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Days of very low probability

• X: recurrent Markov process on R

• A ⊂ R, TA the hitting time of A
• TA < ∞ almost surely: what is ‘X conditioned to avoid A’?
• Two answers: for Λ ∈ Ft,

• PxA(Λ) = lims→∞ Px(Λ | s+ t < TA)
• PxA(Λ) = limq↓0 Px(Λ; t < eq | eq < TA),
with eq ∼ Exp(q) independent of X
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Transient Markov processes

If hA(x) = Px(TA = ∞) > 0 for x /∈ A, then

• For Λ ∈ Ft,

PxA(Λ) := Px(Λ | TA = ∞)

=
1

Px(TA = ∞)
P(Λ, TA = ∞)

=
1

hA(x)
Ex

[
Px(Λ, TA = ∞ | Ft)1{TA>t}

]
=

1

hA(x)
Ex

[
1ΛPXt(TA = ∞)1{TA>t}

]
=

1

hA(x)
Ex[1ΛhA(Xt)1{TA>t}]

• hA(Xt) is a martingale for the process X killed on hitting A,

The measures (PxA)x∈R\A are a Doob h-transform of (Px)x∈R.
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Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq)

=
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
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1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
=

1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]

=
1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
=

1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]

=
1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
=

1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
=

1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...

• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



Recurrent Markov processes

If hq(x) = Px(TA > eq) for q > 0, x /∈ A, then

• For Λ ∈ Ft,

Px(Λ, t < eq | TA > eq) =
1

Px(TA > eq)
P(Λ, t < eq < TA)

=
1

hq(x)
Ex

[
Px(Λ, t < eq < TA | Ft)1{TA>t}

]
=

1

hq(x)
Ex

[
1ΛPXt(TA > eq)1{TA>t}

]
=

1

hq(x)
Ex[1Λhq(Xt)1{TA>t}]

• For recurrent processes, hq(x) → 0 as q ↓ 0...
• ...but if hq(x) ∼ f (q)h(x), we get back to an h-transform formula:
asymptotic factorisation.

3



A non-exhaustive literature review

Lots of work in this area.

• Random walks...
• Lévy processes...
• Self-similar processes...

conditioned to

• ...avoid a half-line (Bertoin, Chaumont, Doney)
• ...avoid a point (Kyprianou, Pantí, Rivero, Satitkanitul, W., Yano)
• ...remain in a cone (Denisov, Wachtel)
• ...remain in an interval (Lambert, Kyprianou, Rivero, Şengül)
• ...avoid an interval (next slide)
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The question

A Lévy process X is a stochastic process with

• independent increments: Xt − Xs is independent of Fs (for s < t)

• stationary increments: Xt − Xs
d
= Xt−s.

Let A = [a,b] be an interval. How to condition X to avoid A?

An analogous question was studied for arithmetic random walks by
Kesten and Spitzer (1963), partially; random walks with finite variance by
Vysotsky (2015) and for stable processes by Döring, Kyprianou,
Weißmann (2018+).
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Assumptions

Assume:

X has zero mean and finite variance,
and is not a compound Poisson process (A)

X can jump upwards by more than b− a (B)

X can jump downwards by more than b− a (B̂)
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An answer (and more)

Theorem
There exist functions h+, h− and constant C such that:

• For Λ ∈ Ft, limq↓0 Px(Λ, t < eq | eq < T[a,b], Xeq > b) exists, and is a
Doob h-transform of P· by h+.

• For Λ ∈ Ft, limq↓0 Px(Λ, t < eq | eq < T[a,b], Xeq < a) exists, and is a
Doob h-transform of P· by h−.

• For Λ ∈ Ft, limq↓0 Px(Λ, t < eq | eq < T[a,b]) exists, and is a Doob
h-transform of P· by h(x) := h+(x) + Ch−(x).
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Discussion of h±: Wiener–Hopf factorisation 1/2

X
X̄t = sups≤t Xs, the running supremum
L, the local time at the maximum
H+(t) = XL−1

t
, the ladder height process: maxima ‘stitched together’

The ladder height process is a Lévy process! Define its potential:
U+(x) = E

∫∞
0

1{H+(t)≤x,t<L∞} dt.

Likewise, the

running infimum, the

local time at the minimum, the

downward ladder height and its potential U−.
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Discussion of h± 2/2

The definition of h± involves the overshoot measures of X.

• τ0 = 0,
• τk = inf{t > τk−1 : Xt− > b, Xt ≤ b}

∧ inf{t > τk−1 : Xt− < a, Xt ≥ a}

• νxk(dy) = Px(Xτk ∈ dy, τk ≤ T[a,b])

Then:

h+(x) =



∞∑
k=0

∫ ∞

b
U−(y − b) νx2k(dy), x > b,

∞∑
k=0

∫ ∞

b
U−(y − b)νx2k+1(dy), x < a.

9
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Conditioning with h+ (focus on x > b) 1/2

Let κ be the Laplace exponent of L−1: E[e−qL
−1
t ] = e−tκ(q). Let κ̂ be the

analogue for the process −X.

Key result:

Proposition

• Px(eq < T(−∞,b]) ∼ κ̂(q)U−(x − b) (well-known)
• Px(eq < T[a,b], Xeq > b) ∼ κ̂(q)h+(x) (new)
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Proof of Px(eq < T[a,b], Xeq > b) ∼ κ̂(q)h+(x) 2/2

Px(eq < T[a,b], Xeq > b) =
∞∑
k=0

Px(eq ∈ [τ2k, τ2k+1), eq < T[a,b])

=

∞∑
k=0

Ex
[
1{τ2k+1<T[a,b]}P

Xτ2k (eq < T(−∞,b])
]

=
∞∑
k=0

∫
νx2k(dy)Py(eq < T(−∞,b])

∼
∞∑
k=0

∫
νx2k(dy) κ̂(q)U−(y − b) = κ̂(q)h+(x).

This is the asymptotic factorisation that we need for the h-transform to
condition to avoid [a,b] and end up above.
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Conditioning with h

Recall h is the supposed h-transform function for conditioning to avoid
[a,b].

We find it like this:

Px(eq < T[a,b]) = Px(eq < T[a,b], Xeq > b) + Px(eq < T[a,b], Xeq < a)
∼ κ̂(q)Px(eq < T[a,b], Xeq > b) + κ(q)Px(eq < T[a,b], Xeq < a)
∼ κ̂(q)

(
h+(x) + Ch−(x)

)
,

defining C = limq↓0
κ(q)
κ̂(q) ∈ (0,∞).

Asymptotic factorisation – leads to an h-transform for conditioning to
avoid [a,b]
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Other results

• Behaviour of the conditioned process – drifts to either +∞ or −∞
(but doesn’t oscillate)

• Conditioning a transient Lévy process
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Open problems

• Lévy process with infinite variance (stable known, but via ssMp)

• An idea: look at potential density of X (killed),

u(x, y) = c
∞∑
k=0

∫
νx2k(dz)

∫
[0,∞)

U+(dv)u−(z − b+ v − y)1[v,v+z−b](y)

→ c′
∞∑
k=0

∫
νx2k(dz)U−(z − b) if E[H+(1)] < ∞

• In general, this goes to +∞: need to look at limy u(x, y)/u(x′, y).
• Even then, this only tells you about harmonicity.

• Williams-style decomposition of the conditioned process: how
many times does it jump, where is the point of closest approach,
what does the process look like after that?

• Lévy process conditioned to hit an interval continuously (just
differentiate?)

• Analogues for self-similar processes (in an annulus?)
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Further reading

L. Döring, A. R. Watson, P. Weißmann.
Lévy processes with finite variance conditioned to avoid an interval
arXiv:1807.08466 [math.PR]
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An example

Let

Xt =
√
2Bt +

Nt∑
i=1

Yi,

with B a standard Brownian motion, N a Poisson process with rate 1 and
(Yi) iid with pdf

fY(y) =
1

2
ηe−ηy

1{y>0} +
1

2
ηe−η(−y)

1{y<0}.

By explicitly finding the iterated overshoot distributions νxk , we can find

h(x) =

 η
β (x − b) +

(
β−η
β2 + 2c

β(1−c)
)
(1− e−β(x−b)), x > b,

η
β (a− x) +

(
β−η
β2 + 2c

β(1−c)
)
(1− e−β(a−x)), x < a,

with β =
√

η2 + 1 and c = β−η
β+ηe

−η(b−a).
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Behaviour of the conditioned process

Write P·
+ for the law of the process conditioned to avoid [a,b] and end up

above b, and P·
[a,b] for that of the process just conditioned to avoid [a,b].

Theorem

• Px+(limt→∞ Xt = ∞) = 1.
• Px[a,b](limt→∞ Xt = ∞) = h+(x)

h(x) and Px[a,b](limt→∞ Xt = −∞) = Ch−(x)
h(x) .

Trajectories under P·
[a,b] do not oscillate.
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Transient processes

Drop assumptions about finite variance and zero mean.

If Xt → ∞ a.s., and E[H+(1)],E[H−(1)] < ∞,

• h+(x) = Px(T[a,b] = ∞) – already discussed this case

• h−(x) can still be used to condition X to avoid [a,b] and end up
below it – but we end up with a killed Markov process.

Analogous to increasing Lévy process conditioned to stay below a
level (Kyprianou et al. 2017).
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