
MARKOV ADDITIVE FRIENDSHIPS
Leif Döring Lukas Trottner Alex Watson

18 July 2022



LÉVY PROCESSES AND THE THEORY OF
FRIENDS



WIENER-HOPF FACTORISATION (PATH PICTURE)

ξ , a Lévy process
̄ξt = sups≤t ξs, the running supremum

H+t , the ascending ladder height process: suprema ‘stitched together’
H−
t , the descending ladder height process

H± are subordinators (increasing Lévy processes).
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WIENER-HOPF FACTORISATION (ANALYTIC PICTURE)

▶ LetΨ be the characteristic exponent of ξ (i.e., 𝔼eiθξt = etΨ(θ))

▶ LetΨ± be characteristic exponents of H±

▶ Then
Ψ(θ) = −Ψ−(−θ)Ψ+(θ).
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THE INVERSE PROBLEM

▶ Let H± be a pair of subordinators with CEsΨ±

▶ When is there a Lévy process ξ with CEΨ such thatΨ(θ) = −Ψ−(−θ)Ψ+(θ)?
▶ When such ξ exists, we call H± friends and ξ the bonding process
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THE THEOREM OF FRIENDS
▶ d± = drift of H±

▶ Π± = Lévy measure of H±

▶ H± are compatible if d∓ > 0 implies Π± is absolutely continuous and its density 𝜕Π± is
the tail of a signedmeasure

Theorem (Vigon)
Define

𝛶(x) =
⎧⎪
⎨
⎪⎩

∫(0,∞)(Π
−(y, ∞) − Ψ−(0))Π+(x + dy) + d−𝜕Π+(x), x > 0,

∫(0,∞)(Π
+(y, ∞) − Ψ+(0))Π−(−x + dy) + d+𝜕Π−(−x), x < 0.

H± are friends if and only if they are compatible and 𝛶 is decreasing on (0,∞) and
increasing on (−∞, 0).
Then, 𝛶 is a.e. the right/left tail of the Lévy measure of the bonding process.
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PHILANTHROPY

▶ Let H+t = d+t. A subordinator H− is called a philanthropist if it is a friend of H+.

▶ Equivalently, a subordinator is called a philanthropist if its Lévy measure admits a
decreasing density.

Theorem (Vigon)
Any two philanthropists can be friends.
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EXAMPLE (SPECTRALLY NEGATIVE PROCESSES)

▶ Let H+ be a (killed) pure drift

▶ Let H− be a philanthropist
▶ Then H± are friends and the bonding process is a spectrally negative Lévy process
▶ All spectrally negative Lévy processes are of this form
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MARKOV ADDITIVE PROCESSES

▶ A process (ξ , J) with state space (ℝ ∪ {𝜕}) × {1,… ,N} is aMarkov additive process
(MAP) if

given {Jt = i}, (ξt+s − ξt, Jt+s) is independent of the past up to t,

and has the same distribution as (ξs, Js) under ℙ0,i

▶ Equivalently, a Markov additive process is a regime-switching Lévy process:

▶ ξ (i) is a Lévy process for each i
▶ J is a Markov chain with transition matrix Q
▶ when J is in state i, run ξ (i)

▶ when Jmoves to j, make a jump from distribution Fij and run ξ (j)
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MARKOV ADDITIVE PROCESSES (NOTATION)

▶ Let Πii be the Lévy measure of ξ (i) and Πij = qijFij when i ≠ j

▶ Call Π = (Πij)i,j=1,…,N thematrix Lévymeasure of ξ
▶ Matrix characteristic exponentΨ: 𝔼0,i[eiθξt ; Jt = j] = (etΨ(θ))ij
▶ Structure:

Ψ(θ) =
⎛
⎜
⎜
⎝

Ψ1(θ) + q11 Π̂12(θ) ⋯
Π̂21(θ) Ψ2(θ) + q22 ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎠

whereΨi is CE of ξ (i) and Π̂ij is the characteristic function of Πij

▶ Let π be the invariant measure of J
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WIENER-HOPF FACTORISATION

▶ (H+, J+) and (H−, J−): ladder height processes of (ξ , J)

▶ They are MAP subordinators (increasing MAPs) with matrix exponentsΨ±

▶ Path picture is the same

Theorem (Dereich, Döring and Kyprianou)

Ψ(θ) = −Δ−1
π Ψ−(−θ)TΔπΨ+(θ),

where Δπ is the diagonal matrix containing π.

9



WIENER-HOPF FACTORISATION

▶ (H+, J+) and (H−, J−): ladder height processes of (ξ , J)
▶ They are MAP subordinators (increasing MAPs) with matrix exponentsΨ±

▶ Path picture is the same

Theorem (Dereich, Döring and Kyprianou)

Ψ(θ) = −Δ−1
π Ψ−(−θ)TΔπΨ+(θ),

where Δπ is the diagonal matrix containing π.

9



WIENER-HOPF FACTORISATION

▶ (H+, J+) and (H−, J−): ladder height processes of (ξ , J)
▶ They are MAP subordinators (increasing MAPs) with matrix exponentsΨ±

▶ Path picture is the same

Theorem (Dereich, Döring and Kyprianou)

Ψ(θ) = −Δ−1
π Ψ−(−θ)TΔπΨ+(θ),

where Δπ is the diagonal matrix containing π.

9



WIENER-HOPF FACTORISATION

▶ (H+, J+) and (H−, J−): ladder height processes of (ξ , J)
▶ They are MAP subordinators (increasing MAPs) with matrix exponentsΨ±

▶ Path picture is the same

Theorem (Dereich, Döring and Kyprianou)

Ψ(θ) = −Δ−1
π Ψ−(−θ)TΔπΨ+(θ),

where Δπ is the diagonal matrix containing π.

9



MARKOV ADDITIVE FRIENDSHIP



THE INVERSE PROBLEM

▶ Two MAP subordinators (H±, J±) are π-friends if there is a MAP for which they satisfy
the above matrix equation

▶ Are there necessary and sufficient conditions for friendship?
▶ Is there a theory of philanthropy?
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COMPATIBILITY

(H±, J±) are π-compatible if

▶ d∓
i > 0 implies Π±

i is absolutely continuous and its density is the tail of a signed
measure

▶ Elements of the vector −Δ−1
π Ψ−(0)TΔπΨ+(0)1 are non-positive (row sums of Q-matrix

of the putative bonding MAP)
▶ ...and an additional positivity condition involving intensity of zero-jumps

Compatibility is a necessary condition for π-friendship!
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THE THEOREM OF FRIENDS

Theorem
Define the matrix-valued function

𝚼(x) =
⎧⎪
⎨
⎪⎩

∫∞
0+ Δ

−1
π (Π

−(y, ∞) − Ψ−(0))
⊤
Δπ Π+(x + dy) + Δ−

d𝜕Π+(x), x > 0,

∫∞
0+ Δ

−1
π (Π−(−x + dy))

⊤Δπ (Π+(y, ∞) − Ψ+(0)) + Δ−1
π (Δ+d𝜕Π−(−x))

⊤Δπ, x < 0,

Two MAP subordinators (H±, J±) are π-friends if and only if they are π-compatible and 𝛶ij
is decreasing on (0,∞) and increasing on (−∞, 0).

Then, 𝚼 is a.e. the right/left tail of the matrix Lévy measure of the bonding process.
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EXAMPLES



EXAMPLES ARE HARD TO COME BY

▶ Only known MAP factorisation is from the deep factorisation of the stable process

▶ The MAP in question is the Lamperti-Kiu transform of the stable process
▶ The factorisation is obtained using detailed knowledge of the stable process
▶ No simpler proof is known; verifying the conditions of friendship appears difficult
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SPECTRALLY NEGATIVE MAPS
▶ Let (H+, J+) be a pure drift, i.e., H+t = ∫t

0 d
+
J+s
ds

Theorem
A MAP subordinator (H−, J−) is π-friends with a pure drift if and only if they are
π-compatible and

−Δ−1
π Ψ+(0)TΔπΠ−(x, ∞) + Δd+𝜕Π−(x), x > 0,

is decreasing.

▶ Allows us to construct spectrally negative MAPs
▶ When the Π−

i have completely monotone density, can make conditions more explicit
▶ Being friends with a drift does not make you friends with anything else:

‘philanthropy’, if it exists, is more complicated

14
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DOUBLE EXPONENTIAL MAPS

▶ Let (H±, J±) be MAP subordinators with exponential jumps in every state

▶ Given some balances between coefficients, such processes can be friends
▶ The bonding MAP has double exponential jumps within and between every state
▶ May be second example of two-sided MAP with known ladder processes?
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UNIQUENESS OF WIENER-HOPF FACTORISATION

▶ We have studied the matrix equationΨ(θ) = −Δ−1
π Ψ−(−θ)TΔπΨ+(θ)

▶ To be sure that (H±, J±) really are the ladder processes, we need uniqueness
▶ We have partial results, for instance under absolute continuity conditions
▶ Surprisingly, this does not seem to be known in full generality even for Lévy processes
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PHILANTHROPY

▶ Is there a notion of ‘philanthropist’ that implies friendship with other philanthropists?
▶ Are there conditions that do not depend on π?

17



COMPLEX ANALYTIC STRUCTURE

▶ In the ‘meromorphic’ Lévy processes (Lamperti-stable, simple/double
hypergeometric), the factorisation can be deduced from the poles and zeroes of the
CE

▶ Is there such an approach for MAPs?
▶ This would give an alternative avenue of attack for ‘deep factorization’ type processes
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FURTHER READING

L. Döring, L. Trottner and A. R. Watson
Markov additive friendships
In preparation (working title)

Thank you!
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