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m p is picked from

P={(p,p2,---):pr=p2 >, 3> pi < 1}
m Mean measure:

(e, £) = [ £(x) pe(dx) = B[Sy partice f(size(u))]

alive at t
= v(dp) = AK(dp)
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The pure fragmentation equation

Or(pae, ) <Mta/{zf xpi) — f(x } (dp)>,

i>1
f e C(0,00),

o = 01
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The growth-fragmentation equation
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The growth-fragmentation equation

Or{ue, f) = <,ut,axf’(x)
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The growth-fragmentation equation

Or(pe, f) = <Mt, axf’(x)

+ /73{2 f(xpi) — f(x)+ (1 — Pl)Xf/(X)} V(dp)>a

i>1

Alex Watson Growth-fragmentation models



The growth-fragmentation equation

Oe (e, f) = <Mt, axf’(x)

+ /P{Z f(xpi) — f(x)+ (1 — pl)xf’(x)} V(dp)>a

i>1

macR
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The growth-fragmentation equation

O (e, f) = <,ut,axf'(x)

+ /P{Z f(xpi) — f(x)+ (1 — pl)xf’(x)} V(dp)>7

i>1

macR
m Require only [(1 — p1)?v(dp) < oo (asymmetric children)
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Questions for today

m Existence and representation

m Explore many-to-one theorem
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Fragmentation processes (v < c0)

Z(t) = Z 5I0g(size(u))ﬂ{u alive at time t}

u fragments
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Fragmentation processes (v < c0)

Z(t) = Z 5I0g(size(u))ﬂ{u alive at time t}

u fragments
This is a compound Poisson process with immigration.
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Compensated fragmentation processes, [(1—p1)?v(dp) < o

m We can build Z in general
m Create a Lévy process whose Lévy measure is v(log p; € +)

m At every jump of size z, sample from v(dp | logp; = z) and
immigrate new particles at relative positions log p;, i > 2.
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m We can build Z in general
m Create a Lévy process whose Lévy measure is v(log p; € -)
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Z

-

Alex Watson Growth-fragmentation models



Compensated fragmentation processes, [(1—p1)?v(dp) < o

m We can build Z in general
m Create a Lévy process whose Lévy measure is v(log p; € +)

m At every jump of size z, sample from v(dp | log p1 = z) and
immigrate new particles at relative positions log p;, i > 2.

Z

-



Compensated fragmentation processes, [(1—p1)?v(dp) < o

m We can build Z in general
m Create a Lévy process whose Lévy measure is v(log p; € +)

m At every jump of size z, sample from v(dp | logp; = z) and
immigrate new particles at relative positions log p;, i > 2.

Alex Watson Growth-fragmentation models



Compensated fragmentation processes, [(1— p;)?v(dp) < oo

m We can build Z in general
m Create a Lévy process whose Lévy measure is v(log p; € +)

m At every jump of size z, sample from v(dp | logp; = z) and
immigrate new particles at relative positions log p;, i > 2.

(Aside: let's assume we have a consistent way to give the particles
labels u € U. Write Z,(t) for the position of particle u at time t.)
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Solution of the equation

Define the cumulant k: B[, e9%¢()] = et(9) |t satisfies

k(q) = ag + /P{Z pi—1+(1- pl)q} v(dp).

i>1
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Solution of the equation

Define the cumulant k: E[Y, e9%¢()] = et(9) |t satisfies

k(q) = ag + /P{Z pi—1+(1— pl)q} v(dp).

i>1

Fix w such that k(w) < 0.

m k(- +w) — k(w) is the Laplace exponent of a Lévy process;
call it €.
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Solution of the equation

Define the cumulant k: E[Y, e9%¢()] = et(9) |t satisfies

—aq+/ > ol —14+(1-p1)q }V(dp)-

i>1

Fix w such that k(w) < 0.

k(- + w) — k(w) is the Laplace exponent of a Lévy process;
call it €.

m Let

(e, F) = e @E[e €0 f (&b [Zf (e219)].

This is the unique solution of the growth-fragmentation
equation.
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A martingale for the fragmentation

m Let
W(w,t) = e ) Z %) >,

The process W is the additive martingale.
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A martingale for the fragmentation

m Let
W(w,t) = e ) Z %) >,

The process W is the additive martingale.

m It induces new measure P, for Z: if F; is measurable with
respect to paths up to time t,

E,[F:(2)] = E[Fe(Z2)W(w, t)].
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Construction of a spine process, |

Let & be the Lévy process with Laplace exponent x(w + -) — k(w).
m Lévy measure: M(dz) = 3,5 e““v(log p; € dz).
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Construction of a spine process, |

Let & be the Lévy process with Laplace exponent x(w + -) — k(w).
m Lévy measure: M(dz) = 3,5 e““v(log p; € dz).
m Jump process: M(ds,dz), a Poisson point process with
intensity measure ds (dz).
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Construction of a spine process, |l

We will define a decoration of the jump process M:

mgi(z) = %, a Radon-Nikodym derivative
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Construction of a spine process, |l

We will define a decoration of the jump process M:
mgi(z) = %, a Radon-Nikodym derivative

m (s, z,di,dp) = gi(z)((di)v(dp | log p; = z),
where ( is counting measure.
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Construction of a spine process, |l

We will define a decoration of the jump process M:
mgi(z) = %, a Radon-Nikodym derivative
m (s, z,di,dp) = gi(z)¢(di)v(dp | log pi = 2),
where ( is counting measure.
m Let N(ds,dz,di,dp) be the pu-randomisation of M.
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We will define a decoration of the jump process M:
mgi(z) = %, a Radon-Nikodym derivative
m (s, z,di,dp) = gi(z)¢(di)v(dp | log pi = 2),
where ( is counting measure.
m Let N(ds,dz,di,dp) be the pu-randomisation of M.
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Construction of a spine process, |l

We will define a decoration of the jump process M:

mgi(z) = %, a Radon-Nikodym derivative

m (s, z,di,dp) = gi(z){(di)v(dp | log pi = z),
where ( is counting measure.
m Let N(ds,dz,di,dp) be the pu-randomisation of M.
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Construction of a spine process, Ill

We construct a new process under P,,:
m Let (ZI59)450 51 be a collection of independent compensated
fragmentations under P.
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Construction of a spine process, ||

We construct a new process under P,,:
m Let (ZI59)450 51 be a collection of independent compensated
fragmentations under P.
m Define

2(t) = degoy+ / N(ds, dz, di, dp) S (2159t —s) +¢(s—) +log py].
2
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Construction of a spine process, Ill

We construct a new process under P,,:

m Let (ZI59)450 51 be a collection of independent compensated
fragmentations under P.
m Define

2(t) = degoy+ / N(ds, dz, di, dp) S (2159t —s) +¢(s—) +log py].
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Construction of a spine process, Ill

We construct a new process under P,,:
m Let (ZI59)450 51 be a collection of independent compensated
fragmentations under P.
m Define

Z(t) = de(t) —|—/N (ds,dz,di,dp) Z[Z[s’f] t—s)+£(s—)+log pjl.
J#i
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Construction of a spine process, ||

We construct a new process under P,,:
m Let (ZI59)450 51 be a collection of independent compensated
fragmentations under PP,
m Define

2(t) = degoy+ / N(ds, dz, di, dp) S (2159t —s) +¢(s—) +log py].
2

We distinguish within Z the particle with position &: let U, be
such that Zy,(t) = &(t).
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Many-to-one theorem

For F; measurable with respect to paths up to time t, and u any
label,

EW[Ff(Z)ﬂ{U,:u}] _ efm(w)E[Ft(Z)ewZu(t)]‘
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Many-to-one theorem

For F; measurable with respect to paths up to time t, and u any
label,

Ew[Ft(Z)ﬂ{Ut:u}] _ efm(w)E[Ft(Z)ewzu(t)]‘

Corollary

Summing over u,
Eu[Fe(Z)] = e " WE[F(Z)W(w, t)] = Eu[F(2)].

That is, Z 4z under P,.
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Many-to-one theorem

For F; measurable with respect to paths up to time t, and u any
label,

Ew[Ft(Z)ﬂ{Ut:u}] _ efm(w)E[Ft(Z)ewzu(t)]‘

Corollary

For Borel f,

etn(w)Ew[ —WZUt(t)f ZUt [Zf Z (t) :|
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Discussion of proof, |

We define truncation of the processes.

In the truncated process Z(P), a child particle is kept only if:
m its displacement from the parent is less than —b, or
m it is the largest child
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We define truncation of the processes.

In the truncated process Z(P), a child particle is kept only if:
m its displacement from the parent is less than —b, or
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z(b1)
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Discussion of proof, |

We define truncation of the processes.

In the truncated process Z(P), a child particle is kept only if:
m its displacement from the parent is less than —b, or
m it is the largest child

S

I
I
I
I
I
I
I
I 1211 - 211
¢ |
I
I
.

|
|
.

Alex Watson Growth-fragmentation models



Discussion of proof, |

We define truncation of the processes.

In the truncated process Z(P), a child particle is kept only if:
m its displacement from the parent is less than —b, or
m it is the largest child
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Discussion of proof, Il

The truncation operation can be applied to:
m Z, under P — let %) be the cumulant of Z(»)
m Z, under P,

They are related by:

Lemma

Let

¢=inf{t>0: U not in ZE)(t)}.
Then,

Ew [Ft(ZN(b)):ﬂ-{Ut:u} | C > t] — e—tn(b)(w)]E[Ft(Z(b))ewng)(t):l
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Further questions

m Derivative martingale
OW(w, t) = e ) S (wZ,(t) — tr'(w))evZu(t)
m KPP equation

m ‘Non-homogeneous’ fragmentations (self-similar done by
Bertoin-Budd—Curien—Kortchemski '16)
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Further questions

m Derivative martingale
OW(w, t) = e ) S (wZ,(t) — tr'(w))evZu(t)
m KPP equation

m ‘Non-homogeneous’ fragmentations (self-similar done by
Bertoin-Budd—Curien—Kortchemski '16)

[§ J. Bertoin
Compensated fragmentation processes and limits of dilated
fragmentations

[3 J. Bertoin, A. R. Watson
Probabilistic aspects of critical growth-fragmentation equations

[3 A.R. Watson, Q. Shi
Tilting of compensated fragmentations [in preparation]
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Thank you!



