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An ‘elementary’ question

▶ Let Y > 0, Z < 0 be independent with full support, and X = Y + Z

▶ Is such a decomposition unique?
▶ In general, the answer is no: the Laplace distribution can be factored in many

different ways
▶ X has an infinitely divisible distribution if for any n ≥ 1 there exist iid X (k) such that

X
d
= X (1) +⋯ + X (n)

▶ When restricting to infinitely divisible distributions, the answer is yes
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Lévy processes

▶ X is a Lévy process if it has stationary, independent increments

▶ Its one-dimensional distributions Xt are infinitely divisible
▶ ψ given by 𝔼eizXt = etψ(z) is the characteristic exponent (CE) of X
▶ Lévy–Khintchine formula: ψ(z) = iaz − 1

2σ
2z2 + ∫ℝ(eizx − 1 − izx𝟙[−1,1](x))Π(dx)

▶ a incorporates drift, σ the Gaussian coefficient, jumps of size dx occur at rate Π(dx)
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Wiener-Hopf factorisation (version 1)

▶ Let eq ∼ Exp(q) and ̄Xt = sups≤t Xs

▶ Xeq = ̄Xeq + (X − ̄X)eq
▶ Xeq is infinitely divisible

▶ Summands are independent, infinitely divisible and have disjoint support
▶ Therefore, such a factorisation is unique
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Wiener-Hopf factorisation (version 2, path picture)

X , a Lévy process
̄Xt = sups≤t Xs, the running supremum

H+t , the ascending ladder height process: suprema ‘stitched together’
H−
t , the descending ladder height process

H± are subordinators (increasing Lévy processes), possibly killed
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Wiener-Hopf factorisation (version 2, analytic picture)

▶ Let ψ be the characteristic exponent of X , and κ± the characteristic exponents of H±

▶ Then
−ψ(z) = κ+(z)κ−(−z), z ∈ ℝ

▶ ⚠ This does not mean Xt = H+t − H−
t !
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The result: the Wiener-Hopf factorisation is unique

Theorem (DSTW, 2023+)

Let κ′
± be the characteristic exponents of two subordinators, such that

−ψ(z) = κ+(z)κ−(−z) = κ′
+(z)κ′

−(−z), z ∈ ℝ.

Then κ+(z) = cκ′
+(z) and κ′

−(z) = cκ−(z) for some c > 0.

We also proved an analogous result for randomwalks.
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Prior art: killed Lévy process, I

▶ Fix q > 0

▶ z ↦ ψ(z) − q is the characteristic exponent of X killed at rate q
▶ Path and analytic pictures still valid
▶ κ±(q, ⋅) are characteristic exponents of some ladder height processes, and

q − ψ(z) = κ+(q, z)κ−(q,−z), z ∈ ℝ.

Theorem (Rogozin (1966) or earlier)

Fix q > 0 and let κ±(q, ⋅) and κ′
±(q, ⋅) be characteristic exponents of subordinators, such that

q − ψ(z) = κ+(q, z)κ−(q,−z) = κ′
+(q, z)κ′

−(q,−z), z ∈ ℝ.

Then κ+(q, z) = cκ′
+(q, z) and κ′

−(q, z) = cκ−(q, z) for some c > 0 and all z ∈ ℝ.
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Prior art: killed Lévy process, II

Sketch proof

▶ κ(q, z) can be extended to holomorphic functions on Im z ≥ 0 (where κ ∈ {κ+, κ−, κ′
+ , κ′

−})

▶ Re κ(q, z) ≤ κ(q, 0) < 0
▶ κ(q, z) = O(z) as |z| → ∞

▶ F(z) =
{

κ+(q, z)/κ′
+(q, z), Im z ≥ 0,

κ′
−(q,−z)/κ−(q,−z), Im z ≤ 0

▶ F is entire and non-zero
▶ log F(z) = log κ+(q, z) − log κ′

+(q, z) for Im z ≥ 0
▶ log F(z) = o(z) as |z| → ∞
▶ Liouville’s theorem: F(z) = c

Im 𝑧

Re 𝑧

𝜅+(𝑞, 𝑧)
𝜅 ′

+(𝑞, 𝑧)

𝜅 ′
−(𝑞, −𝑧)

𝜅−(𝑞, −𝑧)

agree on
boundary
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Prior art: killed Lévy process, III

▶ When q = 0, may have lim inf|z|→∞,z∈ℝ|κ(z)| = 0
▶ Then log κ(z) is unbounded and Liouville argument fails



Why is it important?

1 The Wiener-Hopf factorisation
2 Why is it important?

3 Proving uniqueness
4 The outlook
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The inverse problem

▶ Let H± be a pair of subordinators with CEs κ±

▶ When is there a Lévy process X with CE ψ such that −ψ(z) = κ+(z)κ−(−z)?
▶ When such X exists, we call H± friends
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Philanthropy

A subordinator H is called a philanthropist if its Lévymeasure admits a decreasing density.

Theorem (Vigon, 2002)

Any two philanthropists can be friends.
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Construction of Lévy processes

If we have philanthropists with CEs κ±, then

ψ(z) = −κ+(z)κ−(−z)

is the CE of a Lévy process.

Example (Kuznetsov and Pardo, 2013)
Let ꞵ± ≥ 0, ɣ± ∈ (0, 1). Then

κ±(z) =
Γ(ꞵ± + ɣ± − iz)
Γ(ꞵ± − iz)

gives rise to a hypergeometric Lévy process.
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Fluctuations of constructed Lévy processes

▶ First passage times: τZ(x) = inf{t ≥ 0: Zt > x}, where Z ∈ {X ,H+}

▶ First passage distributions: ℙ(XτX (x) ∈ ⋅) = ℙ(H+τH+(x) ∈ ⋅)

▶ If X is constructed via friendship, does H+ have CE κ+?
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Proving uniqueness

1 The Wiener-Hopf factorisation
2 Why is it important?

3 Proving uniqueness
4 The outlook
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Tempered distributions

▶ Rapidly decaying functions:
𝒮 = {ɸ : ℝ → ℂ:∀ɑ, ꞵ ∈ ℕ ∪ {0} lim|x|→∞|xɑɸ(ꞵ)(x)| < ∞}

▶ Tempered distributions: 𝒮 ′ = {continuous linear functionals h : 𝒮 → ℂ}

▶ Notation: ⟨h,ɸ⟩ = h(ɸ)
⚠
= ⟨h(x),ɸ(x)⟩

Examples

▶ Radonmeasures with slow growth near ±∞: ⟨μ,ɸ⟩ = ∫ɸ(x) μ(dx)
▶ ⟨δ,ɸ⟩ = ɸ(0)
▶ ⟨Dδ,ɸ⟩ = −ɸ′(0)
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Tempered distributions: operations

▶ Reflection: ⟨ ̂h,ɸ⟩ = ⟨h(x),ɸ(−x)⟩

▶ Differentiation: ⟨Dh,ɸ⟩ = −⟨h,ɸ′⟩
▶ Fourier transform:

▶ ℱɸ(z) = ∫ eixzɸ(x) dx; then ℱ : 𝒮 → 𝒮
▶ ⟨ℱh,ɸ⟩ = ⟨h,ℱɸ⟩
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Some useful representations

Lévy–Khintchine formula
For H+ we have

κ+(z) = −q+ + id+z +∫(0,∞)
(eixz − 1) μ+(dx).

Let
⟨G+,ɸ⟩ = −q+⟨δ,ɸ⟩ − d+⟨Dδ,ɸ⟩ +∫(0,∞)

(ɸ(x) − ɸ(0))μ+(dx).

Then G+ ∈ 𝒮 ′ and ℱG+(z) = κ+(z).

Potentials
The potential of H+: U+(dx) = ∫∞

0 ℙ(H+ ∈ dx) dt.
Then U+ ∈ 𝒮 ′ and ℱU+ = 1/κ+ (away from zero)
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Sketch of the proof

▶ Focus on non-lattice case (only zero of ψ is 0)

▶ ℂ ∖ {0} ∋ z ↦ F(z) =
{

κ+(z)/κ′
+(z), Im z ≥ 0,

κ′
−(−z)/κ−(−z), Im z ≤ 0

(to show: F is constant)

▶ W+ = G+ ∗ U′
+ andW− = Ĝ′

− ∗ U−

▶ ℱW+(z) = F(z) = ℱW−(z) for z ∈ ℝ ‘away from zero’

Im 𝑧

Re 𝑧

𝜅+(𝑧)
𝜅 ′

+(𝑧)
= ℱ 𝑊+(𝑧)

𝜅 ′
−(−𝑧)

𝜅−(−𝑧)
= ℱ 𝑊−(𝑧)

agree on
boundary
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Sketch of the proof, II

▶ ℱ (W+ − W−) has support {0} and hence
ℱ (W+ − W−) = ∑N

n=0 anD
nδ

▶ (W+ − W−)(x) = ∑N
n=0

an
2π (−ix)n, and in fact a1 = ⋯ = aN = 0.

(The probability happens here!)
▶ So (W+ − W−)(x) = a0

2π

Im 𝑧

Re 𝑧

𝜅+(𝑧)
𝜅 ′

+(𝑧)
= ℱ 𝑊+(𝑧)

𝜅 ′
−(−𝑧)

𝜅−(−𝑧)
= ℱ 𝑊−(𝑧)
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Sketch of the proof, III

Im 𝑧

Re 𝑧

𝜅+(𝑧)
𝜅 ′

+(𝑧)
= ℱ 𝑊+(𝑧)

𝜅 ′
−(−𝑧)

𝜅−(−𝑧)
= ℱ 𝑊−(𝑧)

agree on
boundary

▶ SoW+ − a0
2π𝟙ℝ+

= W− +
a0
2π𝟙ℝ−

▶ LHS has support [0,∞) and RHS has support (−∞, 0], so both have support {0}
▶ Repeat idea from before andmore trickery yieldsW+ =

a0
2π𝟙ℝ+

+ b0δ

▶ F(z) = ℱW+(z) = − a0
2πiz + b0 for z ∈ ℝ ‘away from zero’

▶ Asymptotics of F near zero and comparison withW− (again) yield F(z) = b0: we are
done.
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▶ Repeat idea from before andmore trickery yieldsW+ =

a0
2π𝟙ℝ+

+ b0δ

▶ F(z) = ℱW+(z) = − a0
2πiz + b0 for z ∈ ℝ ‘away from zero’

▶ Asymptotics of F near zero and comparison withW− (again) yield F(z) = b0: we are
done.
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Sketch of the proof, III
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The probability happens where?

▶ Let h+ = ( ̄μ+ + d+δ + q+𝟙ℝ+
) ∗ U′

+, a measure with support [0,∞)
where ̄μ+(x) = μ+(x, ∞)

▶ −Dh+ = W+

▶ The renewal theorem implies ∫[0,∞)(1 ∧ x−(2+𝜖))h+(dx) < ∞

▶ So (W+ − W−)(x) = ∑N
n=0

an
2π (−ix)n = a0

2π
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Swept under the carpet

▶ Convolvability of distributions is tricky
▶ When X is lattice valued, ψ has zeroes on ηℤ for some η > 0: support arguments are

trickier



The outlook

1 The Wiener-Hopf factorisation
2 Why is it important?

3 Proving uniqueness
4 The outlook
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Return to the probabilistic approach

▶ We saw that Xeq = ̄Xeq + (X − ̄X)eq is a unique decomposition

▶ But ∄ limq→0 Xeq ∈ ℝ

▶ q−1ℙ(Xeq ∈ A) → U(A) ≔ ∫∞
0 ℙ(Xt ∈ A) dt = U+ ∗ Û−(A),

where U+ and Û− are potentials of H+ and −H− (but if X is recurrent, U is very bad!)

▶ In Fourier space, this decomposition reads:

− 1
ψ(z)

= − 1
κ+(z)

× − 1
κ−(−z)

and we prove that it is unique (among potentials of subordinators)
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Factorising the potential

▶ Consider U = U+ ∗ Û−

▶ For infinitely divisible finite measures the Lévy–Khintchine formula is invaluable
▶ U, U+ and Û− are all ‘infinitely divisible infinite measures’
▶ Is there a representation of these, other than ℱU+ = 1/κ+ etc.?
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▶ U, U+ and Û− are all ‘infinitely divisible infinite measures’
▶ Is there a representation of these, other than ℱU+ = 1/κ+ etc.?



W
ie
ne

r-H
op

ff
ac
to
ris

at
io
n

—
Al
ex

W
at
so
n

24/26

Factorising the potential

▶ Consider U = U+ ∗ Û−
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Markov additive processes

▶ A Markov additive process (MAP) with finite phase space is a collection of Lévy
processes with Markovian regime-switching.

▶ There are ‘matrix exponents’ with a WHF of the form

−Ψ(z) = Δ−1
π κ−(−z)⊤Δπκ+(z)

where π is the stationary distribution of the phase, and there is a notion of friendship
(DTW 2023+).

▶ Uniqueness holds when the MAP is killed and under certain absolute continuity
conditions (DTW 2023+).

▶ Does it hold in general?
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Further reading

L. Döring, M. Savov, L. Trottner and A. R. Watson
The uniqueness of theWiener–Hopf factorisation of Lévy processes and randomwalks
arXiv:2312.13106 [math.PR]

Thank you!

http://arxiv.org/abs/2312.13106
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