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Days of very low probability

- X: recurrent Markov process on R
- A C R, T, the hitting time of A
- Ty < oo almost surely: what is ‘X conditioned to avoid A'?
- Two answers: for A € Fi,
c Pi(A) = lims oo PX(A | S+t < Ta)
- PA(A) = limgo P(Ajt < eq | g < Ta),
with eq ~ Exp(q) independent of X

-

-
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If ha(x) =P*(Ta = 00) > 0 for x ¢ A, then

- ForA e R,
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_ X
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- ha(X;) is @ martingale for the process X killed on hitting A,

The measures (P} )xer\a are a Doob h-transform of (P*)xer.
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Recurrent Markov processes

If h9(x) =P*(Ta > eq) for g > 0,x ¢ A, then

- ForA e F,
1
PY(A Ta>eq) = ——P(A a0 < Tp
(Aot <eq T > o) = g S gy Pt < €a <Ta)
1
= 7/’]‘5(X)EX [PX(A,t < eg < T, | ]:t)]l{TA>t}]
1 Xi N
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1 e s
= h9(X;
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- For recurrent processes, h%(x) — 0 as g | 0...

- butif h9(x) ~ f(g)h(x), we get back to an h-transform formula:
asymptotic factorisation.
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A non-exhaustive literature review

Lots of work in this area.

- Random walks...
- Lévy processes...

- Self-similar processes...

conditioned to

..avoid a half-line (Bertoin, Chaumont, Doney)
- ..avoid a point (Kyprianou, Panti, Rivero, Satitkanitul, W., Yano)
- ..remain in a cone (Denisov, Wachtel)

..remain in an interval (Lambert, Kyprianou, Rivero, Sengiil)
- ..avoid an interval (next slide)
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The question

A Lévy process X is a stochastic process with

- independent increments: X; — Xs is independent of Fs (fors < t)

- stationary increments: X; — Xs 4 Xi_s.

Let A = [a, b] be an interval. How to condition X to avoid A?

An analogous question was studied for arithmetic random walks by
Kesten and Spitzer (1963), partially; random walks with finite variance by
Vysotsky (2015) and for stable processes by Doring, Kyprianou,
Weimann (2018+).



Assume:

X has zero mean and finite variance,
and is not a compound Poisson process (A)

X can jump upwards by more than b — a (B)

X can jump downwards by more than b — a (B)
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An answer (and more)

Theorem .
There exist functions h,, h_ and constant C such that:
- For A € F, limg o PX(A,t < eq | eq < Tig,p),Xe, > b) exists, and is a
Doob h-transform of P by h,.
- For A € F, limg o PX(A,t < eq | eq < Tig,p),Xe, < Q) eXists, and is a
Doob h-transform of P by h_.
- For A € F, limg o P¥(A,t < eq | eq < Tjq,p)) eXists, and is a Doob
h-transform of P by h(x) := h(x) + Ch_(x).
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—X
Xi = sups<; Xs, the running supremum
—— 1, the local time at the maximum
Hy(t) = Xi=1, the ladder height process: maxima ‘stitched together’

The ladder height process is a Lévy process! Define its potential:
U+(¥) =E [° Lin, () <xt<io} dt.

Likewise, the running infimum, the local time at the minimum, the
downward ladder height and its potential U_.
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Discussion of h.

The definition of hy involves the overshoot measures of X.

* T = 0,
Tk = 1nf{t > Th—1 ZXt_ > b.,Xt < b}
Ainf{t > 7,1 : Xi— < a,X; > a}

: V;e((dy) = PX(XW € dy77-k < T[a,b])

Then:
/ _(y = b) v, (dy), X>b,

Z/ (V= D) (dy), x<a.
k=
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Conditioning with h, (focus on x > b)

Let x be the Laplace exponent of L=1: E[e=9 '] = e~*(®), et & be the
analogue for the process —X.

Key result:
Proposition

 PX(eq < T(—oop)) ~ R(q)U—(x — b) (well-known)
- P*(eq < Tia,0), Xe, > b) ~ &(q)h4(x) (new)
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Proof of P*(eq < Tigp), Xe, > b) ~ A(q)h4(X)

IP’X(eq < T[a b]s Xeq > b Z]PX €q € TQ;?,TQk_,_l),eq < T[a,b])
= ZEX [1{72k+1<T[a,b]}PXT2k (eq < T(—Oowb])]
k=0

— Z/ugk(dy) PY(eq < T(—oo,b))
- Z / Vil(dy) &)U~ (v — b)

1



Proof of P*(eq < Tigp), Xe, > b) ~ A(q)h4(X)
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= ZEX [1{72k+1<T[a,b]}PXT2k (eq < T(—Oowb])]
k=0

=§;/@me@<nﬂm>

~Z/mw (v b) = &(Q)hy ().

1



Proof of P*(eq < Tigp), Xe, > b) ~ A(q)h4(X)

IP’X(eq < T[a b]s Xeq > b Z]PX €q € TQ;?,TQk_,_l),eq < T[a,b])

= ZEX [1{72k+1<T[a,b]}PXT2k (eq < T(—Oowb])]
k=0

-y / Vin(dY) P (g < T(_oort))
k=0

~ / Vin(dy) £(@)U_ (v — b) = #(@)h4 (0).
k=0

This is the asymptotic factorisation that we need for the h-transform to
condition to avoid [a, b] and end up above.

1
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Recall h is the supposed h-transform function for conditioning to avoid
[a, b].

We find it like this:

P*(eq < Tia,p) = P*(eq < Ta,b), Xe, > b) +P*(eq < Tia,p), Xe, < Q)
~ &(q)P*(eq < Tia,p), Xe, > b) + K(q)P*(eq < Tiq,p), Xe, < Q)
~ #(q)(h+(x) 4+ Ch_(x)),

=9 = (0, 00).
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Conditioning with h

Recall h is the supposed h-transform function for conditioning to avoid
[a, b].

We find it like this:
IP’X(eq < T[a,b]) = }P’X(eq < T[a,b],Xeq > b) alx ]P’X(eq < T[a’b],Xea < CI)

~ &(q)P*(eq < Tia,p), Xe, > b) + K(q)P*(eq < Tiq,p), Xe, < Q)
#(q) (h+(x) + Ch_(x)),

)E(Ooo)

defining C = limgyo % H(q)

Asymptotic factorisation - leads to an h-transform for conditioning to
avoid [a, b]
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- Conditioning a transient Lévy process
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Open problems

- Lévy process with infinite variance (stable known, but via ssMp)
- Anidea: look at potential density of X (killed),

u(x,y) = Cg / Vap(dZ) /[ Up(dVu—(z=b+Vv —y)1yyir—p (V)

0,00)
- c’i/yéh(dz) U_(z—b) IfE[H+(1)] < oo
k=0

- In general, this goes to +oo: need to look at limy u(x,y)/u(x’,y).
- Even then, this only tells you about harmonicity.

- Williams-style decomposition of the conditioned process: how
many times does it jump, where is the point of closest approach,
what does the process look like after that?

- Lévy process conditioned to hit an interval continuously (just
differentiate?)

- Analogues for self-similar processes (in an annulus?)
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Further reading

@ L. Doring, A. R. Watson, P. WeiBmann.
Lévy processes with finite variance conditioned to avoid an interval
arXiv:1807.08466 [math.PR]


http://arxiv.org/abs/1807.08466

Let
Nt
X = V2B + > Y,
i=1
with B a standard Brownian motion, N a Poisson process with rate 1 and
(Y;) iid with pdf

1 |
frly) = e Pliysoy + e n( y>]1{y<o}-



Let |
X = V2B + > Y,

i=1
with B a standard Brownian motion, N a Poisson process with rate 1 and
(Y;) iid with pdf

1 |
frly) = e Pliysoy + e n y>]1{y<o}-

By explicitly finding the iterated overshoot distributions v, we can find

by = 4 B* D)+ (5 i) (1= e7P070), x>,
3a=0+ (5" + pitg)1 - e7P™), x<q,

with 8= /n?2 +1and ¢ = %e—n(b—a).
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Behaviour of the conditioned process

Write IP, for the law of the process conditioned to avoid [a, b] and end up
above b, and Py, , for that of the process just conditioned to avoid [a, b].

Theorem
+ P (limy—y o0 Xt = 00) = 1.

* Py (lime o0 Xe = 00) = BB and B, ) (limy o0 X = —o00) = S,

Trajectories under Py, ,, do not oscillate.
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Transient processes

Drop assumptions about finite variance and zero mean.

If Xt = oo a.s,, and E[H4(1)],E[H_(1)] < oo,

* hy(x) = P*(Tjq,p = 00) — already discussed this case
- h_(x) can still be used to condition X to avoid [a, b] and end up
below it - but we end up with a killed Markov process.

Analogous to increasing Levy process conditioned to stay below a
level (Kyprianou et al. 2017).



	Appendix

