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A MODEL OF GROWTH-FRAGMENTATION

x(0) = x

▶ List sizes at time t: (Zu(t): u ∈ U)
▶ Z(t) = ∑u∈U δZu(t)
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EQUILIBRIUM BEHAVIOUR
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⟩ ⟨Z(t), f ⟩ ∼ eλt⟨Z(0), h⟩⟨𝜈, f ⟩
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HOMOGENEOUS MODEL

▶ Exponential growth and size-independent rates: τ(x) = ax, B(x) = B, D(x) = k,
κ(x, ⋅) = κ(⋅)

▶ No equilibrium behaviour
▶ Underlying Lévy process: 𝔼x⟨Z(t), f ⟩ = eat𝔼x [e−𝜒t f(e𝜒t)]
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PERTURBATIONS

▶ ‘Refracted process’:

τ(x) = {
ax, 0 < x < c,
a′x, x > c,

where a > a′.
Cavalli (2020, Acta Appl. Math.): equilibrium behaviour of meanmeasures

▶ Our interest: ‘reflected process’.

τ(x) = {
ax, 0 < x < c,
0, x > c.

▶ Underlying both: perturbed Lévy processes
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GROWTH-FRAGMENTATION PROCESS

▶ Cell labels in U = ⋃n≥0{0, 1}
n

▶ Initial cell ∅. Births ∅ → 0, 1; 0 → 00, 01; etc.
▶ Cells grow exponentially, with cap at c
▶ Cells die at rate k and divide at rate B
▶ At a division time du, offspring have initial size ξZu(du−) and (1 − ξ)Zu(du−), where

ξ ∼ κ.
▶ Zu(t) = size of cell u at t, if present
▶ Z(t) = ∑u∈U δZu(t)𝟙{u alive at t}
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GROWTH-FRAGMENTATION PROCESS – SCHEMATIC
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MEAN MEASURES

▶ Interested in Z(t) as t → ∞

▶ Start with μt = 𝔼xZ(t), i.e. ⟨μt, f ⟩ = 𝔼x⟨Z(t), f ⟩

𝜕t⟨μt, f ⟩ = ⟨μt,𝒜f ⟩

𝒜f(x) = axf ′(x) + 2B∫
1

0
f(xp) ̃κ(dp) − Bf(x) − kf(x)

𝒟(𝒜) ⊃ {f ∈ C1c(0, c]: f ′(c) = 0}

...where ̃κ(dp) = κ(dp)+κ(1−dp)
2 .
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THEOREM 1(A)

If

a > 2B∫
1

0
(− log p) ̃κ(dp),

then for f continuous and bounded,

𝔼x⟨Z(t), f ⟩ = ⟨μt, f ⟩ ∼ eλth(x)⟨𝜈, f ⟩, t → ∞,

where ⟨𝜈, h⟩ = 1 and

𝒜h = λh
𝜈𝒜 = λ𝜈.
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PROOF IDEAS

Lemma (Many-to-one)

Let η be a Lévy process with Lévy measure 2B ̃κ ∘ log−1, drift a, and reflection above at
b = log c. Call η the spine. Then, ⟨μt, f ⟩ = e(B−k)t𝔼[f(eηt) ∣ η0 = log x].

c

Idea: conditional on living to t, follow offspring uniformly
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PROOF IDEAS
Lemma
η is positive recurrent if and only if ̃η, the unreflected Lévy process, drifts to +∞.

Lemma
η is positive recurrent if and only if a > 2B∫1

0 (− log p) ̃κ(dp).
The invariant distributionm satisfies

∫
b

−∞
e−(b−x)qm(dx) = cst ⋅

q

aq + 2B∫1
0 (pq − 1) ̃κ(dp)

.

▶ ⟨μt, f ⟩ = e(B−k)t𝔼f(eηt) ∼ e(B−k)t⟨m, f(e⋅)⟩.
▶ We get Theorem 1(a), with λ = B − k, h = 1 and 𝜈 = m ∘ exp−1.
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THEOREM 1(B)

If

a > 2B∫
1

0
(− log p) ̃κ(dp) and ∫

1

0
p−(r+𝜖) ̃κ(dp) < ∞, some r, 𝜖 > 0,

then there exist C, k > 0 such that for f continuous,

|e−λt⟨μt, f ⟩ − h(x)⟨𝜈, f ⟩| ≤ ‖fr‖∞((c/x)r + C)e−kt,

where fr(x) = (x/c)r f(x).

▶ Similar proof: exponential recurrence of reflected Lévy process
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THEOREM 2

If

a > 2B∫
1

0
(− log p) ̃κ(dp),∫

1

0
p−(r+𝜖) ̃κ(dp) < ∞ and B > k,

then, for continuous bounded f and x ∈ (0, c],

e−λt⟨Z(t), f ⟩ → M∞⟨𝜈, f ⟩ ℙx-a.s. and in L1(ℙx),

whereM∞ is a random variable with 𝔼xM∞ = h(x) = 1.
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▶ Start with case k = 0: no killing

▶ Mt = e−λt⟨Z(t), 1⟩ is a UI martingale – even L2-bounded
▶ M∞ is its (a.s. or L1) limit

13
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PROOF IDEAS

t

Zu(t)
s

Du

Descendants ofZu(t)

Other cells

e−λ(t+s)Z(t + s)

= e−λt ∑
u
e−λs ∑

v∈Du

δZv(t+s)

= e−λt ∑
u

(e−λs ∑
v∈Du

δZv(t+s) − 𝔼x[∑
v∈Du

e−λsδZv(t+s)∣ℱt])

+ e−λt ∑
u

(𝔼x[∑
v∈Du

e−λsδZv(t+s)∣ℱt] − 𝜈)

+ Mt𝜈
Term 1 → 0 by comparison withM. Term 3 → M∞𝜈. Term 2?
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PROOF IDEAS
|⟨Term 2, f ⟩| = ∣e−λt ∑

u
(𝔼x[∑

v∈Du
e−λsf(Zv(t + s))∣ℱt] − ⟨𝜈, f ⟩)∣

= ∣e−λt ∑
u
(𝔼Zu(t)[e

−λs⟨Z(s), f ⟩] − ⟨𝜈, f ⟩)∣

≤ e−λt ∑
u
∣𝔼Zu(t)[e

−λs⟨Z(s), f ⟩] − ⟨𝜈, f ⟩∣ =: Rs,t

▶ Use exponential rate asymptotics:

|𝔼Zu(t)[e
−λs⟨Z(s), f ⟩] − ⟨𝜈, f ⟩| ≤ e−ks‖fr‖∞((c/Zu(t))r + C)

▶ ...so:

𝔼xRs,t ≤ e−ks‖fr‖∞𝔼x [∑ue
−λt((c/Zu(t))r + C)]

≤ e−ks‖fr‖∞𝔼x [er(b−ηt) + C]

...and the RHS is bounded in t.
▶ Thus 𝔼xRδn,δn is summable, and Borel-Cantelli yields a.s. convergence along δn.
▶ This is the core of the proof.
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PROOF IDEAS

▶ What if k > 0, i.e., cells may be
killed?

▶ Colour blue lines of descent which
live forever, others red

▶ Blue tree satisfies k = 0 and only
differs in offspring distribution:
skeleton decomposition

▶ Show that red tree has negligible
contribution to limit
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REFLECTION ON PROOF

▶ Nice aspects: explicit h, 𝜈 and λ, fairly transparent proofs

▶ Used extensively that h = 1

▶ Without this,M becomesMt = e−λt⟨Z(t), h⟩; need estimates on h and 1/h for
uniform integrability

▶ Used precise x-dependence of |e−λt𝔼x⟨Z(t), f ⟩ − ⟨𝜈, f ⟩|
▶ Reflected Lévy arguments allow control over Z(t)(dx)-integrals

▶ More generally, need to understand precisely asymptotics of another spine
process.

▶ Require B < ∞, both for λ < ∞ to hold and for passage from Z(δn) to Z(t).

▶ Could imagine more general Lévy processes appearing, but hwill not be 1
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THEOREM 3: TRANSIENT CASE

If

B > k, a < 2B∫
1

0
(− log p) ̃κ(dp) (plus extra condition)

there exist λ0 < λ, q0 ∈ ℝ such that for f continuous with f(x) = O(xq0) as x → 0,

e−λ0t⟨Z(t), f ⟩ → 0.

▶ Cell sizes decay to zero too fast to be seen by f
▶ Analysis involves nice reflected Lévy process with killing at reflection boundary
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FURTHER READING

E. Horton and A. R. Watson
Strong laws of large numbers for a growth-fragmentation process with bounded cell
size
arXiv:2012.03273 [math.PR]
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