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rate D(-)

z(t) = 7(z(¢)) rate B(z(t))  chosen by x(z(t),dp)

P Listsizesattimet: (Z,(t):u € U)
> Z(t) = ZueU 6Zu(t)
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(Z(1),f) ~ e(Z(0), h) (v, f)
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P No equilibrium behaviour

P Underlying Lévy process: E,(Z(t),f) = e, [e X¢f (eXt)]
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P ‘Refracted process’:

ax, O0<x<gc,
T(X)={

a'x, x>c,

wherea > a’.
Cavalli (2020, Acta Appl. Math.): equilibrium behaviour of mean measures

P Ourinterest: ‘reflected process’.

ax, 0<x<gc,
T(X)={

0, x>c.

P Underlying both: perturbed Lévy processes
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P Celllabelsin U =J,,,{0,1}"

P Initial cell @. Births @ — 0,1;0 — 00, 01; etc.

P Cells grow exponentially, with cap at ¢

P Cells die at rate k and divide at rate B

P> At adivision time d,, offspring have initial size £, (d,—) and (1 — &)Z,(d,—), where
&~ K.

P Z,(t) = size of cell u at ¢, if present

> Z(t) = Zugu 6Zu(t)]l{ualiveatt}
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P Interestedin Z(t) ast — oo
P Startwith y, = E,Z(t),i.e. (i, f) = E(Z(t),f)

Op(Hgs F) = (g, AF)
1
Af(x) = axf’ (x) + 28/ f(xp) k(dp) — Bf (x) — kf(x)
0
D(A) D {f € CX(0,c]:f'(c) =0}

k(dp)+k(1—dp)
—_—

..where k(dp) =
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THEOREM 1(A)

If
1
a>28 | (~logp)k(dp),
0
then for f continuous and bounded,
E (Z(t),f) = (U, f) ~ "h(x) (v, f), t — oo,

where (v, h) = 1and

Ah = Ah
vA = Av.



PROOF IDEAS

Lemma (Many-to-one)

Let n be a Lévy process with Lévy measure 2BK o log’l, drift a, and reflection above at
b = logc. Call n the spine. Then, (u,, f) = e B E[f (™) | n, = log x].

A
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Idea: conditional on living to ¢, follow offspring uniformly
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Lemma
n is positive recurrent if and only if 1), the unreflected Lévy process, drifts to +oc.

Lemma

n is positive recurrent if and only if a > 2B fol (— logp)k(dp).
The invariant distribution m satisfies

q
: —
aq+2B [~ (p? — 1) k(dp)

b
/ e~ >Im(dx) = cst -
—0o0

P (u;, f) = eEOEF(eM) ~ BB m f(e)).
P We get Theorem 1(a), withA=B —k,h=1andv=moexp .

10



THEOREM 1(B)

1 1
a> ZB/ (—log p)k(dp) and / p~"9k(dp) < oo, somer,e>0,
0 0
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THEOREM 1(B)

1 1
a> ZB/ (—log p)k(dp) and / p~"9k(dp) < oo, somer,e>0,
0 0
then there exist C, k > 0 such that for f continuous,
ey, ) — hOO) (v, )] < [yl ((ch)™ + C)e™,

where f.(x) = (x/c)"f (x).

P Similar proof: exponential recurrence of reflected Lévy process
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THEOREM 2

1 1
”>ZB/ (— log p)i(dp), / p"Ok(dp) <00 and B>k,
0 0

then, for continuous bounded f and x € (0, ¢,

e M(Z(t),f) — M_(v,f) P,-a.s. andin L}(P,),

where M__ is a random variable with E,M__ = h(x) = 1.
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P> Start with case k = 0: no killing
» M, =e(Z(t),1)isa Ul martingale - even [2-bounded
P M__isits (a.s. or L) limit

13
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> ..so:
ExRse = € [f ] Ed[,e 7 ((c/2,()" + O] < e | E e + ]
...and the RHS is bounded in t.

P Thus E,R;, 5, is summable, and Borel-Cantelli yields a.s. convergence along n.

P This s the core of the proof.
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o ®
P Whatifk > 0, i.e., cells may be VAl B
killed? %
P Colour blue lines of descent which / N .\.<: -
live forever, others red @ N o
P Blue tree satisfies k = 0 and only \ /. 7)( ./.<
differs in offspring distribution: ® .< N =
skeleton decomposition NS @
P Show that red tree has negligible .\ ® -
contribution to limit o __o—
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P Nice aspects: explicit h, v and A, fairly transparent proofs
P Used extensively that h = 1
P Without this, M becomes M, = e M(Z(t), h); need estimates on h and 1/h for
uniform integrability
P Used precise x-dependence of |e ™E, (Z(t), ) — (v, f)|
P Reflected Lévy arguments allow control over Z(t) (dx)-integrals
P More generally, need to understand precisely asymptotics of another spine
process.
P Require B < oo, both for A < oo to hold and for passage from Z(6n) to Z(t).
P Could imagine more general Lévy processes appearing, but h will not be 1

17
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THEOREM 3: TRANSIENT CASE

1
B>k, ac< 28/ (—logp)k(dp) (plus extra condition)
0
there exist A, < A, g, € R such that for f continuous with f (x) = O(x%) asx — 0,
e MH(Z(t),f) — 0.

P> Cell sizes decay to zero too fast to be seen by f
P Analysis involves nice reflected Lévy process with killing at reflection boundary
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FURTHER READING

[3 E.Horton and A. R. Watson
Strong laws of large numbers for a growth-fragmentation process with bounded cell

size
arXiv:2012.03273 [math.PR]

Thank you!

19


http://arxiv.org/abs/2012.03273

