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A growth-fragmentation model

x
x0(t)

ẋ0(t) = c(x0(t))

x0(0) = x

y

x0(t)− y

rate ν(x0(t), y)) dy

At time t, rank the sizes of the cells present in decreasing
order: (Xi (t), i ≥ 1).
Let µx

t (A) = Ex
[∑

i≥1 1{Xi (t)∈A}
]
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A growth-fragmentation model

In this talk, we are interested in a model for growing and fragmenting
cells. These could be biological, but they could equally be something
more abstract – growth-fragmentation models have found applications in
random maps and the study of random recursive trees, for example. The
important thing is that the cells are characterised by a ‘size’ or a ‘mass’.
We start with a single cell of size x ; it grows according to the function x0(t),
which solves an ODE, until it splits at rate ν(x0(t)) =

∫
ν(x0(t), y) dy .

Upon splitting, at time t, it creates two new cells of sizes y and x0(t)− y ,
where y is distributed according to the probability measure ν(x0(t),y) dy

ν(x0(t)) .

The new cells evolve independently of the past and of each other.
The measure µt is called the mean measure of the process, and describes
the mean number of cells with certain sizes at time t. We can describe its
evolution explicitly.

Note that here Px refers to starting this growth-fragmentation model from
the initial condition in which there is a single cell of size x .



The growth-fragmentation equation

∂t〈µx
t , f 〉 = 〈µx

t ,Af 〉, µx
0 = δx ,

where

Af (x) = c(x)f ′(x) +
∫ x

0
f (y)k(x , y) dy − K (x)f (x).

This is the growth-fragmentation equation.
We have:

k(x , y) = ν(x , y) + ν(x , x − y): splitting giving rise to size y
K (x) =

∫ x
0

y
x k(x , y) dy : total splitting rate
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The growth-fragmentation equation

The evolution of the mean measures (µt) can be described by the growth-
fragmentation equation, which holds (at least) for f once differentiable
and compactly supported on (0,∞).
On this slide, and hereafter, 〈µ, f 〉 =

∫
f dµ.

To be rigorous, our work requires some assumptions not on the slide:

• supx>0
c(x)

x <∞

• (0,∞) 3 x 7→ k(x , ·) ∈ L1(0,∞) is a bounded function

Note that the operator A is the generator of a semigroup, but not a
contraction semigroup. So A is not the generator of a Markov process.
But we can connect it to one, and this will be the first step in our method.

Finally, note that operators of form A are not in one-to-one correspondence
with growth-fragmentation models: there are many different models which
give rise to the same mean measures (µt), and hence the same operator
A; but if we restrict ourselves to binary models, then there is essentially a
bijection.



The question

Asymptotic behaviour of (µt): expect

e−λt〈µx
t , f 〉 = α(x)〈m, f 〉+ o(e−βt).

Determine λ (Malthus exponent), α and m (eigenelements of A)
and β (bound for spectral gap).
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The question

Asymptotic behaviour of (µt): expect

e−λt〈µx
t , f 〉 = α(x)〈m, f 〉+ o(e−βt).

Determine λ (Malthus exponent), α and m (eigenelements of A)
and β (bound for spectral gap).

The question

Our goal for this talk is to find conditions for existence of these spectral
properties of the growth-fragmentation equation, using probabilistic tools
as far as possible.

The Malthus exponent is the leading eigenvalue of A. Note that it could
be negative.



A many-to-one lemma

Let X be a Markov process with generator

Gf (x) = c(x)f ′(x) +
∫ x

0
[f (y)− f (x)]k̄(x , y) dy ,

where k̄(x , y) = y
x k(x , y).

Lemma
Let

Et = e
∫ t
0

c(X(s))
X(s) ds

.

Then,

〈µx
t , f 〉 = Eδx

[ ∞∑
i=1

f (Xi (t))
]

= xEx
[
Et

f (X(t)
X(t)

]
.
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A many-to-one lemma

The process X is a piecewise deterministic Markov process: it follows
the flow ẋ0(t) = c(x0(t)) until it jumps to a new position y at rate
k̄(x0(t), y) dy , and then this evolution begins again.
This lemma can be seen as a simple relation between semigroups, and
it can be proved using the operators A and G. However, something lies
behind it, as indicated by the title of the slide. The process X is the size
of a so-called tagged cell or spine in the growth-fragmentation model: one
starts with the single initial cell and follows it until splitting, and at that
time, one chooses a new cell to follow in proportion to the sizes of the
children.

This idea will be familiar from branching process theory.



The Malthus exponent

Define
Lxy (q) = Ex

[
e−qH(y)EH(y)1{H(y)<∞}

]
,

with H(y) = inf{t > 0 : X (t) = y} the hitting time of y .

∞

q

Lx0x0
(q)

Let λ = inf{q ∈ R : Lx0x0(q) ≤ 1}, which is independent of x0.
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The Malthus exponent

We can now define the Malthus exponent.
The function q 7→ Lxy (q) has the shape indicated: it approaches ∞ as
q → −∞; it is right-continuous at the point at which it jumps below ∞
(if any); it is convex; and it approaches 0 as q →∞.
These properties imply the existence of some minimal λ such that
Lx0x0(λ) ≤ 1, and in fact, it is not difficult to show that λ is independent
of x0. We call this λ the Malthus exponent.

We shall soon see that, if the ‘good’ case shown does hold, which implies
that Lx0x0(λ) = 1, then λ does indeed determine the growth or decay of
(µt), and we can answer our question.



The result

Theorem
Suppose that, for some q ∈ R, 1 < Lx0x0(q) <∞.
Let `(x) = Lxx0(λ), ¯̀(x) = x`(x) and

m(dx) = dx
¯̀(x)c(x)|L′xx (λ)|

, x > 0.

Then, there exists β > 0 such that

e−λt〈µx
t , f 〉 = ¯̀(x)〈m, f 〉+ o(e−βt), t →∞.

Moreover, A¯̀ = λ¯̀ and A∗m = λm.
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The result

We are now able to present a complete result about the asymptotic beha-
viour of solutions to the growth-fragmentation equation.
It is notable that we are able to present this result by putting a condition on
the Markov process X , and that the eigenelements are expressed in terms
of X . This can be used to produce sufficient conditions for convergence
which are easier to check than the one in this theorem, and this is done in
the paper.
Note that the condition Lx0x0(q) ∈ (1,∞) implies that |L′xx (λ)| < ∞, so
m is well-defined. In fact, the theorem is true (with β ≥ 0) so long as m
is well-defined, and this is a slightly weaker condition than the one given.

Finally, note that, to write down the equation A¯̀ = λ¯̀, we are assuming
that ¯̀ lies in the domain of A, which we have not discussed. This is not
obvious, and actually there is an unstated assumption here, but we leave
discussion of this to the paper.



An idea of the proof

Let Mt = e−λtEt
`(X(t))
`(x) .

M is a Px -martingale: for intuition as to why, observe that, by
definition of λ, Ex [MRn ] = 1, where Rn is the n-th return time
to x of the process X .
Let dQx

dPx

∣∣∣
Ft

= Mt , and denote by Y the canonical measure

under Q·, so 〈µx
t , f 〉 = xEx

[
Et

f (X(t))
X(t) ] = eλt ¯̀(x)Qx

[ f (Y (t))
¯̀(Y (t))

]
.

Y is a recurrent Markov process which hits points, and
therefore has cycles. Since |L′x0x0(λ)| <∞, it is positive
recurrent, and in fact,

¯̀(y)m(dy) = 1
Qx (H(x))Qx

∫ H(x)

0
1{Y (s)∈dy} ds.

Therefore, 〈µx
t , f 〉 = eλt ¯̀(x)Qx

[ f (Y (t))
¯̀(Y (t)

]
∼ eλt ¯̀(x)〈m, f 〉.
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An idea of the proof

The key insight here is that the Markov process X hits points. Each time
X hits its starting value, it regenerates, and so the paths of X can be
broken down into i.i.d. cycles between hitting times of the starting point.
However, X need not be point recurrent, or even recurrent.
To fix this, and to remedy the discrepancy between the stochastic growth
Et and the deterministic growth eλt , we make a change of measure. (Here,
we see where the equation for λ comes from: it is akin to averaging the
stochastic versus deterministic growth over a cycle of X .)
After changing measure, we arrive at a recurrent Markov process Y , which
has the same regeneration properties (cycle structure) as X . For such a
process, the cycle potential Qx

∫ H(x)
0 1{Y (s)∈dy} ds = dy

c(y) is always invari-
ant for the semigroup of Y , and we may show that the total mass of this
measure is |L′xx (λ)|. So, when the latter is finite, Y is positive recurrent,
and the asymptotic behaviour of (µt) follows.

Finally, the result on the spectral gap (β > 0) follows from the fact that
Qx [eεH(x)] < ∞ for some ε > 0, and an application of Kendall’s renewal
theorem (adapted to a continuous time setting).



Simpler sufficient conditions

Assume c(x) = ax .

Proposition
If K (x) ∼ β0xγ0 for some γ0 > 0 as x → 0, K (x)→ β∞ as
x →∞, and

a < β∞
1− supx>0

∫ x
0
( y

x
)s k̄(x ,y)

K(x) dy
s , for some s > 0,

then λ = a, ¯̀(x) = x and there exist C , β > 0 such that

dTV
(
e−at y

x µ
x
t (dy), ym(dy)

)
≤ Ce−βt .
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Simpler sufficient conditions

How does this result work? The condition on K at zero ensures that the
system fragments slower than it grows when cells are close to zero. The
growth and fragmentation are of the same order at infinity, and the (uglier)
condition then ensures also that fragmentation happens marginally faster
than growth at infinity.

These conditions conspire to give that the process X of the tagged cell
is recurrent; this is shown using a Foster-Lyapunov argument. Then λ =
a since H(x) < ∞ a.s. for X , and moreover X = Y . Improving on
this Foster-Lyapunov argument shows that X = Y is indeed exponentially
ergodic, which is essentially what the result says. (In this direction, recall
that ym(dy) is the stationary distribution of Y .)



Further work

A strong law of large numbers for the growth-fragmentation
model

Theorem (Bertoin): If

lim supx↓0
c(x)

x < λ and lim supx→∞
c(x)

x < λ,

then result of this talk holds.
Conjecture: If the same condition holds, then
e−λt ∑

i≥1 f (Xi (t))¯̀(Xi (t))→W 〈m, f 〉, a.s.
Alternative sufficient conditions for asymptotics of mean – via
quasi-stationary distributions – requires a (local) Doeblin
condition or Harnack inequality
Incorporate position or shape of cells as types
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Further work

We close with some indications of further work. One place where these
results can certainly be extended is the strong law of large numbers. The
results presented here are essentially a weak law (convergence in mean).
We can expect that, in fact, to obtain convergence of weighted empirical
measures:

e−λt
∑
i≥1

f (Xi (t))¯̀(Xi (t))→W 〈m, f 〉, a.s.,

where W is a random variable. This is connected to the uniform integ-
rability of certain ‘Malthusian’ martingales for (Xi (t) : i ≥ 1, t ≥ 0).

It may be interesting to extend the model to incorporate particle positions;
it is common biologically to consider an inhomogeneous growing medium,
so that the growth and fragmentation rate depend on not just the size of
the cell, but also the position. This can be done by incorporating types.
If the type space is compact, then we may expect that analogous results
will hold.



Further reading

J. Bertoin and A. R. Watson
A probabilistic approach to spectral analysis of
growth-fragmentation equations
J. Funct. Anal., 274, no. 8, 2163–2204. 2018.
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