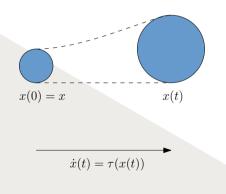
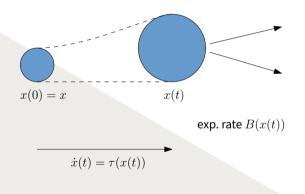
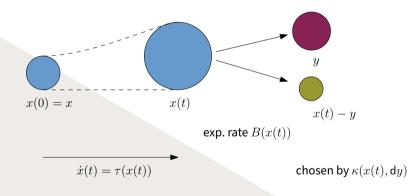
GROWTH-FRAGMENTATION AND QUASI-STATIONARY METHODS

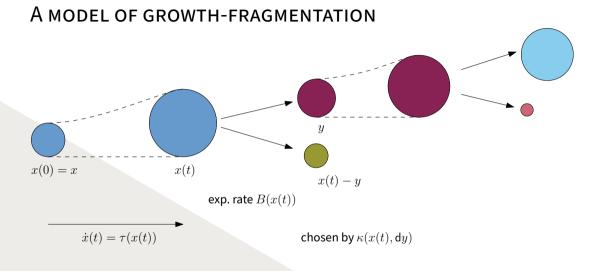
Denis Villemonais Alex Watson

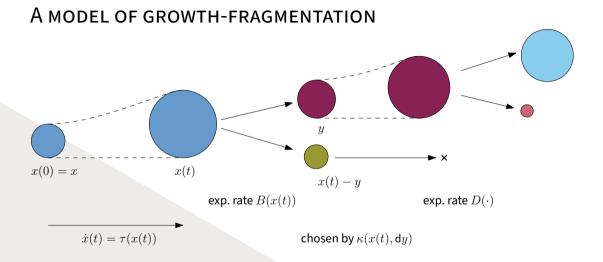
17 September 2021

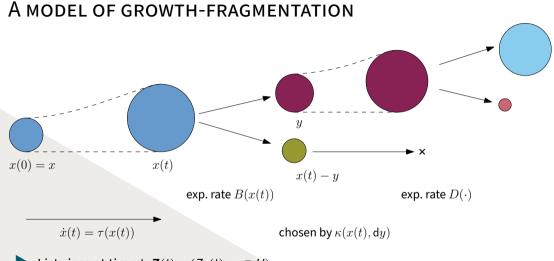






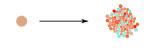




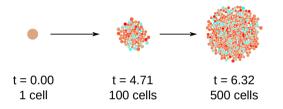


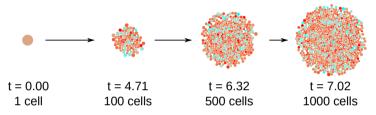
List sizes at time $t: \mathbf{Z}(t) = (Z_u(t): u \in U)$

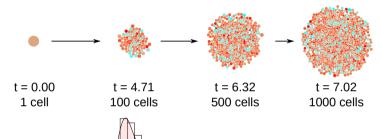
t = 0.00 1 cell

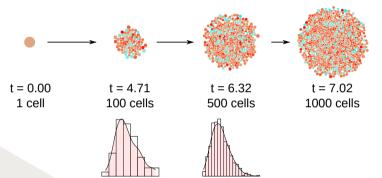


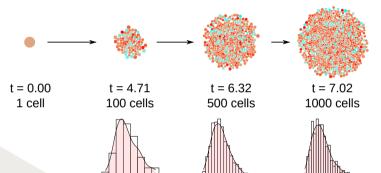
t = 0.00	t = 4.71
1 cell	100 cells

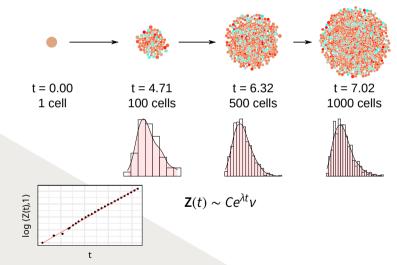












Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally)

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - K(x) f(x), \text{ for suitable } f$

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - \mathcal{K}(x) f(x), \text{ for suitable } f$

...where
$$k(x, dy) = 2B(x) \frac{\kappa(x, dy) + \kappa(x, x - dy)}{2}$$
, and $K(x) = B(x) + D(x)$.

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - K(x) f(x),$ for suitable f

Questions

Existence and uniqueness of such T_t? (For which coefficients; for which f?)

Long term behaviour: $T_t f(x) \sim e^{\lambda t} h(x) \int f(y) v(dy)$? Rate?

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - K(x) f(x), \text{ for suitable } f$

Existing approaches

Spectral: find $Ah = \lambda h$, $vA = \lambda v$ and use entropy methods

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - K(x) f(x),$ for suitable f

Existing approaches

- Spectral: find $Ah = \lambda h$, $vA = \lambda v$ and use entropy methods
- When h is known, make connection with an Markov process and use its stationary distribution

Look at $T_t f(x) = \mathbb{E}_x \left[\sum_u f(Z_u(t)) \right]$ (formally) $\partial_t T_t f(x) = T_t \mathcal{A} f(x)$ $\mathcal{A} f(x) = \tau(x) f'(x) + \int_0^x f(y) k(x, dy) - K(x) f(x),$ for suitable f

Existing approaches

- Spectral: find $Ah = \lambda h$, $vA = \lambda v$ and use entropy methods
- When h is known, make connection with an Markov process and use its stationary distribution
- 'Harris-type theorem for non-conservative semigroups': Lyapunov function approach, Bansaye et al. (2019+)

Try to link to a killed Markov process

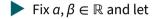
OUR APPROACH

- Try to link to a killed Markov process
- Study the quasi-stationary distribution (QSD) ('stationary after conditioning on survival')

OUR APPROACH

- Try to link to a killed Markov process
- Study the quasi-stationary distribution (QSD) ('stationary after conditioning on survival')
- Find conditions for existence of the process and its QSD, and link back to desired semigroup T

EXISTENCE AND UNIQUENESS



$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}} \alpha \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}} \beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

Fix
$$a, \beta \in \mathbb{R}$$
 and let

$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}}a \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}}\beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

$$\blacktriangleright \text{ Let } \mathcal{L}f = \frac{1}{V}\mathcal{A}(fV) - bf \text{ where } b = \sup_{x > 0}\left(\frac{1}{V(x)}\mathcal{A}V(x)\right)$$

Fix
$$a, \beta \in \mathbb{R}$$
 and let

$$V(x) = \exp\left(-\mathbb{1}_{\{x \le 1\}} \alpha \int_{x}^{1} \frac{dy}{\tau(y)} + \mathbb{1}_{\{x > 1\}} \beta \int_{1}^{x} \frac{dy}{\tau(y)}\right)$$

Let
$$\mathcal{L}f = \frac{1}{V}\mathcal{A}(fV) - bf$$
 where $b = \sup_{x>0} \left(\frac{1}{V(x)}\mathcal{A}V(x)\right)$

 \blacktriangleright $\mathcal{L}1 \leq 0$; it generates a killed Markov process

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)]k_V(x, dy) - q(x)f(x),$$

$$\hat{\zeta}_{\text{growth rate}} \qquad \hat{\zeta}_{\text{jump rate}} \quad \hat{\zeta}_{\text{killing rate}}$$

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)] k_V(x, dy) - q(x)f(x),$$

$$\int_{\text{growth rate}} \int_{\text{imp rate}} \int_{\text{killing rate}} f(x, dy)$$

$$\text{...where } k_V(x, dy) = \frac{V(y)}{V(x)} k(x, dy)$$

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)] k_V(x, dy) - q(x)f(x),$$

$$\hat{\zeta}_{\text{growth rate}} \qquad \hat{\zeta}_{\text{iump rate}} \quad \hat{\zeta}_{\text{killing rate}}$$

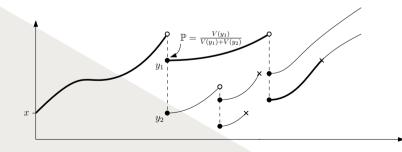
$$\mathbf{I}_{\text{iump rate}} = k_V(x, dy) = \frac{V(y)}{V(x)} k(x, dy)$$

$$\mathbf{I}_{\text{iump rate}} = \frac{1}{V(x)} T_t(fV)(x) = \mathbb{E}_x[f(X_t)]$$

$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)] k_V(x, dy) - q(x)f(x),$$

$$\hat{\zeta}_{\text{growth rate}} \qquad \hat{\zeta}_{\text{jump rate}} \quad \hat{\zeta}_{\text{killing rate}}$$

$$\mathbf{I}_{\text{wither a transformation}} \quad \mathbf{I}_{\text{transformation}} \quad \mathbf{I}_{$$



Lemma

Assume, for all M > 0,

 $\sup_{x\in(0,M)}k_V(x,(0,x])<\infty\qquad\text{and}\qquad$

 $\limsup_{x\to\infty} \left[k_V(x,(0,x]) - K(x) \right] < \infty.$

Lemma

Assume, for all M > 0,

$$\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty \quad \text{and} \quad \limsup_{x \to \infty} \left[k_V(x,(0,x]) - K(x) \right] < \infty.$$

Then there is a Markov process X on $E = (0, \infty) \cup \{\partial\}$ with

$$Q_t f(x) := \mathbb{E}_x[f(X_t)] = f(x) + \int_0^t \mathbb{E}_x[\mathcal{L}f(X_s)] \,\mathrm{d}s$$

for $f: E \to \mathbb{R}$ such that $f|_{(0,\infty)}$ compactly supported and suitably differentiable.

Lemma

Assume, for all M > 0,

$$\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty \quad \text{and} \quad \limsup_{x \to \infty} \left[k_V(x,(0,x]) - K(x) \right] < \infty.$$

Then there is a Markov process X on $E = (0, \infty) \cup \{\partial\}$ with

$$Q_t f(x) \coloneqq \mathbb{E}_x[f(X_t)] = f(x) + \int_0^t \mathbb{E}_x[\mathcal{L}f(X_s)] \,\mathrm{d}s$$
$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)]k_V(x, \mathrm{d}y) + [f(\partial) - f(x)]q(x), \quad \mathcal{L}f(\partial) = 0,$$

for $f: E \to \mathbb{R}$ such that $f|_{(0,\infty)}$ compactly supported and suitably differentiable.

Lemma

Assume, for all M > 0,

$$\sup_{x \in (0,M)} k_V(x,(0,x]) < \infty \quad \text{and} \quad \limsup_{x \to \infty} \left[k_V(x,(0,x]) - K(x) \right] < \infty.$$

Then there is a Markov process X on $E = (0, \infty) \cup \{\partial\}$ with

$$Q_t f(x) \coloneqq \mathbb{E}_x [f(X_t)] = f(x) + \int_0^t \mathbb{E}_x [\mathcal{L}f(X_s)] \,\mathrm{d}s$$
$$\mathcal{L}f(x) = \tau(x)f'(x) + \int_0^x [f(y) - f(x)]k_V(x, \mathrm{d}y) + [f(\partial) - f(x)]q(x), \quad \mathcal{L}f(\partial) = 0,$$

for $f: E \to \mathbb{R}$ such that $f|_{(0,\infty)}$ compactly supported and suitably differentiable. Moreover, Q is the unique semigroup with these properties.

Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...

- Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...
 - Show no accumulation of jumps: uses sup_{x∈(0,M)} k_V(x, (0, x]) < ∞, no build-up of jumps toward zero</p>

- Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...
- Show no accumulation of jumps: uses sup_{x∈(0,M)} k_V(x, (0, x]) < ∞, no build-up of jumps toward zero</p>
- A bit of legwork yields *X*, unique solution of martingale problem

- Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...
- Show no accumulation of jumps: uses sup_{x∈(0,M)} k_V(x, (0, x]) < ∞, no build-up of jumps toward zero</p>
- A bit of legwork yields *X*, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup

- Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...
- Show no accumulation of jumps: uses sup_{x∈(0,M)} k_V(x, (0, x]) < ∞, no build-up of jumps toward zero</p>
- A bit of legwork yields *X*, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup
 - Show any solution does not approach ∞ or 0 (supermartingale argument)

- Construction: follow the ODE $\dot{x}(t) = \tau(x(t))$, jump at rate k_V , follow ODE from new position...
- Show no accumulation of jumps: uses sup_{x∈(0,M)} k_V(x, (0, x]) < ∞, no build-up of jumps toward zero</p>
- A bit of legwork yields *X*, unique solution of martingale problem
- Most difficult part: uniqueness of the semigroup
 - Show any solution does not approach ∞ or 0 (supermartingale argument)
 - Compare solutions with solutions of martingale problem (a priori not necessarily the same!)

THEOREM

Let

$$\mathcal{A}f(x) = \tau(x)f'(x) + \int_0^x f(y)k(x, dy) - \mathcal{K}(x)f(x)$$
$$\mathcal{D}(\mathcal{A}) = \{f: (0, \infty) \to \mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}.$$

THEOREM

Let

$$\mathcal{A}f(x) = \tau(x)f'(x) + \int_0^x f(y)k(x, dy) - \mathcal{K}(x)f(x)$$
$$\mathcal{D}(\mathcal{A}) = \{f: (0, \infty) \to \mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}.$$

Then there exists a unique semigroup T such that

 $\partial_t T_t f(x) = T_t \mathcal{A} f(x), \quad f \in \mathcal{D}(\mathcal{A}),$

THEOREM

Let

$$\mathcal{A}f(x) = \tau(x)f'(x) + \int_0^x f(y)k(x, dy) - \mathcal{K}(x)f(x)$$
$$\mathcal{D}(\mathcal{A}) = \{f: (0, \infty) \to \mathbb{R} \text{ suitably differentiable, compactly supported}\} \cup \{V\}.$$

Then there exists a unique semigroup T such that

$$\partial_t T_t f(x) = T_t \mathcal{A} f(x), \quad f \in \mathcal{D}(\mathcal{A}),$$

and

$$T_t f(x) = e^{bt} V(x) \mathbb{E}_x[f(X_t)/V(X_t)].$$

'Unbias the spine motion and add the branching back in'.

LONG-TERM BEHAVIOUR

QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at T_{∂} , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{x}(X_{t} \in \mathsf{d}y \mid T_{\partial} > t) \to v^{X}(\mathsf{d}y),$$

at exponential rate.

QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at T_{∂} , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{x}(X_{t} \in \mathsf{d}y \mid T_{\partial} > t) \to v^{X}(\mathsf{d}y),$$

at exponential rate.

 \blacktriangleright v^X is the quasi-stationary distribution.

QUASI-STATIONARY DISTRIBUTIONS

If X is a Markov process killed at T_{∂} , Champagnat and Villemonais (2018+) give criteria for

$$\mathbb{P}_{x}(X_{t} \in \mathsf{d}y \mid T_{\partial} > t) \to v^{X}(\mathsf{d}y),$$

at exponential rate.

- \triangleright v^{χ} is the quasi-stationary distribution.
 - X is killed at random rate, our T has branching at random rate...

In addition to our assumption about k_V , assume

(irreducibility and Doeblin-type conditions)

In addition to our assumption about k_V , assume

(irreducibility and Doeblin-type conditions)

and the existence of Lyapunov functions ψ , ϕ such that

$$\begin{split} \mathcal{A}\psi(x) &\leq \lambda_1\psi(x) + C\mathbbm{1}_L(x),\\ \mathcal{A}\phi(x) &\geq \lambda_2\phi(x), \end{split}$$

with $\lambda_2 < \lambda_1$ and *L* compact, (plus boundary behaviour).

In addition to our assumption about k_V , assume

(irreducibility and Doeblin-type conditions)

and the existence of Lyapunov functions ψ , ϕ such that

$$\begin{split} \mathcal{A}\psi(x) &\leq \lambda_1\psi(x) + C\mathbbm{1}_L(x),\\ \mathcal{A}\phi(x) &\geq \lambda_2\phi(x), \end{split}$$

with $\lambda_2 < \lambda_1$ and *L* compact, (plus boundary behaviour).

In addition to our assumption about k_V , assume

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d} y > 0, \quad \text{for } x > 0,$$

that there is a measure μ and a nonempty interval / with

 $k(x, \cdot) \ge \mu$, for $x \in I$,

and the existence of Lyapunov functions ψ , ϕ such that

$$\begin{split} \mathcal{A}\psi(x) &\leq \lambda_1\psi(x) + C\mathbbm{1}_L(x),\\ \mathcal{A}\phi(x) &\geq \lambda_2\phi(x), \end{split}$$

with $\lambda_2 < \lambda_1$ and *L* compact, (plus boundary behaviour).

In addition to our assumption about k_V , assume

$$\int_0^\infty \mathbb{1}_{\{k(y,(0,x])>0\}} \, \mathrm{d} y > 0, \quad \text{for } x > 0,$$

that there is a measure μ and a nonempty interval / with

 $k(x, \cdot) \ge \mu$, for $x \in I$,

and the existence of Lyapunov functions ψ , ϕ such that

$$\begin{split} \mathcal{A}\psi(x) &\leq \lambda_1\psi(x) + C\mathbbm{1}_L(x),\\ \mathcal{A}\phi(x) &\geq \lambda_2\phi(x), \end{split}$$

with $\lambda_2 < \lambda_1$ and *L* compact, (plus boundary behaviour). **Then...**

...there exist $\lambda \in \mathbb{R}$, v a measure, h a function and $\gamma > 0$, such that

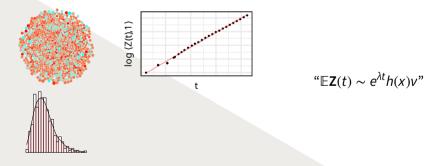
$$\left\| e^{-\lambda t} T_t f(x) - h(x) \int f dv \right\|_{TV} \le C e^{-\gamma t} \psi(x)$$

with $T_t h = e^{\lambda t} h$ and $v T_t = e^{\lambda t} v$.

...there exist $\lambda \in \mathbb{R}$, v a measure, h a function and $\gamma > 0$, such that

$$\left\| e^{-\lambda t} T_t f(x) - h(x) \int f dv \right\|_{TV} \le C e^{-\gamma t} \psi(x)$$

with $T_t h = e^{\lambda t} h$ and $v T_t = e^{\lambda t} v$.



Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(y)} < \infty$ (entrance from mass 0)

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(y)} < \infty$ (entrance from mass 0)

Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(y)} < \infty$ (entrance from mass 0)

Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$

Can take $\psi(x) = V(x)$ and put a = 0

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(y)} < \infty$ (entrance from mass 0)

Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$

Can take
$$\psi(x) = V(x)$$
 and put $a = 0$

Very specific coefficients: if

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(y)} < \infty$ (entrance from mass 0)

Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{x}\phi(x)$

- Can take $\psi(x) = V(x)$ and put a = 0
- Very specific coefficients: if

p(dr) = 2dr (uniform binary repartition of mass),

Assume ∫ f(y)k(x, dy) = K(x) ∫ f(xr)p(dr) ('self-similarity'), ∫ rp(dr) = 1 (conservation of mass), ∫₀¹ dy/τ(y) < ∞ (entrance from mass 0)
 Can take φ(x) = x, then Aφ(x) = (T(x))/x φ(x)
 Can take ψ(x) = V(x) and put a = 0
 Very specific coefficients: if
 p(dr) = 2dr (uniform binary repartition of mass),
 T(x) = O(x) as x → ∞,

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(x)} < \infty$ (entrance from mass 0) Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{r}\phi(x)$ Can take $\psi(x) = V(x)$ and put a = 0Very specific coefficients: if p(dr) = 2dr (uniform binary repartition of mass). \blacktriangleright $\tau(x) = O(x) \text{ as } x \to \infty$. ▶ and $(3 + \sqrt{8}) \lim \sup_{x \to \infty} \frac{\tau(x)}{x} < \lim \inf_{x \to \infty} K(x)$,

Assume $\int f(y)k(x, dy) = K(x) \int f(xr)p(dr)$ ('self-similarity'), $\int rp(dr) = 1$ (conservation of mass), $\int_0^1 \frac{dy}{\tau(x)} < \infty$ (entrance from mass 0) Can take $\phi(x) = x$, then $\mathcal{A}\phi(x) = \frac{\tau(x)}{r}\phi(x)$ Can take $\psi(x) = V(x)$ and put a = 0Very specific coefficients: if p(dr) = 2dr (uniform binary repartition of mass). \blacktriangleright $\tau(x) = O(x) \text{ as } x \to \infty$. ▶ and $(3 + \sqrt{8}) \lim \sup_{x \to \infty} \frac{\tau(x)}{x} < \lim \inf_{x \to \infty} K(x)$, then result holds.

Perspectives

Fleming-Viot process (Pierre Del Moral's talk)

Fleming-Viot process (Pierre Del Moral's talk)
 How to find h and λ?

Fleming-Viot process (Pierre Del Moral's talk)

• How to find *h* and λ ?

Analogy with Bertoin and Watson (2018) suggests that if

$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) \, \mathrm{d}s},$$

where T_x is hitting time of x, then $\lambda - b$ is unique solution to L(p) = 1

Fleming-Viot process (Pierre Del Moral's talk)

• How to find *h* and λ ?

Analogy with Bertoin and Watson (2018) suggests that if

$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) \, \mathrm{d}s},$$

where T_x is hitting time of x, then $\lambda - b$ is unique solution to L(p) = 1The naive Monte Carlo estimator (Cornett 2021) has very high variance

PERSPECTIVES: COMPUTATION

Fleming-Viot process (Pierre Del Moral's talk)

• How to find *h* and λ ?

Analogy with Bertoin and Watson (2018) suggests that if

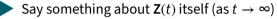
$$L(p) = \mathbb{E}_{x} e^{\int_{0}^{T_{x}} (p - q(X_{s})) \, \mathrm{d}s},$$

where T_x is hitting time of x, then $\lambda - b$ is unique solution to L(p) = 1The naive Monte Carlo estimator (Cornett 2021) has very high variance How to handle this?

Say something about Z(t) itself (as $t \to \infty$)

Say something about Z(t) itself (as $t \to \infty$)

Bertoin and Watson (2020): more restrictive conditions



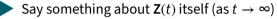
- Bertoin and Watson (2020): more restrictive conditions
- Horton and Watson (2021+): perturbed Lévy-type coefficients

Say something about Z(t) itself (as $t \to \infty$)

Bertoin and Watson (2020): more restrictive conditions

Horton and Watson (2021+): perturbed Lévy-type coefficients

Replace deterministic growth with diffusion



Bertoin and Watson (2020): more restrictive conditions

Horton and Watson (2021+): perturbed Lévy-type coefficients

Replace deterministic growth with diffusion

Existence and uniqueness get easier!

- Say something about Z(t) itself (as $t \to \infty$)
 - Bertoin and Watson (2020): more restrictive conditions
 - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
 - Existence and uniqueness get easier!
 - Need to handle behaviour at zero carefully...

- Say something about Z(t) itself (as $t \to \infty$)
 - Bertoin and Watson (2020): more restrictive conditions
 - Horton and Watson (2021+): perturbed Lévy-type coefficients
- Replace deterministic growth with diffusion
 - Existence and uniqueness get easier!
 - Need to handle behaviour at zero carefully...
 - cf. Laurençot and Walker (2021)

Old and new pole cells – Cloez, da Saporta and Roget (2020+)

At division, one daughter cell is 'old', one is 'new' (after E. coli)

Old and new pole cells – Cloez, da Saporta and Roget (2020+)

At division, one daughter cell is 'old', one is 'new' (after E. coli)

Type influences growth rate

- At division, one daughter cell is 'old', one is 'new' (after E. coli)
- Type influences growth rate
- It is preferable (for λ) to have **distinct** growth rates for old and new cells

- At division, one daughter cell is 'old', one is 'new' (after E. coli)
- Type influences growth rate
- It is preferable (for λ) to have **distinct** growth rates for old and new cells
- Could one approach this via spine and optimal control of Lévy-type processes?

- At division, one daughter cell is 'old', one is 'new' (after E. coli)
- Type influences growth rate
- It is preferable (for λ) to have **distinct** growth rates for old and new cells
- Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)

Old and new pole cells – Cloez, da Saporta and Roget (2020+)

- At division, one daughter cell is 'old', one is 'new' (after E. coli)
 - Type influences growth rate
 - It is preferable (for λ) to have **distinct** growth rates for old and new cells
 - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)

Embed CSBP (parasite population) and divide it when cell divides (growth-fragmentation)

Old and new pole cells – Cloez, da Saporta and Roget (2020+)

- At division, one daughter cell is 'old', one is 'new' (after E. coli)
 - Type influences growth rate
 - It is preferable (for λ) to have **distinct** growth rates for old and new cells
 - Could one approach this via spine and optimal control of Lévy-type processes?
- Parasite branching process inside a growth-fragmentation Marguet and Smadi (2020+)

 Embed CSBP (parasite population) and divide it when cell divides (growth-fragmentation)

Spatially dependent fragmentation process – Callegaro and Roberts (2021+)

FURTHER READING

D. Villemonais and A. R. Watson
 Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine
 In preparation (working title)

FURTHER READING

D. Villemonais and A. R. Watson
 Asymptotic behaviour of growth-fragmentations via quasi-stationarity of the spine
 In preparation (working title)

Thank you!