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A growth-fragmentation found in the cone
excursions of Brownian motion (and in the
gquantum disc)




Cone excursions

> Take a planar Brownian motion, consider two types of ‘cone excursion’:
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Cone excursions

> Take a planar Brownian motion, consider two types of ‘cone excursion’:
» Boundary-to-apex cone excursions
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> Take a planar Brownian motion, consider two types of ‘cone excursion’:

» Boundary-to-apex cone excursions
» Whole-path cone excursions
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Cone excursions

> Take a planar Brownian motion, consider two types of ‘cone excursion’:

» Boundary-to-apex cone excursions
» Whole-path cone excursions

> ‘Cone-free times’ (between boundary-to-apex excursions) form a regenerative set
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Cone excursions

> Take a planar Brownian motion, consider two types of ‘cone excursion’:

» Boundary-to-apex cone excursions
» Whole-path cone excursions

> ‘Cone-free times’ (between boundary-to-apex excursions) form a regenerative set
> The pathis cutinto cone excursions between said times

L

Boundary-to-apex cone-free times
and cone excursions Whole- path cone excursion
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Cone excursions

> Take a planar Brownian motion, consider two types of ‘cone excursion’:

» Boundary-to-apex cone excursions
» Whole-path cone excursions

> ‘Cone-free times’ (between boundary-to-apex excursions) form a regenerative set
> The pathis cutinto cone excursions between said times
> Write r” for boundary-to-apex inverse local tim

L S

The path at boundary-to—apex
cone-free times Wlth JumpS Whole- path cone excursion
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...

By
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...

B,
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
> ...chop out extra path sections at the end, keeping the path inside a cone...
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
> ...chop out extra path sections at the end, keeping the path inside a cone...
> ..andsoon.
By
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> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
> ...chop out extra path sections at the end, keeping the path inside a cone...
> ..andsoon.
By

3/18



c
o
v

2
©

=
x

v

<

|
n
c

.2
w
4
=1
[}
X
[}
o
c
(]

(@]

Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...

> ...cut out boundary-to-apex cone excursions not containing that time...

> ...chop out extra path sections at the end, keeping the path inside a cone...
> ..andsoon.

By

3/18



c
o
v

2
©

=
x

v

<

|
n
c

.2
w
4
=1
[}
X
[}
o
c
(]

(@]

Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
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> ...cut out boundary-to-apex cone excursions not containing that time...
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...

> ...cut out boundary-to-apex cone excursions not containing that time...

> ...chop out extra path sections at the end, keeping the path inside a cone...
> ..andsoon.
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Targeting a time

> Take a point on a Brownian path B (at time t), and progressively...
> ...cut out boundary-to-apex cone excursions not containing that time...
> ...chop out extra path sections at the end, keeping the path inside a cone...
> ..andsoon.
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)
> Thenfixa =0, and...
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)
> Thenfixa =0, and...
> ..let p;(a) be the smallest time making B[T:(CI), p:(a)] a whole-path cone excursion
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)

> Thenfixa =0, and...

> ..let p;(a) be the smallest time making B[T:(CI), p:(a)] a whole-path cone excursion
> ..and let ef(s) = Bsir(a) — B

pe(a):
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)
> Thenfixa =0, and...
> ..let p;(a) be the smallest time making B[T:(CI), p:(a)] a whole-path cone excursion

a -
> ..and lete/(s) = Bsir2(a) ~ Boya)-

> Call ef the excursion targeting t (at level a)
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Targeting a time (more precisely)

> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)

> Thenfixa =0, and...

> ..let p;(a) be the smallest time making B[T:(CI), p:(a)] a whole-path cone excursion
> ..and let ef(s) = B>t — Boya):
> Call ef the excursion targeting t (at level a)

B,

€t

\J

BTt,> (a)
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> Fixt>0,write Tt> for boundary-to-apex inverse local time of (B.:s < 1)
> Thenfixa =0, and...
> ..let p;(a) be the smallest time making B[T:(CI), p:(a)] a whole-path cone excursion

a -
> ..and lete/(s) = Bsir2(a) ~ Boya)-

> Call ef the excursion targeting t (at level a)
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Targeting multiple times

> We have the excursion targeting t
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Targeting multiple times

> We have the excursion targeting t
> What if we target some other t'?

By
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Targeting multiple times

> We have the excursion targeting t
> What if we target some other t'?

> Every piece cut out while targeting t is one which is included in the excursion
targeting some other t’

By
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Targeting multiple times

> We have the excursion targeting t
> What if we target some other t'?

> Every piece cut out while targeting t is one which is included in the excursion
targeting some other t’

> Consider targeting every time simultaneously

By
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Targeting multiple times

> We have the excursion targeting t
> What if we target some other t'?

> Every piece cut out while targeting t is one which is included in the excursion
targeting some other t’

> Consider targeting every time simultaneously
> There is some kind of branching process for us to capture

By

(&)
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Summarising the path targeting t

> Map the cone with apex angle 9 to the positive quadrant R2; standard Brownian
motion becomes correlated

\J
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Summarising the path targeting t

> Map the cone with apex angle 9 to the positive quadrant R2; standard Brownian
motion becomes correlated

> Theinitial displacement of the excursion targeting t at local time a: €7(0) € R2

By Zy(a)
A
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Summarising the path targeting t

> Map the cone with apex angle 9 to the positive quadrant R2; standard Brownian
motion becomes correlated

> Theinitial displacement of the excursion targeting t at local time a: €7(0) € R2
> Inthe case 9 = 271/3 look at its 2*-norm: Z,(a) = ||ef(0)||1

By Zy(a)
A

Ve

U\Joif\/v?
T
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Growth-fragmentations

A growth-fragmentation is:
> asystem of particles (excursions targeting each time t)...
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Growth-fragmentations

A growth-fragmentation is:
> asystem of particles (excursions targeting each time t)...
> ...each summarised by a trait (2!-norm of its initial displacement)...
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Growth-fragmentations

A growth-fragmentation is:
> asystem of particles (excursions targeting each time t)...
> ...each summarised by a trait (2!-norm of its initial displacement)...
> ...each of which is a Markov process when viewed on its own...
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Growth-fragmentations

A growth-fragmentation is:
> asystem of particles (excursions targeting each time t)...
> ...each summarised by a trait (2!-norm of its initial displacement)...
> ...each of which is a Markov process when viewed on its own...
> ...whose path only jumps down...
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Growth-fragmentations

A growth-fragmentation is:
> asystem of particles (excursions targeting each time t)...
> ...each summarised by a trait (2!-norm of its initial displacement)...
> ...each of which is a Markov process when viewed on its own...
> ...whose path only jumps down...
> ...and each jump of which is accompanied by the birth of another particle,
conditionally independent given initial trait value
A
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Main result

We do all this starting with B given by a boundary-to-apex excursion with fixed initial value
By =z € R2

Theorem (Da Silva-Powell-W, vague version)

The particles t with traits (Z,(a): 0 < a < {,) (the 2*-norm summary of initial displacements of
excursions targeting t) form a growth-fragmentation process whose law we can characterise.

A B; A
VA
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Relationship with the quantum disc

> The quantum discis a ball of radius 1 in the complex plane, loosely speaking endowed
with a Riemannian metric ""@(dx? + dy?) at z = x + iy, where h is a Gaussian free field
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Relationship with the quantum disc

> The quantum discis a ball of radius 1 in the complex plane, loosely speaking endowed
with a Riemannian metric ""@(dx? + dy?) at z = x + iy, where h is a Gaussian free field

> Takey = 4/8/3 and mark the point —i on the boundary
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Relationship with the quantum disc

> The quantum discis a ball of radius 1 in the complex plane, loosely speaking endowed
with a Riemannian metric ""@(dx? + dy?) at z = x + iy, where h is a Gaussian free field

> Takey = 4/8/3 and mark the point —i on the boundary
> Draw counterclockwise space-filling SLE¢ curve started at —i, targeting the same point

c
o
v

2
©

=
x

v

<

|
n
c

.2
w
4
=1
[}
X
[}
o
c
(]

(@]

9/18



Relationship with the quantum disc

> The quantum discis a ball of radius 1 in the complex plane, loosely speaking endowed
with a Riemannian metric ""@(dx? + dy?) at z = x + iy, where h is a Gaussian free field

> Takey = \/ﬁ and mark the point —i on the boundary

> Draw counterclockwise space-filling SLE¢ curve started at —i, targeting the same point

> Asthe curve fills space targeting a particular point, it cuts out ‘bubbles’ not
containing the point (which are explored by another branch)
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Relationship with the quantum disc

> The quantum discis a ball of radius 1 in the complex plane, loosely speaking endowed
with a Riemannian metric ""@(dx? + dy?) at z = x + iy, where h is a Gaussian free field

> Takey = 4/8/3 and mark the point —i on the boundary
> Draw counterclockwise space-filling SLE¢ curve started at —i, targeting the same point

> Asthe curve fills space targeting a particular point, it cuts out ‘bubbles’ not
containing the point (which are explored by another branch)

> Our growth-fragmentation describes the total (left and right) boundary length of the
branches
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Prior art

> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)
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Prior art

> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)

> Whole-path cone excursions: described by Le Gall (1987)
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Prior art

> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)

> Whole-path cone excursions: described by Le Gall (1987)
> Another growth-fragmentation in planar excursions: Aidékon and Da Silva (2022)
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> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)

> Whole-path cone excursions: described by Le Gall (1987)
> Another growth-fragmentation in planar excursions: Aidékon and Da Silva (2022)

> Relationship with the quantum disc: the ‘mating of trees’, Duplantier, Miller and
Sheffield (2021) and Ang and Gwynne (2021)
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> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)

> Whole-path cone excursions: described by Le Gall (1987)
> Another growth-fragmentation in planar excursions: Aidékon and Da Silva (2022)

> Relationship with the quantum disc: the ‘mating of trees’, Duplantier, Miller and
Sheffield (2021) and Ang and Gwynne (2021)

> Growth-fragmentation in the ‘conformal percolation interface of the conformal loop
ensemble carpet’: Miller, Sheffield and Werner (2020); our work in some sense lies at
the boundary of their parameter regime
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> Another growth-fragmentation in planar excursions: Aidékon and Da Silva (2022)

> Relationship with the quantum disc: the ‘mating of trees’, Duplantier, Miller and
Sheffield (2021) and Ang and Gwynne (2021)

> Growth-fragmentation in the ‘conformal percolation interface of the conformal loop
ensemble carpet’: Miller, Sheffield and Werner (2020); our work in some sense lies at
the boundary of their parameter regime

> Growth-fragmentation in the Brownian disc (via the snake construction): Le Gall and
Riera (2020)
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Prior art

> Boundary-to-apex cone excursions: described (in time reversal) by Duplantier, Miller
and Sheffield (2021)

> Whole-path cone excursions: described by Le Gall (1987)
> Another growth-fragmentation in planar excursions: Aidékon and Da Silva (2022)

> Relationship with the quantum disc: the ‘mating of trees’, Duplantier, Miller and
Sheffield (2021) and Ang and Gwynne (2021)

> Growth-fragmentation in the ‘conformal percolation interface of the conformal loop
ensemble carpet’: Miller, Sheffield and Werner (2020); our work in some sense lies at
the boundary of their parameter regime

> Growth-fragmentation in the Brownian disc (via the snake construction): Le Gall and
Riera (2020)

> Growth-fragmentation from random planar maps: Bertoin, (Budd,) Curien and
Kortchemski (2018)
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Describing the growth-fragmentation

> Take auniformtime T € (0,0)
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Describing the growth-fragmentation

> Take auniformtime T € (0,0)
> Consider the excursion targeting T, corresponding to the process (Z;(a):0 < a < {7)
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Describing the growth-fragmentation

> Take auniformtime T € (0,0)
> Consider the excursion targeting T, corresponding to the process (Z;(a):0 < a < {7)
> Time-reverseittogetS(a) =Z;(({ —a)"),0<sa={r
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Describing the growth-fragmentation

> Take auniformtime T € (0,0)
> Consider the excursion targeting T, corresponding to the process (Z;(a):0 < a < {7)
> Time-reverseittogetS(a) =Z;(({ —a)"),0<sa={r

S has the law of a 3/2-stable process conditioned to stay positive (and this characterises the
growth-fragmentation)

c
o
v

2
©

=
x

v

<

|
n
c

.2
w
4
=1
[}
X
[}
o
c
(]

(@]

11/18



A beautiful construction of a conditioned 3/2-stable process

> Everything hereis in reverse time!

X(7(a))
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A beautiful construction of a conditioned 3/2-stable process
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> Let W, W' be independent (correlated) Brownian motions, X(t) = W’(t) fort = 0 and
Xt =W(-tfort=<0
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> Everything hereis in reverse time!

> Let W, W' be independent (correlated) Brownian motions, X(t) = W’(t) fort = 0 and
X)) =W(=t)fort=0

> Write 7" for the inverse local time of apex-to-boundary excursions of W’
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> Everything hereis in reverse time!

> Let W, W' be independent (correlated) Brownian motions, X(t) = W’(t) fort = 0 and
Xt =W(-tfort=<0

> Write 7" for the inverse local time of apex-to-boundary excursions of W’

> Let o(a) be the first time (for W) the displaced quadrant W(o(a)) + R? contains
X[—o(a), T~(a)].
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A beautiful construction of a conditioned 3/2-stable process

> Everything hereis in reverse time!

> Let W, W' be independent (correlated) Brownian motions, X(t) = W’(t) fort = 0 and
Xt =W(-tfort=<0

> Write 7" for the inverse local time of apex-to-boundary excursions of W’

> Let o(a) be the first time (for W) the displaced quadrant W(o(a)) + R? contains
X[—o(a), T~(a)].

> Write Y(a) = X(17(a)) — X(—o(a)) and $(a) = ||Y(a)|l;
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A beautiful construction of a conditioned 3/2-stable process

> Everything hereis in reverse time!

> Let W, W' be independent (correlated) Brownian motions, X(t) = W’(t) fort = 0 and
Xt =W(-tfort=<0

> Write 7" for the inverse local time of apex-to-boundary excursions of W’

> Let o(a) be the first time (for W) the displaced quadrant W(o(a)) + R? contains
X[—o(a), T~(a)].

> Write Y(a) = X(17(a)) — X(—o(a)) and $(a) = ||Y(a)|l;

§'is a 3/2-stable process, with only positive jumps, conditioned to stay positive.
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)
> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)
> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)

> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)

> These form the jumps of a 1/2-stable process of unknown jump distribution (LG ’87)
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)

> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)

> These form the jumps of a 1/2-stable process of unknown jump distribution (LG ’87)

> To complete the proof:
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)
> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)
> These form the jumps of a 1/2-stable process of unknown jump distribution (LG ’87)
> To complete the proof:
> Find the distribution of red jumps
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Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)

> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)

> These form the jumps of a 1/2-stable process of unknown jump distribution (LG ’87)

> To complete the proof:

> Find the distribution of red jumps
» Show &'is Markov

c
o
v

2
©

=
x

v

<

|
n
c

.2
w
4
=1
[}
X
[}
o
c
(]

(@]

13/18



Sketch of the proof

Y5(a)? Range of Y S(a)? Graph of S

Yi(a)

> Blue jumps arise from seeing new apex-to-boundary excursions (in W’)

> They form the jumps of a 3/2-stable process which jumps directly up or right (DMS "21)
> Red jumps arise from seeing new whole-path excursions (in X)

> These form the jumps of a 1/2-stable process of unknown jump distribution (LG ’87)

> To complete the proof:

> Find the distribution of red jumps
» Show &'is Markov
» Show that red jumps occur at rate 1/§(a)
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Relationship with the growth-fragmentation

> Leté?(b) = X((t~(a) — b)7) for 0 < b < t~(a) + a(a) (time-reversal of stopped X)
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Relationship with the growth-fragmentation

> Leté?(b) = X((t~(a) — b)7) for 0 < b < t~(a) + a(a) (time-reversal of stopped X)
> LetAbe ‘distributed’ according to Lebesgue measure on (0, «)
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Relationship with the growth-fragmentation

> Leté?(b) = X((t~(a) — b)7) for 0 < b < t~(a) + a(a) (time-reversal of stopped X)
> LetAbe ‘distributed’ according to Lebesgue measure on (0, «)

> Then (8%, A) has the same distribution as a generic whole-path excursion together
with a time uniformly chosen within its lifetime

A,
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process

> Along the way we found:
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process

> Along the way we found:
» anew construction of conditioned 3/2-stable processes
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process
> Along the way we found:
» anew construction of conditioned 3/2-stable processes

» the law of initial displacement of the whole-path cone excursion (in case
9=2mn/3)
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process
> Along the way we found:
» anew construction of conditioned 3/2-stable processes
» the law of initial displacement of the whole-path cone excursion (in case
9=2mn/3)
> We also obtain the law of the ‘locally largest’ particle (whose trait changes the least at
each branch point)...
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Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others)
gives rise to a growth-fragmentation with law connected to a stable process
> Along the way we found:
» anew construction of conditioned 3/2-stable processes
» the law of initial displacement of the whole-path cone excursion (in case
9=2mn/3)
> We also obtain the law of the ‘locally largest’ particle (whose trait changes the least at
each branch point)...

> ...and find a special martingale whose limit law is that of the lifetime of a typical
excursion (recovering a result about the volume of Boltzmann triangulations)
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Posterior art

> The growth-fragmentation is the same one found in the Brownian disc (Le Gall and
Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)
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Posterior art

> The growth-fragmentation is the same one found in the Brownian disc (Le Gall and
Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)

> Itisinthe same class as the one found in percolation of CLE carpets (Miller, Sheffield
and Werner) and metric exploration of random planar maps (Bertoin, Budd, Curien
and Kortchemski)
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Posterior art

> The growth-fragmentation is the same one found in the Brownian disc (Le Gall and
Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)

> Itisinthe same class as the one found in percolation of CLE carpets (Miller, Sheffield
and Werner) and metric exploration of random planar maps (Bertoin, Budd, Curien
and Kortchemski)

> It may be possible to derive our results with quantum gravity arguments, but we use
nothing but an analysis of Brownian motion
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Open questions

> Isthere a typed version, to distinguish whether a ‘particle’ corresponds to a
boundary-to-apex or interior-to-apex (whole-path) excursion?
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Open questions

> Isthere a typed version, to distinguish whether a ‘particle’ corresponds to a
boundary-to-apex or interior-to-apex (whole-path) excursion?

> What about 9 # 271/37? (cf. half plane excursions, planar maps, CLE carpet)
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Open questions

> Isthere a typed version, to distinguish whether a ‘particle’ corresponds to a
boundary-to-apex or interior-to-apex (whole-path) excursion?

> What about 9 # 271/37? (cf. half plane excursions, planar maps, CLE carpet)

> Connected to that: are there other nice constructions of conditioned stable processes
that should appear?
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Open questions

> Isthere a typed version, to distinguish whether a ‘particle’ corresponds to a
boundary-to-apex or interior-to-apex (whole-path) excursion?

> What about 9 # 271/37? (cf. half plane excursions, planar maps, CLE carpet)

> Connected to that: are there other nice constructions of conditioned stable processes
that should appear?

> Can we start things at zero?
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Further reading

[3 W.Da Silva, E. Powell and A. R. Watson
Growth-fragmentations, Brownian cone excursions and SLE; explorations of a
quantum disc
In preparation
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Further reading

[3 W.Da Silva, E. Powell and A. R. Watson
Growth-fragmentations, Brownian cone excursions and SLE; explorations of a
quantum disc
In preparation

Thank you!
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