
GROWTH-FRAGMENTATION AND QUASI-STATIONARY
METHODS
Denis Villemonais Alex Watson

17 September 2021



A MODEL OF GROWTH-FRAGMENTATION

x(0) = x

▶ List sizes at time t: Z(t) = (Zu(t): u ∈ U)

1



A MODEL OF GROWTH-FRAGMENTATION

x(0) = x x(t)
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MEAN MEASURES
Look at Ttf (x) = 𝔼x [∑u f (Zu(t))] (formally)

𝜕tTtf (x) = Tt𝒜f (x)

𝒜f (x) = τ(x)f ′(x) +∫
x

0
f (y) k(x, dy) − K(x)f (x), for suitable f
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𝒜f (x) = τ(x)f ′(x) +∫
x

0
f (y) k(x, dy) − K(x)f (x), for suitable f

...where k(x, dy) = 2B(x) κ(x,dy)+κ(x,x−dy)
2 , and K(x) = B(x) + D(x).
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𝜕tTtf (x) = Tt𝒜f (x)

𝒜f (x) = τ(x)f ′(x) +∫
x

0
f (y) k(x, dy) − K(x)f (x), for suitable f

Questions
▶ Existence and uniqueness of such Tt? (For which coefficients; for which f ?)
▶ Long term behaviour: Ttf (x) ∼ eλth(x) ∫ f (y)ν(dy)? Rate?
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𝒜f (x) = τ(x)f ′(x) +∫
x

0
f (y) k(x, dy) − K(x)f (x), for suitable f

Existing approaches

▶ Spectral: find 𝒜h = λh, ν𝒜 = λν and use entropy methods

▶ When h is known, make connection with an Markov process and use its stationary
distribution

▶ ‘Harris-type theorem for non-conservative semigroups’: Lyapunov function
approach, Bansaye et al. (2019+)
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OUR APPROACH

▶ Try to link to a killedMarkov process

▶ Study the quasi-stationary distribution (QSD) (‘stationary after conditioning on
survival’)

▶ Find conditions for existence of the process and its QSD, and link back to desired
semigroup T
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EXISTENCE AND UNIQUENESS



FINDING A KILLED MARKOV PROCESS SPINE

▶ Fix ɑ, ꞵ ∈ ℝ and let

V (x) = exp(−𝟙{x≤1}ɑ∫
1

x

dy
τ(y)

+ 𝟙{x>1}ꞵ ∫
x

1

dy
τ(y))

▶ Let ℒf = 1
V 𝒜(fV ) − bf where b = supx>0(

1
V (x) 𝒜V (x))

▶ ℒ1 ≤ 0; it generates a killed Markov process
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FINDING A KILLED MARKOV PROCESS SPINE
▶ ℒf (x) = τ(x)f ′(x) + ∫x

0 [f (y) − f (x)]kV (x, dy) − q(x)f (x),

growth rate jump rate killing rate

▶ ...where kV (x, dy) = V (y)
V (x)k(x, dy)

▶ e−bt 1
V (x)Tt(fV )(x) = 𝔼x[f (Xt)]

y1

y2

P = V (y1)
V (y1)+V (y2)

x
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LEMMA
Assume, for allM > 0,

sup
x∈(0,M)

kV (x, (0, x]) < ∞ and lim sup
x→∞

[kV (x, (0, x]) − K(x)] < ∞.

Then there is a Markov process X on E = (0,∞) ∪ {𝜕} with

Qtf (x) ≔ 𝔼x[f (Xt)] = f (x) +∫
t

0
𝔼x[ℒf (Xs)] ds

ℒf (x) = τ(x)f ′(x) +∫
x

0
[f (y) − f (x)]kV (x, dy) + [f (𝜕) − f (x)]q(x), ℒf (𝜕) = 0,

for f : E → ℝ such that f |(0,∞) compactly supported and suitably differentiable.
Moreover, Q is the unique semigroup with these properties.
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PROOF IDEAS

▶ Construction: follow the ODE ̇x(t) = τ(x(t)), jump at rate kV , follow ODE from new
position...

▶ Show no accumulation of jumps: uses supx∈(0,M) kV (x, (0, x]) < ∞, no build-up of
jumps toward zero

▶ A bit of legwork yields X , unique solution of martingale problem
▶ Most difficult part: uniqueness of the semigroup

▶ Show any solution does not approach∞ or 0 (supermartingale argument)
▶ Compare solutions with solutions of martingale problem (a priori not necessarily

the same!)
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THEOREM
Let

𝒜f (x) = τ(x)f ′(x) +∫
x

0
f (y)k(x, dy) − K(x)f (x)

𝒟(𝒜) = {f : (0,∞) → ℝ suitably differentiable, compactly supported} ∪ {V}.

Then there exists a unique semigroup T such that

𝜕tTtf (x) = Tt𝒜f (x), f ∈ 𝒟(𝒜),

and
Ttf (x) = ebtV (x)𝔼x[f (Xt)/V (Xt)].

‘Unbias the spine motion and add the branching back in’.
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LONG-TERM BEHAVIOUR



QUASI-STATIONARY DISTRIBUTIONS

▶ If X is a Markov process killed at T𝜕, Champagnat and Villemonais (2018+) give criteria
for

ℙx(Xt ∈ dy ∣ T𝜕 > t) → νX(dy),

at exponential rate.

▶ νX is the quasi-stationary distribution.
▶ X is killed at random rate, our T has branching at random rate...
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THEOREM

In addition to our assumption about kV , assume

(irreducibility and Doeblin-type conditions)

and the existence of Lyapunov functions ψ,ɸ such that

𝒜ψ(x) ≤ λ1ψ(x) + C𝟙L(x),
𝒜ɸ(x) ≥ λ2ɸ(x),

with λ2 < λ1 and L compact, (plus boundary behaviour).
Then...
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THEOREM
In addition to our assumption about kV , assume

∫
∞

0
𝟙{k(y,(0,x])>0} dy > 0, for x > 0,

that there is a measure μ and a nonempty interval I with

k(x, ⋅) ≥ μ, for x ∈ I,

and the existence of Lyapunov functions ψ,ɸ such that
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THEOREM
...there exist λ ∈ ℝ, ν a measure, h a function and ɣ > 0, such that

‖e
−λtTtf (x) − h(x)∫fdν‖TV

≤ Ce−ɣtψ(x)

with Tth = eλth and νTt = eλtν.

t

lo
g
⟨Z
(t)
,1
⟩

“𝔼Z(t) ∼ eλth(x)ν”
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OK, BUT CAN YOU ACTUALLY PROVE ANYTHING?

▶ Assume ∫ f (y)k(x, dy) = K(x) ∫ f (xr)p(dr) (‘self-similarity’), ∫ rp(dr) = 1 (conservation
of mass), ∫1

0
dy
τ(y) < ∞ (entrance frommass 0)

▶ Can take ɸ(x) = x, then 𝒜ɸ(x) = τ(x)
x ɸ(x)

▶ Can take ψ(x) = V (x) and put ɑ = 0
▶ Very specific coefficients: if

▶ p(dr) = 2dr (uniform binary repartition of mass),
▶ τ(x) = O(x) as x → ∞,
▶ and (3 +√8) lim supx→∞

τ(x)
x < lim infx→∞ K(x),

then result holds.

13
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PERSPECTIVES



PERSPECTIVES: COMPUTATION

▶ Fleming-Viot process (Pierre Del Moral’s talk)

▶ How to find h and λ?

▶ Analogy with Bertoin and Watson (2018) suggests that if

L(p) = 𝔼xe
∫Tx
0 (p−q(Xs)) ds,

where Tx is hitting time of x, then λ − b is unique solution to L(p) = 1
▶ The naive Monte Carlo estimator (Cornett 2021) has very high variance
▶ How to handle this?
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PERSPECTIVES: EXTENSIONS

▶ Say something about Z(t) itself (as t → ∞)

▶ Bertoin and Watson (2020): more restrictive conditions
▶ Horton and Watson (2021+): perturbed Lévy-type coefficients

▶ Replace deterministic growth with diffusion

▶ Existence and uniqueness get easier!
▶ Need to handle behaviour at zero carefully...
▶ cf. Laurençot and Walker (2021)
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PERSPECTIVES: RELATED MODELS – TYPED CELLS

▶ Old and new pole cells – Cloez, da Saporta and Roget (2020+)

▶ At division, one daughter cell is ‘old’, one is ‘new’ (after E. coli)
▶ Type influences growth rate
▶ It is preferable (for λ) to have distinct growth rates for old and new cells
▶ Could one approach this via spine and optimal control of Lévy-type processes?

▶ Parasite branching process inside a growth-fragmentation – Marguet and Smadi
(2020+)

▶ Embed CSBP (parasite population) and divide it when cell divides
(growth-fragmentation)

▶ Spatially dependent fragmentation process – Callegaro and Roberts (2021+)
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FURTHER READING

D. Villemonais and A. R. Watson
Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine
In preparation (working title)

Thank you!
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