MARKOV ADDITIVE FRIENDSHIPS

Leif Döring Lukas Trottner Alex Watson
*) 18 July 2022

LÉVY PROCESSES AND THE THEORY OF FRIENDS

WIENER-HOPF FACTORISATION (PATH PICTURE)

- ξ, a Lévy process

Wiener-Hopf factorisation (path picture)

- ξ, a Lévy process
$-\bar{\xi}_{t}=\sup _{s \leq t} \xi_{s}$, the running supremum

Wiener-Hopf factorisation (path picture)

- ξ, a Lévy process
$-\bar{\xi}_{t}=\sup _{s \leq t} \xi_{s}$, the running supremum
--- H_{t}^{+}, the ascending ladder height process: suprema 'stitched together'

Wiener-Hopf factorisation (path picture)

- ξ, a Lévy process
$-\bar{\xi}_{t}=\sup _{s \leq t} \xi_{s}$, the running supremum
--- H_{t}^{+}, the ascending ladder height process: suprema 'stitched together'

Wiener-Hopf factorisation (path picture)

- ξ, a Lévy process
$-\bar{\xi}_{t}=\sup _{s \leq t} \xi_{s}$, the running supremum
--- H_{t}^{+}, the ascending ladder height process: suprema 'stitched together'
--- H_{t}^{-}, the descending ladder height process

Wiener-Hopf factorisation (path picture)

- ξ, a Lévy process
$-\bar{\xi}_{t}=\sup _{s \leq t} \xi_{s}$, the running supremum
--- H_{t}^{+}, the ascending ladder height process: suprema 'stitched together'
--- H_{t}^{-}, the descending ladder height process
$H^{ \pm}$are subordinators (increasing Lévy processes).

WIENER-HOPF FACTORISATION (ANALYTIC PICTURE)

Let Ψ be the characteristic exponent of ξ (i.e., $\mathbb{E} e^{i \vartheta \xi_{t}}=e^{t \Psi(9)}$)

WIENER-HOPF FACTORISATION (ANALYTIC PICTURE)

Let Ψ be the characteristic exponent of ξ (i.e., $\mathbb{E} e^{i \vartheta \xi_{t}}=e^{t \Psi(9)}$)
$>$ Let $\psi^{ \pm}$be characteristic exponents of $H^{ \pm}$

WIENER-HOPF FACTORISATION (ANALYTIC PICTURE)

Let ψ be the characteristic exponent of ξ (i.e., $\mathbb{E} e^{i \vartheta \xi_{t}}=e^{t \Psi(\vartheta)}$)
$>$ Let $\psi^{ \pm}$be characteristic exponents of $H^{ \pm}$
> Then

$$
\Psi(\vartheta)=-\Psi^{-}(-\vartheta) \Psi^{+}(\vartheta)
$$

THE INVERSE PROBLEM

Let $H^{ \pm}$be a pair of subordinators with CEs $\psi^{ \pm}$

THE INVERSE PROBLEM

$>$ Let $H^{ \pm}$be a pair of subordinators with CEs $\psi^{ \pm}$
When is there a Lévy process ξ with CE Ψ such that $\Psi(\vartheta)=-\Psi^{-}(-\vartheta) \Psi^{+}(\vartheta)$?

THE INVERSE PROBLEM

$>$ Let $H^{ \pm}$be a pair of subordinators with CEs $\psi^{ \pm}$
$>$ When is there a Lévy process ξ with CE Ψ such that $\Psi(\vartheta)=-\Psi^{-}(-\vartheta) \Psi^{+}(\vartheta)$?
$>$ When such ξ exists, we call $H^{ \pm}$friends and ξ the bonding process

THE THEOREM OF FRIENDS

$>d^{ \pm}=\operatorname{drift}$ of $H^{ \pm}$

THE THEOREM OF FRIENDS

$>d^{ \pm}=\operatorname{drift}$ of $H^{ \pm}$
$>\Pi^{ \pm}=$Lévy measure of $H^{ \pm}$

THE THEOREM OF FRIENDS

$>d^{ \pm}=$drift of $H^{ \pm}$
$>\Pi^{ \pm}=$Lévy measure of $H^{ \pm}$
$>H^{ \pm}$are compatible if $d^{\mp}>0$ implies $\Pi^{ \pm}$is absolutely continuous and its density $\partial \Pi^{ \pm}$is the tail of a signed measure

THE THEOREM OF FRIENDS

$>d^{ \pm}=$drift of $H^{ \pm}$
$\rightarrow \Pi^{ \pm}=$Lévy measure of $H^{ \pm}$
$>H^{ \pm}$are compatible if $d^{\mp}>0$ implies $\Pi^{ \pm}$is absolutely continuous and its density $\partial \Pi^{ \pm}$is the tail of a signed measure

Theorem (Vigon)

Define

$$
Y(x)= \begin{cases}\int_{(0, \infty)}\left(\Pi^{-}(y, \infty)-\psi^{-}(0)\right) \Pi^{+}(x+d y)+d^{-} \partial \Pi^{+}(x), & x>0, \\ \int_{(0, \infty)}\left(\Pi^{+}(y, \infty)-\psi^{+}(0)\right) \Pi^{-}(-x+d y)+d^{+} \partial \Pi^{-}(-x), & x<0\end{cases}
$$

$H^{ \pm}$are friends if and only if they are compatible and Y is decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$.
Then, Y is a.e. the right/left tail of the Lévy measure of the bonding process.

Philanthropy

Let $H_{t}^{+}=d^{+} t$. A subordinator H^{-}is called a philanthropist if it is a friend of H^{+}.

Philanthropy

Let $H_{t}^{+}=d^{+} t$. A subordinator H^{-}is called a philanthropist if it is a friend of H^{+}.
\rightarrow Equivalently, a subordinator is called a philanthropist if its Lévy measure admits a decreasing density.

Philanthropy

Let $H_{t}^{+}=d^{+} t$. A subordinator H^{-}is called a philanthropist if it is a friend of H^{+}.
\rightarrow Equivalently, a subordinator is called a philanthropist if its Lévy measure admits a decreasing density.

Theorem (Vigon)

Any two philanthropists can be friends.

EXAMPLE (SPECTRALLY NEGATIVE PROCESSES)

$>$ Let H^{+}be a (killed) pure drift

EXAMPLE (SPECTRALLY NEGATIVE PROCESSES)

- Let H^{+}be a (killed) pure drift

Let H^{-}be a philanthropist

EXAMPLE (SPECTRALLY NEGATIVE PROCESSES)

$>$ Let H^{+}be a (killed) pure drift
$>$ Let H^{-}be a philanthropist
Then $H^{ \pm}$are friends and the bonding process is a spectrally negative Lévy process

EXAMPLE (SPECTRALLY NEGATIVE PROCESSES)

$>$ Let H^{+}be a (killed) pure drift
$>$ Let H^{-}be a philanthropist
Then $H^{ \pm}$are friends and the bonding process is a spectrally negative Lévy process
All spectrally negative Lévy processes are of this form

Markov additive processes

Markov additive processes

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if

$$
\text { given }\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right) \text { is independent of the past up to } t \text {, }
$$ and has the same distribution as $\left(\xi_{s}, J_{s}\right)$ under $\mathbb{P}^{0, i}$

Markov additive processes

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if

$$
\begin{aligned}
\text { given }\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right) & \text { is independent of the past up to } t, \\
& \text { and has the same distribution as }\left(\xi_{s}, J_{s}\right) \text { under } \mathbb{P}^{0, i}
\end{aligned}
$$

Equivalently, a Markov additive process is a regime-switching Lévy process:

MARKOV ADDITIVE PROCESSES

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if
given $\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right)$ is independent of the past up to t, and has the same distribution as $\left(\xi_{s}, J_{s}\right)$ under $\mathbb{P}^{0, i}$

Equivalently, a Markov additive process is a regime-switching Lévy process:
$>\xi^{(i)}$ is a Lévy process for each i

MARKOV ADDITIVE PROCESSES

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if
given $\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right)$ is independent of the past up to t, and has the same distribution as $\left(\xi_{s}, J_{s}\right)$ under $\mathbb{P}^{0, i}$

- Equivalently, a Markov additive process is a regime-switching Lévy process:
$>\xi^{(i)}$ is a Lévy process for each i
\checkmark is a Markov chain with transition matrix Q

MARKOV ADDITIVE PROCESSES

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if
given $\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right)$ is independent of the past up to t, and has the same distribution as $\left(\xi_{s}, J_{s}\right)$ under $\mathbb{P}^{0, i}$

Equivalently, a Markov additive process is a regime-switching Lévy process:
$>\xi^{(i)}$ is a Lévy process for each i
J is a Markov chain with transition matrix Q
$>$ when J is in state i, run $\xi^{(i)}$

MARKOV ADDITIVE PROCESSES

$>$ A process (ξ, J) with state space $(\mathbb{R} \cup\{\partial\}) \times\{1, \ldots, N\}$ is a Markov additive process (MAP) if
given $\left\{J_{t}=i\right\},\left(\xi_{t+s}-\xi_{t}, J_{t+s}\right)$ is independent of the past up to t, and has the same distribution as $\left(\xi_{s}, J_{s}\right)$ under $\mathbb{P}^{0, i}$

Equivalently, a Markov additive process is a regime-switching Lévy process:
$>\xi^{(i)}$ is a Lévy process for each i
J is a Markov chain with transition matrix Q
when J is in state i, run $\xi^{(i)}$
when J moves to j, make a jump from distribution $F_{i j}$ and run $\xi^{(j)}$

MARKOV ADDITIVE PROCESSES (NOTATION)

Let $\Pi_{i j}$ be the Lévy measure of $\xi^{(i)}$ and $\Pi_{i j}=q_{i j} F_{i j}$ when $i \neq j$

MARKOV ADDITIVE PROCESSES (NOTATION)

Let $\Pi_{i j}$ be the Lévy measure of $\xi^{(i)}$ and $\Pi_{i j}=q_{i j} F_{i j}$ when $i \neq j$
\rightarrow Call $\Pi=\left(\Pi_{i j}\right)_{i, j=1, \ldots, N}$ the matrix Lévy measure of ξ

MARKOV ADDITIVE PROCESSES (NOTATION)

Let $\Pi_{i j}$ be the Lévy measure of $\xi^{(i)}$ and $\Pi_{i j}=q_{i j} F_{i j}$ when $i \neq j$
Call $\Pi=\left(\Pi_{i j}\right)_{i, j=1, \ldots, N}$ the matrix Lévy measure of ξ
$>$ Matrix characteristic exponent $\boldsymbol{\Psi}: \mathbb{E}^{0, i}\left[e^{i 9 \xi_{t}} ; J_{t}=j\right]=\left(e^{t \boldsymbol{\Psi}(9)}\right)_{i j}$

MARKOV ADDITIVE PROCESSES (NOTATION)

Let $\Pi_{i j}$ be the Lévy measure of $\xi^{(i)}$ and $\Pi_{i j}=q_{i j} F_{i j}$ when $i \neq j$
Call $\Pi=\left(\Pi_{i j}\right)_{i, j=1, \ldots, N}$ the matrix Lévy measure of ξ
\rightarrow Matrix characteristic exponent Ψ : $\mathbb{E}^{0, i}\left[e^{\mathrm{i} 9 \xi_{t}} ; J_{t}=j\right]=\left(e^{t \boldsymbol{\Psi}(9)}\right)_{i j}$
Structure:

$$
\boldsymbol{\Psi}(\vartheta)=\left(\begin{array}{ccc}
\Psi_{1}(\vartheta)+q_{11} & \hat{\Pi}_{12}(\vartheta) & \cdots \\
\hat{\Pi}_{21}(\vartheta) & \psi_{2}(\vartheta)+q_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

where Ψ_{i} is CE of $\xi^{(i)}$ and $\hat{\Pi}_{i j}$ is the characteristic function of $\Pi_{i j}$

MARKOV ADDITIVE PROCESSES (NOTATION)

Let $\Pi_{i j}$ be the Lévy measure of $\xi^{(i)}$ and $\Pi_{i j}=q_{i j} F_{i j}$ when $i \neq j$
Call $\Pi=\left(\Pi_{i j}\right)_{i, j=1, \ldots, N}$ the matrix Lévy measure of ξ
$>$ Matrix characteristic exponent $\Psi: \mathbb{E}^{0, i}\left[e^{i 9 \xi_{t}} ; J_{t}=j\right]=\left(e^{t \boldsymbol{\Psi}(9)}\right)_{i j}$
Structure:

$$
\boldsymbol{\Psi}(\vartheta)=\left(\begin{array}{ccc}
\Psi_{1}(\vartheta)+q_{11} & \hat{\Pi}_{12}(\vartheta) & \cdots \\
\hat{\Pi}_{21}(\vartheta) & \Psi_{2}(\vartheta)+q_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

where Ψ_{i} is CE of $\xi^{(i)}$ and $\hat{\Pi}_{i j}$ is the characteristic function of $\Pi_{i j}$
Let π be the invariant measure of J

Wiener-Hopf factorisation

($\left.\mathrm{H}^{+}, J^{+}\right)$and $\left(\mathrm{H}^{-}, J^{-}\right)$: ladder height processes of (ξ, J)

WIEnER-HOPF FACTORISATION

($\left.\mathrm{H}^{+}, \mathrm{J}^{+}\right)$and $\left(\mathrm{H}^{-}, J^{-}\right)$: ladder height processes of (ξ, J)
They are MAP subordinators (increasing MAPs) with matrix exponents $\boldsymbol{\Psi}^{ \pm}$

WIEnER-HOPF FACTORISATION

($\left.\mathrm{H}^{+}, \mathrm{J}^{+}\right)$and $\left(\mathrm{H}^{-}, J^{-}\right)$: ladder height processes of (ξ, J)
They are MAP subordinators (increasing MAPs) with matrix exponents $\boldsymbol{\Psi}^{ \pm}$

- Path picture is the same

Wiener-Hopf factorisation

$\left(H^{+}, J^{+}\right)$and $\left(H^{-}, J^{-}\right)$: ladder height processes of (ξ, J)
$>$ They are MAP subordinators (increasing MAPs) with matrix exponents $\boldsymbol{\Psi}^{ \pm}$
$>$ Path picture is the same

Theorem (Dereich, Döring and Kyprianou)

$$
\boldsymbol{\Psi}(\vartheta)=-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(-\vartheta)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(\vartheta)
$$

where Δ_{π} is the diagonal matrix containing π.

MARKOV ADDITIVE FRIENDSHIP

THE INVERSE PROBLEM

Two MAP subordinators $\left(H^{ \pm}, J^{ \pm}\right)$are π-friends if there is a MAP for which they satisfy the above matrix equation

THE INVERSE PROBLEM

$>$ Two MAP subordinators $\left(H^{ \pm}, J^{ \pm}\right)$are π-friends if there is a MAP for which they satisfy the above matrix equation
Are there necessary and sufficient conditions for friendship?

THE INVERSE PROBLEM

$>$ Two MAP subordinators $\left(H^{ \pm}, J^{ \pm}\right)$are π-friends if there is a MAP for which they satisfy the above matrix equation
$>$ Are there necessary and sufficient conditions for friendship?
Is there a theory of philanthropy?

COMPATIBILITY

$\left(H^{ \pm}, J^{ \pm}\right)$are π-compatible if
$>d_{i}^{\mp}>0$ implies $\Pi_{i}^{ \pm}$is absolutely continuous and its density is the tail of a signed measure

Compatibility

$\left(H^{ \pm}, J^{ \pm}\right)$are π-compatible if
$>d_{i}^{\mp}>0$ implies $\Pi_{i}^{ \pm}$is absolutely continuous and its density is the tail of a signed measure
$>$ Elements of the vector $-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(0)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(0) \mathbf{1}$ are non-positive (row sums of Q-matrix of the putative bonding MAP)

COMPATIBILITY

$\left(H^{ \pm}, J^{ \pm}\right)$are π-compatible if
$>d_{i}^{\mp}>0$ implies $\Pi_{i}^{ \pm}$is absolutely continuous and its density is the tail of a signed measure
$>$ Elements of the vector $-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(0)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(0) \mathbf{1}$ are non-positive (row sums of Q-matrix of the putative bonding MAP)

- ...and an additional positivity condition involving intensity of zero-jumps

COMPATIBILITY

$\left(H^{ \pm}, J^{ \pm}\right)$are π-compatible if
$>d_{i}^{\mp}>0$ implies $\Pi_{i}^{ \pm}$is absolutely continuous and its density is the tail of a signed measure
$>$ Elements of the vector $-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(0)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(0) \mathbf{1}$ are non-positive (row sums of Q-matrix of the putative bonding MAP)

- ...and an additional positivity condition involving intensity of zero-jumps

Compatibility is a necessary condition for π-friendship!

The theorem of friends

Theorem

Define the matrix-valued function

$$
\mathbf{Y}(x)= \begin{cases}\int_{0+}^{\infty} \Delta_{\pi}^{-1}\left(\boldsymbol{\Pi}^{-}(y, \infty)-\boldsymbol{\Psi}^{-}(0)\right)^{\top} \Delta_{\pi} \boldsymbol{\Pi}^{+}(x+\mathrm{d} y)+\Delta_{\mathrm{d}}^{-} \partial \boldsymbol{\Pi}^{+}(x), & x>0, \\ \int_{0^{+}}^{\infty} \Delta_{\pi}^{-1}\left(\boldsymbol{\Pi}^{-}(-x+\mathrm{d} y)\right)^{\top} \Delta_{\pi}\left(\boldsymbol{\Pi}^{+}(y, \infty)-\boldsymbol{\Psi}^{+}(0)\right)+\Delta_{\pi}^{-1}\left(\Delta_{\mathrm{d}}^{+} \partial \boldsymbol{\Pi}^{-}(-x)\right)^{\top} \Delta_{\pi}, & x<0,\end{cases}
$$

Two MAP subordinators $\left(H^{ \pm}, J^{ \pm}\right)$are π-friends if and only if they are π-compatible and $Y_{i j}$ is decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$.

Then, $\mathbf{\Upsilon}$ is a.e. the right/left tail of the matrix Lévy measure of the bonding process.

Examples

EXAMPLES ARE HARD TO COME BY

Only known MAP factorisation is from the deep factorisation of the stable process

EXAMPLES ARE HARD TO COME BY

Only known MAP factorisation is from the deep factorisation of the stable process
The MAP in question is the Lamperti-Kiu transform of the stable process

EXAMPLES ARE HARD TO COME BY

Only known MAP factorisation is from the deep factorisation of the stable process
The MAP in question is the Lamperti-Kiu transform of the stable process
The factorisation is obtained using detailed knowledge of the stable process

EXAMPLES ARE HARD TO COME BY

$>$ Only known MAP factorisation is from the deep factorisation of the stable process
The MAP in question is the Lamperti-Kiu transform of the stable process
The factorisation is obtained using detailed knowledge of the stable process
$>$ No simpler proof is known; verifying the conditions of friendship appears difficult

Spectrally negative MAPs

$>$ Let $\left(H^{+}, J^{+}\right)$be a pure drift, i.e., $H_{t}^{+}=\int_{0}^{t} d_{J_{s}^{+}}^{+} \mathrm{ds}$

Theorem

A MAP subordinator $\left(H^{-}, J^{-}\right)$is π-friends with a pure drift if and only if they are π-compatible and

$$
-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{+}(0)^{T} \Delta_{\pi} \boldsymbol{\Pi}^{-}(x, \infty)+\Delta_{\mathbf{d}^{+}} \partial \Pi^{-}(x), \quad x>0,
$$

is decreasing.

Spectrally negative MAPs

$>$ Let $\left(H^{+}, J^{+}\right)$be a pure drift, i.e., $H_{t}^{+}=\int_{0}^{t} d_{J_{s}^{+}}^{+} \mathrm{ds}$

Theorem

A MAP subordinator $\left(H^{-}, J^{-}\right)$is π-friends with a pure drift if and only if they are π-compatible and

$$
-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{+}(0)^{T} \Delta_{\pi} \boldsymbol{\Pi}^{-}(x, \infty)+\Delta_{\mathbf{d}^{+}} \partial \Pi^{-}(x), \quad x>0,
$$

is decreasing.

Allows us to construct spectrally negative MAPs

Spectrally negative MAPs

$>$ Let $\left(H^{+}, J^{+}\right)$be a pure drift, i.e., $H_{t}^{+}=\int_{0}^{t} d_{J_{s}^{+}}^{+} \mathrm{ds}$

Theorem

A MAP subordinator $\left(H^{-}, J^{-}\right)$is π-friends with a pure drift if and only if they are π-compatible and

$$
-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{+}(0)^{T} \Delta_{\pi} \boldsymbol{\Pi}^{-}(x, \infty)+\Delta_{\mathbf{d}^{+}} \partial \Pi^{-}(x), \quad x>0,
$$

is decreasing.

Allows us to construct spectrally negative MAPs
When the Π_{i}^{-}have completely monotone density, can make conditions more explicit

Spectrally negative MAPs

$>$ Let $\left(H^{+}, J^{+}\right)$be a pure drift, i.e., $H_{t}^{+}=\int_{0}^{t} d_{J_{s}^{+}}^{+} \mathrm{ds}$

Theorem

A MAP subordinator $\left(H^{-}, J^{-}\right)$is π-friends with a pure drift if and only if they are π-compatible and

$$
-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{+}(0)^{T} \Delta_{\pi} \boldsymbol{\Pi}^{-}(x, \infty)+\Delta_{\mathbf{d}^{+}} \partial \Pi^{-}(x), \quad x>0,
$$

is decreasing.

Allows us to construct spectrally negative MAPs
When the Π_{i}^{-}have completely monotone density, can make conditions more explicit
Being friends with a drift does not make you friends with anything else: 'philanthropy', if it exists, is more complicated

Double exponential MAPs

Let $\left(H^{ \pm}, J^{ \pm}\right)$be MAP subordinators with exponential jumps in every state

Double exponential MAPs

$>$ Let $\left(H^{ \pm}, J^{ \pm}\right)$be MAP subordinators with exponential jumps in every state
Given some balances between coefficients, such processes can be friends

Double exponential MAPs

$>$ Let $\left(H^{ \pm}, J^{ \pm}\right)$be MAP subordinators with exponential jumps in every state

- Given some balances between coefficients, such processes can be friends

The bonding MAP has double exponential jumps within and between every state

Double exponential MAPs

$>$ Let $\left(H^{ \pm}, J^{ \pm}\right)$be MAP subordinators with exponential jumps in every state

- Given some balances between coefficients, such processes can be friends

The bonding MAP has double exponential jumps within and between every state
$>$ May be second example of two-sided MAP with known ladder processes?

WORK IN PROGRESS | OPEN PROBLEMS

Uniqueness of Wiener-Hopf factorisation

$>$ We have studied the matrix equation $\boldsymbol{\Psi}(\vartheta)=-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(-\vartheta)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(\vartheta)$

Uniqueness of Wiener-Hopf factorisation

$>$ We have studied the matrix equation $\boldsymbol{\Psi}(\vartheta)=-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(-\vartheta)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(\vartheta)$
$>$ To be sure that $\left(H^{ \pm}, J^{ \pm}\right)$really are the ladder processes, we need uniqueness

Uniqueness of Wiener-Hopf factorisation

We have studied the matrix equation $\boldsymbol{\Psi}(\vartheta)=-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(-\vartheta)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(\vartheta)$
$>$ To be sure that $\left(H^{ \pm}, J^{ \pm}\right)$really are the ladder processes, we need uniqueness
We have partial results, for instance under absolute continuity conditions

Uniqueness of Wiener-Hopf factorisation

$>$ We have studied the matrix equation $\boldsymbol{\Psi}(\vartheta)=-\Delta_{\pi}^{-1} \boldsymbol{\Psi}^{-}(-\vartheta)^{T} \Delta_{\pi} \boldsymbol{\Psi}^{+}(\vartheta)$
$>$ To be sure that $\left(H^{ \pm}, J^{ \pm}\right)$really are the ladder processes, we need uniqueness
$>$ We have partial results, for instance under absolute continuity conditions
Surprisingly, this does not seem to be known in full generality even for Lévy processes

Philanthropy

- Is there a notion of 'philanthropist' that implies friendship with other philanthropists?
- Are there conditions that do not depend on π ?

COMPLEX ANALYTIC STRUCTURE

- In the 'meromorphic' Lévy processes (Lamperti-stable, simple/double hypergeometric), the factorisation can be deduced from the poles and zeroes of the CE

COMPLEX ANALYTIC STRUCTURE

- In the 'meromorphic' Lévy processes (Lamperti-stable, simple/double hypergeometric), the factorisation can be deduced from the poles and zeroes of the CE

Is there such an approach for MAPs?

COMPLEX ANALYTIC STRUCTURE

- In the 'meromorphic' Lévy processes (Lamperti-stable, simple/double hypergeometric), the factorisation can be deduced from the poles and zeroes of the CE
- Is there such an approach for MAPs?

This would give an alternative avenue of attack for 'deep factorization' type processes

Further reading

(L. Döring, L. Trottner and A. R. Watson
Markov additive friendships
In preparation (working title)

Further reading

(L. Döring, L. Trottner and A. R. Watson
Markov additive friendships
In preparation (working title)

Thank you!

