constructed Lévy processes

P> First passage times: 7,(x) = inf{t = 0: Z, > x}, where Z € {X,H"}
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Fluctuations of constructed Lévy processes

P> First passage times: 7,(x) = inf{t = 0: Z, > x}, where Z € {X,H"}

P> First passage distributions: PXr,0 € ) = IP(H;'W(X) €)
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Fluctuations of constructed Lévy processes

P> First passage times: 7,(x) = inf{t = 0: Z, > x}, where Z € {X,H"}
P> First passage distributions: PXr,0 € ) = IP(H;'W(X) €)
P> If X is constructed via friendship, does H* have CE «,?
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Proving uniqueness

The Wiener-Hopf factorisation Proving uniqueness
Why is it important? The outlook



Tempered distributions

P> Rapidly decaying functions:
$={¢: R > C:Va,B € NU {0} lim_wlx@P(x)] < oo}
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Tempered distributions

P> Rapidly decaying functions:
$={¢: R > C:Va,B € NU {0} lim_wlx@P(x)] < oo}
P Tempered distributions: &’ = {continuous linear functionals h: & — C}
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Tempered distributions

P> Rapidly decaying functions:
$={¢: R > C:Va,B € NU {0} lim_wlx@P(x)] < oo}
P Tempered distributions: &’ = {continuous linear functionals h: & — C}

P> Notation: (h, ) = h(¢) é (h0O), (X))
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Tempered distributions

P> Rapidly decaying functions:
$={¢: R > C:Va,B € NU {0} lim_wlx@P(x)] < oo}
P Tempered distributions: &’ = {continuous linear functionals h: & — C}

P> Notation: (h, ) = h(¢) é (h0O), (X))

Examples

P> Radon measures with slow growth near +0: (i, ¢) = f d(x) u(dx)
P (6,¢)=¢(0)
P (D6, ¢) = —¢'(0)
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Tempered distributions: operations

P Reflection: (A, ¢) = (h(x), p(—x))
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Tempered distributions: operations

P Reflection: (A, ¢) = (h(x), p(—x))
P> Differentiation: (Dh, ¢) = —(h, ¢")
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Tempered distributions: operations

P Reflection: (h, ¢) = (h(x), p(—x))

P> Differentiation: (Dh, ¢) = —(h, ¢")

P> Fourier transform:
> Fh2) = [P dx;then F: S — §
» (Fh,¢) = (h, 7P)
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Some useful representations

Lévy-Khintchine formula
For H" we have

K+(Z) =—q.:* id+Z + / (eiXZ - 1) [J+(dX).
(0,%0)

Let
(6o §) = 4. (5,8) — d, (D5, ) + / (600 = $(0)) s ().

(0,)
Then G, € &’ and %G,(2) = k,.(2).
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Some useful representations

Lévy-Khintchine formula
For H" we have

K+(Z) =—q.:* id+Z + / (eiXZ - 1) [J+(dX).
(0,%0)

Let
(6o §) = 4. (5,8) — d, (D5, ) + / (600 = $(0)) s ().

(0,0)
Then G, € &’ and %G,(2) = k,.(2).
Potentials

The potential of H™: U,(dx) = [;" P(H" € dx)dt.
Then U, € &' and #U, = 1/k, (away from zero)
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Sketch of the proof

P> Focus on non-lattice case (only zero of ¢ is 0)
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Sketch of the proof

e M)
Imz
. . @ _gw, 2
P> Focus on non-lattice case (only zero of ¢ is 0) ki(2)
Rez

K (=2)/k_(=2), Imz<0 o -

- J

_[x@m@,  mzzo, T e
}C\{o}azr—)F(Z)—{ poundary K’(_z)—%W(z)

(to show: F is constant)
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Sketch of the proof

e M)
Imz
. . @ _gw, 2
P> Focus on non-lattice case (only zero of ¢ is 0) ki(2)
Rez

K (=2)/k_(=2), Imz<0 o -

- J

_[x@m@,  mzzo, T e
}C\{o}azr—)F(Z)—{ poundary K’(_z)—%W(z)

(to show: F is constant)
b W, =G, «U.andW_=G" «U_
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Sketch of the proof

e M)
Imz
@ _ gy, (2)
P> Focus on non-lattice case (only zero of ¢ is 0) Ki(2) *
Rez
K. (2)/Ki(z Imz=0 agree on g
b {0320 Fpy= 4 SO, ’ b\ | oD
k' (=2)/k_(-z), Imz<0 K- -
- J

(to show: F is constant)
b W, =G, «U.andW_=G" «U_
p FW.(2) = F(z) = FW_(2) for z € R ‘away from zero’
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Sketch of the proof, II

' N
Imz
“ _gw )
ki(z) *
P F W, —W_)hassupport {0} and hence , ez
_ N agree on
g(W_*, - W_) - Zn:o anDn6 bmmdary‘\FK’(_z)
=FW.(2)
k_(=2)
_ J
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Sketch of the proof, II

e I
Imz
50 gw 2
ki(z) *
P F W, —W_)hassupport {0} and hence , ez
agree on
9(W+ - W_) = Zg:() anDn6 boundary‘\FK’(_z) FW (2)
= _(z
> W, - W)=Y, Z—I”T(—ix)”, andinfacta; =--=ay=0.| k(=2) )

(The probability happens here!)
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Sketch of the proof, II

e Im z I
K (2)
oR FW,(2)
P F W, —W_)hassupport {0} and hence , ez
_ N agree on
g(W_*, - W_) = Zn:o anDn6 bmmdary‘\FK’(_z) — W)
> W, - W)=Y, Z—I”T(—ix)”, andinfacta; =--=ay=0.| k(=2) ]

(The probability happens here!)
_a
» So (W, —W_)(x) = ﬁ
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Sketch of the proof, lli

e I
Imz
@ _gw,z
ki (z)
_ Rez
agree on g
c boundary (=
3 D o)
g do do x(=2)
ilj > SOW+—E“R+—W_+E]]R_ . J
<

Wiener-Hopf factorisation
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do _ do
b SoW, - L1 =w_+ 21,

Sketch of the proof, lli

&

k_(=z)

Imz
5O _ gw, 2
ki (z)

_ Rez
agree on =
boundary k' (—z) FW.(2)

= _(z

J

P> LHS has support [0, %) and RHS has support (—, 0], so both have support {0}
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do _ do
b SoW, - L1 =w_+ 21,

Sketch of the proof, lli

Imz

Kk, (2)

Kk (2)

= FW,(2)

Rez

&

agree on
boundary k' (—z)

k_(-z)

»

=FW_(2)

J

P> LHS has support [0, %) and RHS has support (—, 0], so both have support {0}
P> Repeat idea from before and more trickery yields W, = :—";HR+ +byd
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Sketch of the proof, lli

e M)
Imz
5@ _ gw. 2
ki (z)

_ Rez
agree on -
boundary k' (—z) FW.(2)

= _(z
do ]] do ,I] x(=2)
— = + = _ J
b Sol, — S =W_+ 21,

P> LHS has support [0, %) and RHS has support (—, 0], so both have support {0}
P> Repeat idea from before and more trickery yields W, = :—";HR+ +byd

» Fz)=FW.(2)= —% + b, for z € R ‘away from zero’
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Sketch of the proof, lli

e M)
Imz
5@ _ gw. 2
ki (z)

_ Rez
agree on -
boundary k' (—z)

— =FW_(z
» » (<2 (2)
— = + = _ J
P SoW, — 2lg =W_+ 1T

P> LHS has support [0, %) and RHS has support (—, 0], so both have support {0}
P> Repeat idea from before and more trickery yields W, = :—";HR+ +byd
» Fz)=FW.(2)= —% + b, for z € R ‘away from zero’

P> Asymptotics of F near zero and comparison with W_ (again) yield F(z) = by: we are
done.
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The probability happens where?

P Leth, = (i, +d. 8 +q.Tg,) * Uj, a measure with support [0, )
where fi,(x) = u,(x, )
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The probability happens where?

P Leth, = (i, +d. 8 +q.Tg,) * Uj, a measure with support [0, )
where fi,(x) = u,(x, )
» —Dh, =W,
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The probability happens where?

P Leth, = (i, +d. 8 +q.Tg,) * Uj, a measure with support [0, )

where fi,(x) = u,(x, )
p —Dh, =W,
P> The renewal theorem implies /. (1 A x~ PN, (dx) < 0
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The probability happens where?

P Leth, = (i, +d. 8 +q.Tg,) * Uj, a measure with support [0, )

where fi,(x) = u,(x, )
p —Dh, =W,
P> The renewal theorem implies /. (1 A x~ PN, (dx) < 0

P So (W, —W_)0) = XN 22 (—ix)" = 22

n=0 2m¢ 2
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Swept under the carpet

P> Convolvability of distributions is tricky

P> When X is lattice valued, ¢ has zeroes on nZ for some n > 0: support arguments are
trickier
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The outlook

The Wiener-Hopf factorisation Proving uniqueness
Why is it important? The outlook



Return to the probabilistic approach

P We saw that Xeg = )?eq +(X — )?)eq is a unique decomposition
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Return to the probabilistic approach

P We saw that Xeg = )?eq +(X — )?)eq is a unique decomposition
> ButAlimg_oX, €R

C
o
1%}
2
©
=
=
<
<<
[
c
9]
=
©
(%2}
=
9]
&
O
[
S
o
1o
)
T
g
(9}
C
g
=

23/26



C
o
1%}
2
©
=
=
<
<<
[
c
9]
=
©
(%2}
=
9]
&
O
[
S
o
1o
)
T
g
(9}
C
g
=

Return to the probabilistic approach

P We saw that Xeg = )?eq +(X — )?)eq is a unique decomposition
> ButAlimg_oX, €R
b qIPX, €A > UA) = [P, € A)dt = U, + U-A),

where U, and U are potentials of H" and —H~ (but if X is recurrent, U is very bad!)
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Return to the probabilistic approach

P We saw that Xeg = )?eq +(X — )?)eq is a unique decomposition
p But? limq_>0 Xeq eR
> q"ll]J’(Xeq €A - UA) := /0°° PX; e Adt=U, = L//:(A),
where U, and U are potentials of H" and —H~ (but if X is recurrent, U is very bad!)

P> In Fourier space, this decomposition reads:

1 1 o 1
Y(2) K(2) K_(=2)

and we prove that it is unique (among potentials of subordinators)
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Factorising the potential

p Consider U= U,  U_
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Factorising the potential

p Consider U= U,  U_
P Forinfinitely divisible finite measures the Lévy-Khintchine formula is invaluable
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Factorising the potential

p Consider U= U,  U_
P Forinfinitely divisible finite measures the Lévy-Khintchine formula is invaluable

p U,U,and U areall ‘infinitely divisible infinite measures’
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Factorising the potential

p Consider U= U,  U_

P Forinfinitely divisible finite measures the Lévy-Khintchine formula is invaluable
p U,U,and U areall ‘infinitely divisible infinite measures’

P> Isthere a representation of these, other than ZU, = 1/k, etc.?
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Markov additive processes

P AMarkov additive process (MAP) with finite phase space is a collection of Lévy
processes with Markovian regime-switching.
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Markov additive processes

P AMarkov additive process (MAP) with finite phase space is a collection of Lévy
processes with Markovian regime-switching.

P> There are ‘matrix exponents’ with a WHF of the form
—Y(2) = Dk_(-2) Ak, (2)

where Ttis the stationary distribution of the phase, and there is a notion of friendship
(DTW 2023+).
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Markov additive processes

P AMarkov additive process (MAP) with finite phase space is a collection of Lévy
processes with Markovian regime-switching.

P> There are ‘matrix exponents’ with a WHF of the form
—Y(2) = Dk_(-2) Ak, (2)

where Ttis the stationary distribution of the phase, and there is a notion of friendship
(DTW 2023+).

P> Uniqueness holds when the MAP is killed and under certain absolute continuity
conditions (DTW 2023+).
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Markov additive processes

P AMarkov additive process (MAP) with finite phase space is a collection of Lévy
processes with Markovian regime-switching.

P> There are ‘matrix exponents’ with a WHF of the form
—Y(2) = Dk_(-2) Ak, (2)
where Ttis the stationary distribution of the phase, and there is a notion of friendship

(DTW 2023+).

P> Uniqueness holds when the MAP is killed and under certain absolute continuity
conditions (DTW 2023+).

P Doesit hold in general?
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Further reading

4 L. Doring, M. Savoy, L. Trottner and A. R. Watson
The uniqueness of the Wiener-Hopf factorisation of Lévy processes and random walks
arXiv:2312.13106 [math.PR]
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http://arxiv.org/abs/2312.13106

Further reading

4 L. Doring, M. Savoy, L. Trottner and A. R. Watson
The uniqueness of the Wiener-Hopf factorisation of Lévy processes and random walks
arXiv:2312.13106 [math.PR]

Thank you!
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