\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\TextOrMath }[2]{#2}\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\let \symnormal \mathit \)
\(\let \symliteral \mathrm \)
\(\let \symbb \mathbb \)
\(\let \symbbit \mathbb \)
\(\let \symcal \mathcal \)
\(\let \symscr \mathscr \)
\(\let \symfrak \mathfrak \)
\(\let \symsfup \mathsf \)
\(\let \symsfit \mathit \)
\(\let \symbfsf \mathbf \)
\(\let \symbfup \mathbf \)
\(\newcommand {\symbfit }[1]{\boldsymbol {#1}}\)
\(\let \symbfcal \mathcal \)
\(\let \symbfscr \mathscr \)
\(\let \symbffrak \mathfrak \)
\(\let \symbfsfup \mathbf \)
\(\newcommand {\symbfsfit }[1]{\boldsymbol {#1}}\)
\(\let \symup \mathrm \)
\(\let \symbf \mathbf \)
\(\let \symit \mathit \)
\(\let \symtt \mathtt \)
\(\let \symbffrac \mathbffrac \)
\(\newcommand {\mathfence }[1]{\mathord {#1}}\)
\(\newcommand {\mathover }[1]{#1}\)
\(\newcommand {\mathunder }[1]{#1}\)
\(\newcommand {\mathaccent }[1]{#1}\)
\(\newcommand {\mathbotaccent }[1]{#1}\)
\(\newcommand {\mathalpha }[1]{\mathord {#1}}\)
\(\def\upAlpha{\unicode{x0391}}\)
\(\def\upBeta{\unicode{x0392}}\)
\(\def\upGamma{\unicode{x0393}}\)
\(\def\upDigamma{\unicode{x03DC}}\)
\(\def\upDelta{\unicode{x0394}}\)
\(\def\upEpsilon{\unicode{x0395}}\)
\(\def\upZeta{\unicode{x0396}}\)
\(\def\upEta{\unicode{x0397}}\)
\(\def\upTheta{\unicode{x0398}}\)
\(\def\upVartheta{\unicode{x03F4}}\)
\(\def\upIota{\unicode{x0399}}\)
\(\def\upKappa{\unicode{x039A}}\)
\(\def\upLambda{\unicode{x039B}}\)
\(\def\upMu{\unicode{x039C}}\)
\(\def\upNu{\unicode{x039D}}\)
\(\def\upXi{\unicode{x039E}}\)
\(\def\upOmicron{\unicode{x039F}}\)
\(\def\upPi{\unicode{x03A0}}\)
\(\def\upVarpi{\unicode{x03D6}}\)
\(\def\upRho{\unicode{x03A1}}\)
\(\def\upSigma{\unicode{x03A3}}\)
\(\def\upTau{\unicode{x03A4}}\)
\(\def\upUpsilon{\unicode{x03A5}}\)
\(\def\upPhi{\unicode{x03A6}}\)
\(\def\upChi{\unicode{x03A7}}\)
\(\def\upPsi{\unicode{x03A8}}\)
\(\def\upOmega{\unicode{x03A9}}\)
\(\def\itAlpha{\unicode{x1D6E2}}\)
\(\def\itBeta{\unicode{x1D6E3}}\)
\(\def\itGamma{\unicode{x1D6E4}}\)
\(\def\itDigamma{\mathit{\unicode{x03DC}}}\)
\(\def\itDelta{\unicode{x1D6E5}}\)
\(\def\itEpsilon{\unicode{x1D6E6}}\)
\(\def\itZeta{\unicode{x1D6E7}}\)
\(\def\itEta{\unicode{x1D6E8}}\)
\(\def\itTheta{\unicode{x1D6E9}}\)
\(\def\itVartheta{\unicode{x1D6F3}}\)
\(\def\itIota{\unicode{x1D6EA}}\)
\(\def\itKappa{\unicode{x1D6EB}}\)
\(\def\itLambda{\unicode{x1D6EC}}\)
\(\def\itMu{\unicode{x1D6ED}}\)
\(\def\itNu{\unicode{x1D6EE}}\)
\(\def\itXi{\unicode{x1D6EF}}\)
\(\def\itOmicron{\unicode{x1D6F0}}\)
\(\def\itPi{\unicode{x1D6F1}}\)
\(\def\itRho{\unicode{x1D6F2}}\)
\(\def\itSigma{\unicode{x1D6F4}}\)
\(\def\itTau{\unicode{x1D6F5}}\)
\(\def\itUpsilon{\unicode{x1D6F6}}\)
\(\def\itPhi{\unicode{x1D6F7}}\)
\(\def\itChi{\unicode{x1D6F8}}\)
\(\def\itPsi{\unicode{x1D6F9}}\)
\(\def\itOmega{\unicode{x1D6FA}}\)
\(\def\upalpha{\unicode{x03B1}}\)
\(\def\upbeta{\unicode{x03B2}}\)
\(\def\upvarbeta{\unicode{x03D0}}\)
\(\def\upgamma{\unicode{x03B3}}\)
\(\def\updigamma{\unicode{x03DD}}\)
\(\def\updelta{\unicode{x03B4}}\)
\(\def\upepsilon{\unicode{x03F5}}\)
\(\def\upvarepsilon{\unicode{x03B5}}\)
\(\def\upzeta{\unicode{x03B6}}\)
\(\def\upeta{\unicode{x03B7}}\)
\(\def\uptheta{\unicode{x03B8}}\)
\(\def\upvartheta{\unicode{x03D1}}\)
\(\def\upiota{\unicode{x03B9}}\)
\(\def\upkappa{\unicode{x03BA}}\)
\(\def\upvarkappa{\unicode{x03F0}}\)
\(\def\uplambda{\unicode{x03BB}}\)
\(\def\upmu{\unicode{x03BC}}\)
\(\def\upnu{\unicode{x03BD}}\)
\(\def\upxi{\unicode{x03BE}}\)
\(\def\upomicron{\unicode{x03BF}}\)
\(\def\uppi{\unicode{x03C0}}\)
\(\def\upvarpi{\unicode{x03D6}}\)
\(\def\uprho{\unicode{x03C1}}\)
\(\def\upvarrho{\unicode{x03F1}}\)
\(\def\upsigma{\unicode{x03C3}}\)
\(\def\upvarsigma{\unicode{x03C2}}\)
\(\def\uptau{\unicode{x03C4}}\)
\(\def\upupsilon{\unicode{x03C5}}\)
\(\def\upphi{\unicode{x03D5}}\)
\(\def\upvarphi{\unicode{x03C6}}\)
\(\def\upchi{\unicode{x03C7}}\)
\(\def\uppsi{\unicode{x03C8}}\)
\(\def\upomega{\unicode{x03C9}}\)
\(\def\italpha{\unicode{x1D6FC}}\)
\(\def\itbeta{\unicode{x1D6FD}}\)
\(\def\itvarbeta{\unicode{x03D0}}\)
\(\def\itgamma{\unicode{x1D6FE}}\)
\(\def\itdigamma{\mathit{\unicode{x03DD}}}\)
\(\def\itdelta{\unicode{x1D6FF}}\)
\(\def\itepsilon{\unicode{x1D716}}\)
\(\def\itvarepsilon{\unicode{x1D700}}\)
\(\def\itzeta{\unicode{x1D701}}\)
\(\def\iteta{\unicode{x1D702}}\)
\(\def\ittheta{\unicode{x1D703}}\)
\(\def\itvartheta{\unicode{x1D717}}\)
\(\def\itiota{\unicode{x1D704}}\)
\(\def\itkappa{\unicode{x1D705}}\)
\(\def\itvarkappa{\unicode{x1D718}}\)
\(\def\itlambda{\unicode{x1D706}}\)
\(\def\itmu{\unicode{x1D707}}\)
\(\def\itnu{\unicode{x1D708}}\)
\(\def\itxi{\unicode{x1D709}}\)
\(\def\itomicron{\unicode{x1D70A}}\)
\(\def\itpi{\unicode{x1D70B}}\)
\(\def\itvarpi{\unicode{x1D71B}}\)
\(\def\itrho{\unicode{x1D70C}}\)
\(\def\itvarrho{\unicode{x1D71A}}\)
\(\def\itsigma{\unicode{x1D70E}}\)
\(\def\itvarsigma{\unicode{x1D70D}}\)
\(\def\ittau{\unicode{x1D70F}}\)
\(\def\itupsilon{\unicode{x1D710}}\)
\(\def\itphi{\unicode{x1D719}}\)
\(\def\itvarphi{\unicode{x1D711}}\)
\(\def\itchi{\unicode{x1D712}}\)
\(\def\itpsi{\unicode{x1D713}}\)
\(\def\itomega{\unicode{x1D714}}\)
\(\let \lparen (\)
\(\let \rparen )\)
\(\newcommand {\cuberoot }[1]{\,{}^3\!\!\sqrt {#1}}\,\)
\(\newcommand {\fourthroot }[1]{\,{}^4\!\!\sqrt {#1}}\,\)
\(\newcommand {\longdivision }[1]{\mathord {\unicode {x027CC}#1}}\)
\(\newcommand {\mathcomma }{,}\)
\(\newcommand {\mathcolon }{:}\)
\(\newcommand {\mathsemicolon }{;}\)
\(\newcommand {\overbracket }[1]{\mathinner {\overline {\ulcorner {#1}\urcorner }}}\)
\(\newcommand {\underbracket }[1]{\mathinner {\underline {\llcorner {#1}\lrcorner }}}\)
\(\newcommand {\overbar }[1]{\mathord {#1\unicode {x00305}}}\)
\(\newcommand {\ovhook }[1]{\mathord {#1\unicode {x00309}}}\)
\(\newcommand {\ocirc }[1]{\mathord {#1\unicode {x0030A}}}\)
\(\newcommand {\candra }[1]{\mathord {#1\unicode {x00310}}}\)
\(\newcommand {\oturnedcomma }[1]{\mathord {#1\unicode {x00312}}}\)
\(\newcommand {\ocommatopright }[1]{\mathord {#1\unicode {x00315}}}\)
\(\newcommand {\droang }[1]{\mathord {#1\unicode {x0031A}}}\)
\(\newcommand {\leftharpoonaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\rightharpoonaccent }[1]{\mathord {#1\unicode {x020D1}}}\)
\(\newcommand {\vertoverlay }[1]{\mathord {#1\unicode {x020D2}}}\)
\(\newcommand {\leftarrowaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\annuity }[1]{\mathord {#1\unicode {x020E7}}}\)
\(\newcommand {\widebridgeabove }[1]{\mathord {#1\unicode {x020E9}}}\)
\(\newcommand {\asteraccent }[1]{\mathord {#1\unicode {x020F0}}}\)
\(\newcommand {\threeunderdot }[1]{\mathord {#1\unicode {x020E8}}}\)
\(\newcommand {\Bbbsum }{\mathop {\unicode {x2140}}\limits }\)
\(\newcommand {\oiint }{\mathop {\unicode {x222F}}\limits }\)
\(\newcommand {\oiiint }{\mathop {\unicode {x2230}}\limits }\)
\(\newcommand {\intclockwise }{\mathop {\unicode {x2231}}\limits }\)
\(\newcommand {\ointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\ointctrclockwise }{\mathop {\unicode {x2233}}\limits }\)
\(\newcommand {\varointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\leftouterjoin }{\mathop {\unicode {x27D5}}\limits }\)
\(\newcommand {\rightouterjoin }{\mathop {\unicode {x27D6}}\limits }\)
\(\newcommand {\fullouterjoin }{\mathop {\unicode {x27D7}}\limits }\)
\(\newcommand {\bigbot }{\mathop {\unicode {x27D8}}\limits }\)
\(\newcommand {\bigtop }{\mathop {\unicode {x27D9}}\limits }\)
\(\newcommand {\xsol }{\mathop {\unicode {x29F8}}\limits }\)
\(\newcommand {\xbsol }{\mathop {\unicode {x29F9}}\limits }\)
\(\newcommand {\bigcupdot }{\mathop {\unicode {x2A03}}\limits }\)
\(\newcommand {\bigsqcap }{\mathop {\unicode {x2A05}}\limits }\)
\(\newcommand {\conjquant }{\mathop {\unicode {x2A07}}\limits }\)
\(\newcommand {\disjquant }{\mathop {\unicode {x2A08}}\limits }\)
\(\newcommand {\bigtimes }{\mathop {\unicode {x2A09}}\limits }\)
\(\newcommand {\modtwosum }{\mathop {\unicode {x2A0A}}\limits }\)
\(\newcommand {\sumint }{\mathop {\unicode {x2A0B}}\limits }\)
\(\newcommand {\intbar }{\mathop {\unicode {x2A0D}}\limits }\)
\(\newcommand {\intBar }{\mathop {\unicode {x2A0E}}\limits }\)
\(\newcommand {\fint }{\mathop {\unicode {x2A0F}}\limits }\)
\(\newcommand {\cirfnint }{\mathop {\unicode {x2A10}}\limits }\)
\(\newcommand {\awint }{\mathop {\unicode {x2A11}}\limits }\)
\(\newcommand {\rppolint }{\mathop {\unicode {x2A12}}\limits }\)
\(\newcommand {\scpolint }{\mathop {\unicode {x2A13}}\limits }\)
\(\newcommand {\npolint }{\mathop {\unicode {x2A14}}\limits }\)
\(\newcommand {\pointint }{\mathop {\unicode {x2A15}}\limits }\)
\(\newcommand {\sqint }{\mathop {\unicode {x2A16}}\limits }\)
\(\newcommand {\intlarhk }{\mathop {\unicode {x2A17}}\limits }\)
\(\newcommand {\intx }{\mathop {\unicode {x2A18}}\limits }\)
\(\newcommand {\intcap }{\mathop {\unicode {x2A19}}\limits }\)
\(\newcommand {\intcup }{\mathop {\unicode {x2A1A}}\limits }\)
\(\newcommand {\upint }{\mathop {\unicode {x2A1B}}\limits }\)
\(\newcommand {\lowint }{\mathop {\unicode {x2A1C}}\limits }\)
\(\newcommand {\bigtriangleleft }{\mathop {\unicode {x2A1E}}\limits }\)
\(\newcommand {\zcmp }{\mathop {\unicode {x2A1F}}\limits }\)
\(\newcommand {\zpipe }{\mathop {\unicode {x2A20}}\limits }\)
\(\newcommand {\zproject }{\mathop {\unicode {x2A21}}\limits }\)
\(\newcommand {\biginterleave }{\mathop {\unicode {x2AFC}}\limits }\)
\(\newcommand {\bigtalloblong }{\mathop {\unicode {x2AFF}}\limits }\)
\(\newcommand {\arabicmaj }{\mathop {\unicode {x1EEF0}}\limits }\)
\(\newcommand {\arabichad }{\mathop {\unicode {x1EEF1}}\limits }\)
\( \newcommand {\btoa }{\tau ^{>}} \newcommand {\atob }{\tau ^{<}} \newcommand {\iu }{\mathsf {i}} \newcommand {\diff }[1]{\mathsf {d}#1} \newcommand {\PP }{\mathbb {P}} \newcommand {\EE }{\mathbb {E}}
\newcommand {\RR }{\mathbb {R}} \newcommand {\CC }{\mathbb {C}} \newcommand {\NN }{\mathbb {N}} \newcommand {\ZZ }{\mathbb {Z}} \newcommand {\FF }{\mathcal {F}} \newcommand \Aa {\mathcal {A}} \newcommand \Ll
{\mathcal {L}} \newcommand \Dd {\mathcal {D}} \newcommand \ip [2]{\langle #1,#2\rangle } \newcommand \Ind {\mathbb {1}} \newcommand {\Indic }[1]{\Ind _{\{#1\}}} \DeclareMathOperator {\supp }{supp} \newcommand {\ee
}{\mathrm {e}} \DeclareMathOperator {\Exp }{Exp} \)
\( \definecolor {tPrim}{RGB}{0,95,107} \definecolor {TolDarkBlueAcc}{RGB}{43,87,130} \definecolor {TolDarkPink}{RGB}{136,34,85} \newcommand \alert [1]{{\color {tPrim}#1}} \newcommand \Zb {\mathbf {Z}} \newcommand
\dd {\mathrm {d}} \DeclareMathOperator {\oRe }{Re} \DeclareMathOperator {\oIm }{Im} \renewcommand {\Re }{\oRe } \renewcommand {\Im }{\oIm } \)
\(\let \symsf \symsfup \)
\(\def\Alpha{\unicode{x0391}}\)
\(\def\Beta{\unicode{x0392}}\)
\(\def\Gamma{\unicode{x0393}}\)
\(\def\Digamma{\unicode{x03DC}}\)
\(\def\Delta{\unicode{x0394}}\)
\(\def\Epsilon{\unicode{x0395}}\)
\(\def\Zeta{\unicode{x0396}}\)
\(\def\Eta{\unicode{x0397}}\)
\(\def\Theta{\unicode{x0398}}\)
\(\def\Vartheta{\unicode{x03F4}}\)
\(\def\Iota{\unicode{x0399}}\)
\(\def\Kappa{\unicode{x039A}}\)
\(\def\Lambda{\unicode{x039B}}\)
\(\def\Mu{\unicode{x039C}}\)
\(\def\Nu{\unicode{x039D}}\)
\(\def\Xi{\unicode{x039E}}\)
\(\def\Omicron{\unicode{x039F}}\)
\(\def\Pi{\unicode{x03A0}}\)
\(\def\Varpi{\unicode{x03D6}}\)
\(\def\Rho{\unicode{x03A1}}\)
\(\def\Sigma{\unicode{x03A3}}\)
\(\def\Tau{\unicode{x03A4}}\)
\(\def\Upsilon{\unicode{x03A5}}\)
\(\def\Phi{\unicode{x03A6}}\)
\(\def\Chi{\unicode{x03A7}}\)
\(\def\Psi{\unicode{x03A8}}\)
\(\def\Omega{\unicode{x03A9}}\)
\(\def\alpha{\unicode{x1D6FC}}\)
\(\def\beta{\unicode{x1D6FD}}\)
\(\def\varbeta{\unicode{x03D0}}\)
\(\def\gamma{\unicode{x1D6FE}}\)
\(\def\digamma{\mathit{\unicode{x03DD}}}\)
\(\def\delta{\unicode{x1D6FF}}\)
\(\def\epsilon{\unicode{x1D716}}\)
\(\def\varepsilon{\unicode{x1D700}}\)
\(\def\zeta{\unicode{x1D701}}\)
\(\def\eta{\unicode{x1D702}}\)
\(\def\theta{\unicode{x1D703}}\)
\(\def\vartheta{\unicode{x1D717}}\)
\(\def\iota{\unicode{x1D704}}\)
\(\def\kappa{\unicode{x1D705}}\)
\(\def\varkappa{\unicode{x1D718}}\)
\(\def\lambda{\unicode{x1D706}}\)
\(\def\mu{\unicode{x1D707}}\)
\(\def\nu{\unicode{x1D708}}\)
\(\def\xi{\unicode{x1D709}}\)
\(\def\omicron{\unicode{x1D70A}}\)
\(\def\pi{\unicode{x1D70B}}\)
\(\def\varpi{\unicode{x1D71B}}\)
\(\def\rho{\unicode{x1D70C}}\)
\(\def\varrho{\unicode{x1D71A}}\)
\(\def\sigma{\unicode{x1D70E}}\)
\(\def\varsigma{\unicode{x1D70D}}\)
\(\def\tau{\unicode{x1D70F}}\)
\(\def\upsilon{\unicode{x1D710}}\)
\(\def\phi{\unicode{x1D719}}\)
\(\def\varphi{\unicode{x1D711}}\)
\(\def\chi{\unicode{x1D712}}\)
\(\def\psi{\unicode{x1D713}}\)
\(\def\omega{\unicode{x1D714}}\)
A growth-fragmentation found in the cone excursions of Brownian motion (and in the quantum disc)
Cone excursions
-
• Take a planar Brownian motion, consider two types of ‘cone excursion’:
-
• ‘Cone-free times’ (between boundary-to-apex excursions) form a regenerative set
-
• The path is cut into cone excursions between said times
-
• Write \(\btoa \) for boundary-to-apex inverse local time
<3->
Targeting a time
-
• Take a point on a Brownian path \(B\) (at time \(t\)), and progressively...
-
• ...cut out boundary-to-apex cone excursions not containing that time...
-
• ...chop out extra path sections at the end, keeping the path inside a cone...
-
• ...and so on.
<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
Targeting a time (more precisely)
-
• Fix \(t>0\), write \(\btoa _t\) for boundary-to-apex inverse local time of \((B_s : s\le t)\)
-
• Then fix \(a\ge 0\), and...
-
• ...let \(\rho _t(a)\) be the smallest time making \(B[\btoa _t(a), \rho _t(a)]\) a whole-path cone excursion
-
• ...and let \(e^a_t(s) = B_{s + \btoa _t(a)} - B_{\rho _t(a)}\).
-
• Call \(e^a_t\) the excursion targeting \(t\) (at level \(a\))
Targeting multiple times
-
• We have the excursion targeting \(t\)
-
• What if we target some other \(t'\)?
-
• Every piece cut out while targeting \(t\) is one which is included in the excursion targeting some other \(t'\)
-
• Consider targeting every time simultaneously
-
• There is some kind of branching process for us to capture
Summarising the path targeting \(t\)
-
• Map the cone with apex angle \(\theta \) to the positive quadrant \(\RR _+^2\); standard Brownian motion becomes correlated
-
• The initial displacement of the excursion targeting \(t\) at local time \(a\): \(e_t^a(0) \in \RR _+^2\)
-
• In the case \(\theta =2\pi /3\) look at its \(\ell ^1\)-norm: \(Z_t(a) = \lVert e_t^a(0) \rVert _1\)
Growth-fragmentations
A growth-fragmentation is:
-
• a system of particles (excursions targeting each time \(t\))...
-
• ...each summarised by a trait (\(\ell ^1\)-norm of its initial displacement)...
-
• ...each of which is a Markov process when viewed on its own...
-
• ...whose path only jumps down...
-
• ...and each jump of which is accompanied by the birth of another particle, conditionally independent given initial trait value
Main result
We do all this starting with \(B\) given by a boundary-to-apex excursion with fixed initial value \(B_0 = z \in \RR ^2_+\).
Relationship with the quantum disc
-
• The quantum disc is a ball of radius \(1\) in the complex plane, loosely speaking endowed with a Riemannian metric \(e^{\gamma h(z)}(dx^2 + dy^2)\) at \(z=x+iy\), where \(h\) is a Gaussian free field
-
• Take \(\gamma =\sqrt {8/3}\) and mark the point \(-i\) on the boundary
-
• Draw counterclockwise space-filling SLE\(_{6}\) curve started at \(-i\), targeting the same point
-
• As the curve fills space targeting a particular point, it cuts out ‘bubbles’ not containing the point (which are explored by another branch)
-
• Our growth-fragmentation describes the total (left and right) boundary length of the branches
Prior art
-
• Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller and Sheffield (2021)
-
• Whole-path cone excursions: described by Le Gall (1987)
-
• Another growth-fragmentation in planar excursions: Aïdékon and Da Silva (2022)
-
• Relationship with the quantum disc: the ‘mating of trees’, Duplantier, Miller and Sheffield (2021) and Ang and Gwynne (2021)
-
• Growth-fragmentation in the ‘conformal percolation interface of the conformal loop ensemble carpet’: Miller, Sheffield and Werner (2020); our work in some sense lies at the boundary of their parameter regime
-
• Growth-fragmentation in the Brownian disc (via the snake construction): Le Gall and Riera (2020)
-
• Growth-fragmentation from random planar maps: Bertoin, (Budd,) Curien and Kortchemski (2018)
Describing the growth-fragmentation
-
• Take a uniform time \(T \in (0,\zeta )\)
-
• Consider the excursion targeting \(T\), corresponding to the process \((Z_T(a) : 0\le a \le \zeta _T)\)
-
• Time-reverse it to get \(S(a) = Z_T((\zeta _T-a)^-)\), \(0\le a \le \zeta _T\)
A beautiful construction of a conditioned \(3/2\)-stable process
-
• Everything here is in reverse time!
-
• Let \(W,W'\) be independent (correlated) Brownian motions, \(X(t) = W'(t)\) for \(t\ge 0\) and \(X(t) = W(-t)\) for \(t\le 0\)
-
• Write \(\atob \) for the inverse local time of apex-to-boundary excursions of \(W'\)
-
• Let \(\sigma (a)\) be the first time (for \(W\)) the displaced quadrant \(W(\sigma (a)) + \RR ^2_+\) contains \(X[-\sigma (a),\atob (a)]\).
-
• Write \(Y(a) = X(\atob (a)) - X(-\sigma (a))\) and \(\mathcal {S}(a) = \lVert Y(a) \rVert _1\)
<1-4>
<5->
Sketch of the proof
-
• Blue jumps arise from seeing new apex-to-boundary excursions (in \(W'\))
-
• They form the jumps of a \(3/2\)-stable process which jumps directly up or right (DMS ’21)
-
• Red jumps arise from seeing new whole-path excursions (in \(X\))
-
• These form the jumps of a \(1/2\)-stable process of unknown jump distribution (LG ’87)
-
• To complete the proof:
-
– Find the distribution of red jumps
-
– Show \(\mathcal {S}\) is Markov
-
– Show that red jumps occur at rate \(1/\mathcal {S}(a)\)
Relationship with the growth-fragmentation
-
• Let \(\bar {e}^a(b) = X((\atob (a)-b)^-)\) for \(0\le b\le \atob (a)+\sigma (a)\) (time-reversal of stopped \(X\))
-
• Let \(A\) be ‘distributed’ according to Lebesgue measure on \((0,\infty )\)
-
• Then \((\bar {e}^A, A)\) has the same distribution as a generic whole-path excursion together with a time uniformly chosen within its lifetime
Summary
-
• Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
-
• Along the way we found:
-
• We also obtain the law of the ‘locally largest’ particle (whose trait changes the least at each branch point)...
-
• ...and find a special martingale whose limit law is that of the lifetime of a typical excursion (recovering a result about the volume of Boltzmann triangulations)
Posterior art
-
• The growth-fragmentation is the same one found in the Brownian disc (Le Gall and Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)
-
• It is in the same class as the one found in percolation of CLE carpets (Miller, Sheffield and Werner) and metric exploration of random planar maps (Bertoin, Budd, Curien and Kortchemski)
-
• It may be possible to derive our results with quantum gravity arguments, but we use nothing but an analysis of Brownian motion
Open questions
-
• Is there a typed version, to distinguish whether a ‘particle’ corresponds to a boundary-to-apex or interior-to-apex (whole-path) excursion?
-
• What about \(\theta \ne 2\pi /3\)? (cf. half plane excursions, planar maps, CLE carpet)
-
• Connected to that: are there other nice constructions of conditioned stable processes that should appear?
-
• Can we start things at zero?