STRONG LAWS FOR GROWTH-FRAGMENTATION PROCESSES WITH BOUNDED CELL SIZE

Emma Horton Alex Watson

IECL seminar, 6 May 2021

A model of growth-fragmentation

t = 0.00 1 cell

t = 0.00 t = 4.71 1 cell 100 cells

Homogeneous model

Exponential growth and size-independent rates: $\tau(x) = ax, B(x) = B, D(x) = k$, $\kappa(x, \cdot) = \kappa(\cdot)$

Homogeneous model

- Exponential growth and size-independent rates: $\tau(x) = ax, B(x) = B, D(x) = k$, $\kappa(x, \cdot) = \kappa(\cdot)$
- No equilibrium behaviour

Homogeneous model

- Exponential growth and size-independent rates: $\tau(x) = ax, B(x) = B, D(x) = k$, $\kappa(x, \cdot) = \kappa(\cdot)$
- No equilibrium behaviour
- Underlying Lévy process: $\mathbb{E}_{x}\langle \mathbf{Z}(t), f \rangle = e^{at} \mathbb{E}_{x}[e^{-\chi_{t}}f(e^{\chi_{t}})]$

Perturbations

'Refracted process':

$$\tau(x) = \begin{cases} ax, & 0 < x < c, \\ a'x, & x > c, \end{cases}$$

where a > a'. Cavalli (2020, Acta Appl. Math.): equilibrium behaviour of mean measures

PERTURBATIONS

'Refracted process':

$$\tau(x) = \begin{cases} ax, & 0 < x < c, \\ a'x, & x > c, \end{cases}$$

where a > a'.

Cavalli (2020, Acta Appl. Math.): equilibrium behaviour of mean measures

Our interest: 'reflected process'.

$$\tau(x) = \begin{cases} ax, & 0 < x < c \\ 0, & x > c. \end{cases}$$

PERTURBATIONS

'Refracted process':

$$\tau(x) = \begin{cases} ax, & 0 < x < c, \\ a'x, & x > c, \end{cases}$$

where a > a'.

Cavalli (2020, Acta Appl. Math.): equilibrium behaviour of mean measures

Our interest: 'reflected process'.

$$\tau(x) = \begin{cases} ax, & 0 < x < c, \\ 0, & x > c. \end{cases}$$

Underlying both: perturbed Lévy processes

Cell labels in
$$U = \bigcup_{n \ge 0} \{0, 1\}^n$$

• Cell labels in
$$U = \bigcup_{n \ge 0} \{0, 1\}^n$$

linitial cell Ø. Births $\emptyset \rightarrow 0, 1; 0 \rightarrow 00, 01;$ etc.

Cell labels in
$$U = \bigcup_{n \ge 0} \{0, 1\}^n$$

linitial cell Ø. Births $\emptyset \rightarrow 0, 1; 0 \rightarrow 00, 01;$ etc.

Cells grow exponentially, with cap at *c*

- Cell labels in $U = \bigcup_{n \ge 0} \{0, 1\}^n$
- ▶ Initial cell Ø. Births $Ø \rightarrow 0, 1; 0 \rightarrow 00, 01;$ etc.
- Cells grow exponentially, with cap at *c*
- Cells die at rate k and divide at rate B

- Cell labels in $U = \bigcup_{n \ge 0} \{0, 1\}^n$
- ▶ Initial cell Ø. Births $Ø \rightarrow 0, 1; 0 \rightarrow 00, 01;$ etc.
- Cells grow exponentially, with cap at *c*
- Cells die at rate k and divide at rate B
- At a division time d_u , offspring have initial size $\xi Z_u(d_u-)$ and $(1-\xi)Z_u(d_u-)$, where $\xi \sim \kappa$.

- Cell labels in $U = \bigcup_{n \ge 0} \{0, 1\}^n$
- ▶ Initial cell Ø. Births $Ø \rightarrow 0, 1; 0 \rightarrow 00, 01;$ etc.
- Cells grow exponentially, with cap at *c*
- Cells die at rate k and divide at rate B
- At a division time d_u , offspring have initial size $\xi Z_u(d_u-)$ and $(1-\xi)Z_u(d_u-)$, where $\xi \sim \kappa$.
- \blacktriangleright $Z_u(t)$ = size of cell *u* at *t*, if present

- Cell labels in $U = \bigcup_{n \ge 0} \{0, 1\}^n$
- linitial cell Ø. Births Ø \rightarrow 0, 1; 0 \rightarrow 00, 01; etc.
- Cells grow exponentially, with cap at *c*
- Cells die at rate k and divide at rate B
- At a division time d_u , offspring have initial size $\xi Z_u(d_u-)$ and $(1-\xi)Z_u(d_u-)$, where $\xi \sim \kappa$.
- \blacktriangleright $Z_u(t)$ = size of cell *u* at *t*, if present
- $\blacktriangleright \mathbf{Z}(t) = \sum_{u \in U} \delta_{Z_u(t)} \mathbb{1}_{\{u \text{ alive at } t\}}$

6

6

MEAN MEASURES

lnterested in Z(t) as $t \to \infty$

MEAN MEASURES

lnterested in Z(t) as $t \to \infty$

Start with $\mu_t = \mathbb{E}_x \mathbf{Z}(t)$, i.e. $\langle \mu_t, f \rangle = \mathbb{E}_x \langle \mathbf{Z}(t), f \rangle$
Interested in Z(t) as t → ∞
Start with µ_t = E_xZ(t), i.e. ⟨µ_t, f⟩ = E_x⟨Z(t), f⟩

 $\partial_t \langle \mu_t, f \rangle = \langle \mu_t, \mathcal{A}f \rangle$

Interested in Z(t) as
$$t \to \infty$$
Start with $\mu_t = \mathbb{E}_x Z(t)$, i.e. $\langle \mu_t, f \rangle = \mathbb{E}_x \langle Z(t), f \rangle$
 $\partial_t \langle \mu_t, f \rangle = \langle \mu_t, \mathcal{A}f \rangle$
 $\mathcal{A}f(x) = axf'(x) + 2B \int_0^1 f(xp) \tilde{\kappa}(dp) - Bf(x) - kf(x)$

Interested in Z(t) as $t \to \infty$ Start with $\mu_t = \mathbb{E}_{\mathbf{y}} \mathbf{Z}(t)$, i.e. $\langle \mu_t, f \rangle = \mathbb{E}_{\mathbf{y}} \langle \mathbf{Z}(t), f \rangle$ $\partial_t \langle \mu_t, f \rangle = \langle \mu_t, \mathcal{A}f \rangle$ $\mathcal{A}f(x) = axf'(x) + 2B \int_0^1 f(xp) \,\widetilde{\kappa}(\mathrm{d}p) - Bf(x) - \Bbbk f(x)$ $\mathcal{D}(\mathcal{A}) \supset \{f \in C^1_c(0,c]: f'(c) = 0\}$

Interested in Z(t) as
$$t \to \infty$$
Start with $\mu_t = \mathbb{E}_x Z(t)$, i.e. $\langle \mu_t, f \rangle = \mathbb{E}_x \langle Z(t), f \rangle$
 $\partial_t \langle \mu_t, f \rangle = \langle \mu_t, \mathcal{A}f \rangle$
 $\mathcal{A}f(x) = axf'(x) + 2B \int_0^1 f(xp) \tilde{\kappa}(dp) - Bf(x) - kf(x)$
 $\mathcal{D}(\mathcal{A}) \supset \{f \in C_c^1(0, c]; f'(c) = 0\}$
....where $\tilde{\kappa}(dp) = \frac{\kappa(dp) + \kappa(1 - dp)}{2}$.

THEOREM 1(A)

If

$$a > 2B \int_0^1 (-\log p) \widetilde{\kappa}(\mathrm{d}p),$$

then for *f* continuous and bounded,

$$\mathbb{E}_{x}\langle \mathbf{Z}(t),f
angle = \langle \mu_{t},f
angle \sim e^{\lambda t}h(x)\langle
u,f
angle, \qquad t
ightarrow\infty,$$

THEOREM 1(A)

lf

$$a > 2B \int_0^1 (-\log p) \tilde{\kappa}(\mathrm{d}p),$$

then for *f* continuous and bounded,

$$\mathbb{E}_{x}\langle \mathbf{Z}(t),f
angle = \langle \mu_{t},f
angle \sim e^{\lambda t}h(x)\langle
u,f
angle, \qquad t
ightarrow \infty,$$

where $\langle \nu, h \rangle = 1$ and

 $\mathcal{A}h = \lambda h$ $\nu \mathcal{A} = \lambda \nu.$

Lemma (Many-to-one)

Let η be a Lévy process with Lévy measure $2B\tilde{\kappa} \circ \log^{-1}$, drift a, and reflection above at $b = \log c$. Call η the spine. Then, $\langle \mu_t, f \rangle = e^{(B-k)t} \mathbb{E}[f(e^{\eta_t}) \mid \eta_0 = \log x]$.

Idea: conditional on living to t, follow offspring uniformly

Lemma

 η is positive recurrent if and only if $\tilde{\eta}$, the unreflected Lévy process, drifts to $+\infty$.

Lemma

 η is positive recurrent if and only if $\tilde{\eta}$, the **unreflected** Lévy process, drifts to $+\infty$.

Lemma

η is positive recurrent if and only if $a > 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$. The invariant distribution m satisfies

$$\int_{-\infty}^{b} e^{-(b-x)q} m(\mathrm{d}x) = cst \cdot \frac{q}{aq + 2B \int_{0}^{1} (p^{q} - 1) \,\widetilde{\kappa}(\mathrm{d}p)}$$

Lemma

 η is positive recurrent if and only if $\tilde{\eta}$, the **unreflected** Lévy process, drifts to $+\infty$.

Lemma

η is positive recurrent if and only if $a > 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$. The invariant distribution m satisfies

$$\int_{-\infty}^{b} e^{-(b-x)q} m(\mathrm{d}x) = cst \cdot \frac{q}{aq + 2B \int_{0}^{1} (p^{q} - 1) \,\widetilde{\kappa}(\mathrm{d}p)}$$

$$\langle \mu_t, f \rangle = e^{(B-\mathbf{k})t} \mathbb{E} f(e^{\eta_t}) \sim e^{(B-\mathbf{k})t} \langle m, f(e^{\cdot}) \rangle.$$

Lemma

 η is positive recurrent if and only if $\tilde{\eta}$, the **unreflected** Lévy process, drifts to $+\infty$.

Lemma

η is positive recurrent if and only if $a > 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$. The invariant distribution m satisfies

$$\int_{-\infty}^{b} e^{-(b-x)q} m(\mathrm{d}x) = cst \cdot \frac{q}{aq + 2B \int_{0}^{1} (p^{q} - 1) \,\widetilde{\kappa}(\mathrm{d}p)}$$

$$\langle \mu_t, f \rangle = e^{(B-k)t} \mathbb{E} f(e^{\eta_t}) \sim e^{(B-k)t} \langle m, f(e^{\cdot}) \rangle.$$

We get Theorem 1(a), with $\lambda = B - k$, $h = 1$ and $\nu = m \circ \exp^{-1}$.

THEOREM 1(B)

lf

$$a > 2B \int_0^1 (-\log p) \tilde{\kappa}(\mathrm{d}p)$$
 and $\int_0^1 p^{-(r+\epsilon)} \tilde{\kappa}(\mathrm{d}p) < \infty$, some $r, \epsilon > 0$,

then there exist C, k > 0 such that for f continuous,

$$|e^{-\lambda t}\langle \mu_t, f\rangle - h(x)\langle \nu, f\rangle| \leq \|f_r\|_{\infty} \big((c/x)^r + C \big) e^{-kt},$$

where $f_r(x) = (x/c)^r f(x)$.

THEOREM 1(B)

lf

$$a > 2B \int_0^1 (-\log p) \tilde{\kappa}(\mathrm{d}p)$$
 and $\int_0^1 p^{-(r+\epsilon)} \tilde{\kappa}(\mathrm{d}p) < \infty$, some $r, \epsilon > 0$,

then there exist C, k > 0 such that for f continuous,

$$|e^{-\lambda t}\langle \mu_t, f\rangle - h(x)\langle \nu, f\rangle| \leq \|f_r\|_{\infty} ((c/x)^r + C)e^{-kt},$$

where $f_r(x) = (x/c)^r f(x)$.

Similar proof: exponential recurrence of reflected Lévy process

THEOREM 2

If

$$a > 2B \int_0^1 (-\log p) \widetilde{\kappa}(\mathrm{d}p), \int_0^1 p^{-(r+\epsilon)} \widetilde{\kappa}(\mathrm{d}p) < \infty$$
 and $B > k$,

then, for continuous bounded f and $x \in (0, c]$,

$$e^{-\lambda t}\langle \mathbf{Z}(t), f
angle o M_{\infty} \langle \nu, f
angle \qquad \mathbb{P}_{x} ext{-a.s. and in } L^{1}(\mathbb{P}_{x}),$$

THEOREM 2

If

$$a > 2B \int_0^1 (-\log p) \widetilde{\kappa}(\mathrm{d}p), \int_0^1 p^{-(r+\epsilon)} \widetilde{\kappa}(\mathrm{d}p) < \infty$$
 and $B > k$,

then, for continuous bounded f and $x \in (0, c]$,

$$e^{-\lambda t}\langle \mathsf{Z}(t),f
angle o M_{\infty}\langle
u,f
angle extsf{P}_{x} extsf{-a.s.} extsf{ and in } L^{1}(\mathbb{P}_{x}),$$

where M_{∞} is a random variable with $\mathbb{E}_{x}M_{\infty} = h(x) = 1$.

Start with case k = 0: no killing

- Start with case k = 0: no killing
- $\blacktriangleright M_t = e^{-\lambda t} \langle \mathbf{Z}(t), \mathbf{1} \rangle \text{ is a UI martingale} \text{even } L^2\text{-bounded}$

- Start with case k = 0: no killing
- $\blacktriangleright M_t = e^{-\lambda t} \langle \mathbf{Z}(t), \mathbf{1} \rangle \text{ is a UI martingale} \text{even } L^2 \text{-bounded}$
- \blacktriangleright M_{∞} is its (a.s. or L^1) limit

$$e^{-\lambda(t+s)}\mathbf{Z}(t+s)$$

+

+

PROOF IDEAS \searrow Descendants of $Z_n(t)$ s $\Sigma_u(t)$ Other cells $e^{-\lambda(t+s)}\mathbf{Z}(t+s) = e^{-\lambda t} \sum_{u} e^{-\lambda s} \sum_{v \in D_{u}} \delta_{Z_{v}(t+s)}$ $= e^{-\lambda t} \sum_{u} \left(e^{-\lambda s} \sum_{v \in D} \delta_{Z_{v}(t+s)} - \mathbb{E}_{x} \left[\sum_{v \in D} e^{-\lambda s} \delta_{Z_{v}(t+s)} \middle| \mathcal{F}_{t} \right] \right)$ + $e^{-\lambda t} \sum_{\nu} \left(\mathbb{E}_{x} \left[\sum_{v \in \mathcal{D}} e^{-\lambda s} \delta_{Z_{v}(t+s)} \middle| \mathcal{F}_{t} \right] - \nu \right)$ $+ M_{t}\nu$

Term 1 \rightarrow 0 by comparison with *M*. Term 3 \rightarrow $M_{\infty}\nu$.

PROOF IDEAS \searrow Descendants of $Z_u(t)$ s $\Sigma_u(t)$ Other cells $e^{-\lambda(t+s)}\mathbf{Z}(t+s) = e^{-\lambda t} \sum_{u} e^{-\lambda s} \sum_{v \in D_{u}} \delta_{Z_{v}(t+s)}$ $= e^{-\lambda t} \sum_{u} \left(e^{-\lambda s} \sum_{v \in D} \delta_{Z_{v}(t+s)} - \mathbb{E}_{x} \left[\sum_{v \in D} e^{-\lambda s} \delta_{Z_{v}(t+s)} \middle| \mathcal{F}_{t} \right] \right)$ + $e^{-\lambda t} \sum_{\nu} \left(\mathbb{E}_{x} \left[\sum_{v \in \mathcal{D}} e^{-\lambda s} \delta_{Z_{v}(t+s)} \middle| \mathcal{F}_{t} \right] - \nu \right)$ $+ M_{t}\nu$

Term 1 \rightarrow 0 by comparison with *M*. Term 3 \rightarrow $M_{\infty}\nu$. Term 2?

$$|\langle \text{Term 2, } f \rangle| = \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{v \in D_{u}} e^{-\lambda s} f(Z_{v}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right|$$

$$|\langle \operatorname{Term} 2, f \rangle| = \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{v \in D_{u}} e^{-\lambda s} f(Z_{v}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right|$$
$$= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)}[e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right|$$

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| \end{split}$$

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

Use exponential rate asymptotics:

$$\left|\mathbb{E}_{Z_{u}(t)}\left[e^{-\lambda s}\langle \mathbf{Z}(s), f\rangle\right] - \langle \nu, f\rangle\right| \le e^{-ks} \|f_{r}\|_{\infty} ((c/Z_{u}(t))^{r} + C)$$

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

Use exponential rate asymptotics:

$$|\mathbb{E}_{Z_u(t)}[e^{-\lambda s}\langle \mathsf{Z}(s), f\rangle] - \langle \nu, f\rangle| \le e^{-ks} \|f_r\|_{\infty} ((c/Z_u(t))^r + C)$$

....so:

$$\mathbb{E}_{x}R_{s,t} \leq e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x}\left[\sum_{u} e^{-\lambda t} \left((c/Z_{u}(t))^{r} + C \right) \right]$$
...and the RHS is bounded in t.

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

Use exponential rate asymptotics:

$$|\mathbb{E}_{Z_u(t)}[e^{-\lambda s}\langle \mathsf{Z}(s), f\rangle] - \langle \nu, f\rangle| \le e^{-ks} \|f_r\|_{\infty} ((c/Z_u(t))^r + C)$$

....so:

 $\mathbb{E}_{x}R_{s,t} \leq e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x}\left[\sum_{u} e^{-\lambda t} \left((c/Z_{u}(t))^{r} + C \right) \right] \leq e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x}\left[e^{r(b-\eta_{t})} + C\right]$...and the RHS is bounded in *t*.

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

Use exponential rate asymptotics:

$$|\mathbb{E}_{Z_u(t)}[e^{-\lambda s}\langle \mathsf{Z}(s), f\rangle] - \langle \nu, f\rangle| \le e^{-ks} \|f_r\|_{\infty} ((c/Z_u(t))^r + C)$$

...so:

$$\mathbb{E}_{x}R_{s,t} \le e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x} [\sum_{u} e^{-\lambda t} ((c/Z_{u}(t))^{r} + C)] \le e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x} [e^{r(b-\eta_{t})} + C]$$

...and the RHS is bounded in t.

Thus $\mathbb{E}_{x}R_{\delta n,\delta n}$ is summable, and Borel-Cantelli yields a.s. convergence along δn .

$$\begin{split} |\langle \operatorname{Term} 2, f \rangle| &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{x} \left[\sum_{\nu \in D_{u}} e^{-\lambda s} f(Z_{\nu}(t+s)) \middle| \mathcal{F}_{t} \right] - \langle \nu, f \rangle \right) \right| \\ &= \left| e^{-\lambda t} \sum_{u} \left(\mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right) \right| \\ &\leq e^{-\lambda t} \sum_{u} \left| \mathbb{E}_{Z_{u}(t)} [e^{-\lambda s} \langle \mathbf{Z}(s), f \rangle] - \langle \nu, f \rangle \right| =: R_{s,t} \end{split}$$

Use exponential rate asymptotics:

$$\left|\mathbb{E}_{Z_{u}(t)}\left[e^{-\lambda s}\langle \mathsf{Z}(s), f\rangle\right] - \langle \nu, f\rangle\right| \le e^{-ks} \|f_{r}\|_{\infty} ((c/Z_{u}(t))^{r} + C)$$

...so:

$$\mathbb{E}_{x}R_{s,t} \le e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x} [\sum_{u} e^{-\lambda t} ((c/Z_{u}(t))^{r} + C)] \le e^{-ks} \|f_{r}\|_{\infty} \mathbb{E}_{x} [e^{r(b-\eta_{t})} + C]$$

...and the RHS is bounded in t.

Thus E_xR_{δn,δn} is summable, and Borel-Cantelli yields a.s. convergence along δn.
 This is the core of the proof.

What if k > 0, i.e., cells may be killed?

- What if k > 0, i.e., cells may be killed?
- Colour blue lines of descent which live forever, others red

PROOF IDEAS

- What if k > 0, i.e., cells may be killed?
- Colour blue lines of descent which live forever, others red
- Blue tree satisfies k = 0 and only differs in offspring distribution: skeleton decomposition

PROOF IDEAS

- What if k > 0, i.e., cells may be killed?
- Colour blue lines of descent which live forever, others red
- Blue tree satisfies k = 0 and only differs in offspring distribution: skeleton decomposition
- Show that red tree has negligible contribution to limit

Nice aspects: explicit h, ν and λ , fairly transparent proofs

Used extensively that h = 1

Nice aspects: explicit h, ν and λ , fairly transparent proofs

Used extensively that h = 1

Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability

- Used extensively that h = 1
 - Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability
- **Vised** precise *x*-dependence of $|e^{-\lambda t}\mathbb{E}_x \langle \mathbf{Z}(t), f \rangle \langle \nu, f \rangle|$

- Used extensively that h = 1
 - Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability
- ▶ Used precise *x*-dependence of $|e^{-\lambda t}\mathbb{E}_x \langle \mathbf{Z}(t), f \rangle \langle \nu, f \rangle|$
- Reflected Lévy arguments allow control over Z(t)(dx)-integrals

- Used extensively that h = 1
 - Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability
- **Vised** precise *x*-dependence of $|e^{-\lambda t}\mathbb{E}_x \langle \mathbf{Z}(t), f \rangle \langle \nu, f \rangle|$
- Reflected Lévy arguments allow control over Z(t)(dx)-integrals
 - More generally, need to understand precisely asymptotics of another spine process.

- Used extensively that h = 1
 - Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability
- Used precise *x*-dependence of $|e^{-\lambda t}\mathbb{E}_x \langle \mathbf{Z}(t), f \rangle \langle \nu, f \rangle|$
- Reflected Lévy arguments allow control over Z(t)(dx)-integrals
 - More generally, need to understand precisely asymptotics of another spine process.
- Require $B < \infty$, both for $\lambda < \infty$ to hold and for passage from $Z(\delta n)$ to Z(t).

- Used extensively that h = 1
 - Without this, *M* becomes $M_t = e^{-\lambda t} \langle \mathbf{Z}(t), h \rangle$; need estimates on *h* and 1/*h* for uniform integrability
- Used precise *x*-dependence of $|e^{-\lambda t}\mathbb{E}_x \langle \mathbf{Z}(t), f \rangle \langle \nu, f \rangle|$
- Reflected Lévy arguments allow control over Z(t)(dx)-integrals
 - More generally, need to understand precisely asymptotics of another spine process.
- Require $B < \infty$, both for $\lambda < \infty$ to hold and for passage from $Z(\delta n)$ to Z(t).
 - Could imagine more general Lévy processes appearing, but h will not be 1

THEOREM 3: TRANSIENT CASE

If

$$B > k$$
, $a < 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$ (plus extra condition)

there exist $\lambda_0 < \lambda$, $q_0 \in \mathbb{R}$ such that for f continuous with $f(x) = O(x^{q_0})$ as $x \to 0$,

 $e^{-\lambda_0 t} \langle \mathsf{Z}(t), f
angle o 0.$

THEOREM 3: TRANSIENT CASE

lf

$$B > k$$
, $a < 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$ (plus extra condition)

there exist $\lambda_0 < \lambda$, $q_0 \in \mathbb{R}$ such that for f continuous with $f(x) = O(x^{q_0})$ as $x \to 0$,

$$e^{-\lambda_0 t} \langle \mathsf{Z}(t), f
angle o 0.$$

Cell sizes decay to zero too fast to be seen by f

THEOREM 3: TRANSIENT CASE

lf

$$B > k$$
, $a < 2B \int_0^1 (-\log p) \tilde{\kappa}(dp)$ (plus extra condition)

there exist $\lambda_0 < \lambda$, $q_0 \in \mathbb{R}$ such that for f continuous with $f(x) = O(x^{q_0})$ as $x \to 0$,

$$e^{-\lambda_0 t} \langle \mathsf{Z}(t), f
angle o 0.$$

- Cell sizes decay to zero too fast to be seen by f
- Analysis involves nice reflected Lévy process with killing at reflection boundary

FURTHER READING

 E. Horton and A. R. Watson Strong laws of large numbers for a growth-fragmentation process with bounded cell size arXiv:2012.03273 [math.PR]

FURTHER READING

E. Horton and A. R. Watson Strong laws of large numbers for a growth-fragmentation process with bounded cell

size arXiv:2012.03273 [math.PR]

Thank you!