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A simple model of fragmentation

We begin with a single particle of size x. It waits for an exponential
time of rate λ, and then splits into two daughter particles with sizes
xy and x(1− y), where y is chosen from some probability distribution
ν with support in [1

2, 1]. These act independently of each other and of
the past, each waiting an exponential time and fragmenting according
to the same rule.

Evolution of the particle sizes

To study this model, let Z(t) =
∑

particles u δlog(size of u)1{u present at time t}.
We plot the evolution of these particle sizes; let K(dy) = λν(dy).

This graphic has a useful interpretation. By identifying each particle
with its largest child, what we see above is a particle whose size remains
constant for some exponential time, and then jumps by log y. At the
same time, a new particle is immigrated below at position log(1 − y)
relative to the pre-jump position. Each particle then independently
runs the same process.

We see that Z is precisely a compound Poisson process, with Lévy
measure Π = K ◦ log−1, together with immigration at its jumps.

A more elaborate model

This suggests a generalisation. Let X be a Lévy process with only
downward jumps, and denote its Lévy measure by Π. A more general
model of fragmentation, Z , can be regarded as follows: we start with
a single particle, which runs the process X ; and at every jump of X
having size log y, we immigrate an independent copy of Z at relative
position log(1− y).

One can show that such a process does exist, and is locally finite (each
compact set contains only finitely many particles.)

Let Y = Z ◦ exp−1 =
∑

particles u δsize of u1{u present at time t}. This is the
compensated fragmentation process.

The measure K := Π ◦ exp−1 is called the dislocation measure, and it
satisfies

∫
(1− y)2K(dy) <∞.

A simple fragmentation equation

If K is a finite measure, the following equation describes the mean behaviour of the ‘simple model’, left.

∂t〈µt, f〉 =

〈
µt, x 7→

∫
[12,1)

{
f (xy) + f (x(1− y))− f (x)

}
K(dy)

〉
, f ∈ C∞c (0,∞),

µ0 = δ1

This equation still makes sense when K is infinite but satisfies
∫

(1−y)K(dy) <∞, and has been well-studied
in the context of exchangeable fragmentations.

The growth-fragmentation equation

We study the following generalisation, which is well-defined for all K such that
∫

(1− y)2K(dy) <∞.

∂t〈µt, f〉 =

〈
µt, x 7→ axf ′(x) +

∫
[12,1)

{
f (xy) + f (x(1− y))− f (x) + (1− y)xf ′(x)

}
K(dy)

〉
µ0 = δ1

(0-GF)

There are two ‘growth’ terms now present. The first is the term involving a; this represents a deterministic
growth (or erosion, if a < 0) of all particles simultaneously. The second is the extra term in the integral; this
represents a sort of compensation for the infinite rate of ‘small fragmentations’, where the larger child is close
in size to the parent, and the smaller child has size close to zero; it is required for the weakening of the integral
condition on K.

Theorem 1

Let

κ(q) = aq +

∫
[12,1)

{
yq + (1− y)q − 1 + q(1− y)

}
K(dy).

The unique solution of (0-GF) is given by

〈µt, f〉 = Eδ1
[∑

u

f (Yu(t))
]

= etκ(ω)E1[ξ(t)−ωf (ξ(t))],

where Y is the compensated fragmentation process described on the left, and ξ is the exponential of a Lévy
process with only downward jumps, having Laplace exponent κ(· + ω) − κ(ω); the paramter ω ∈ domκ can
be freely chosen.

This theorem corresponds exactly with what was already shown by Haas for the case
∫

(1 − y)K(dy) < ∞,
and the methods are very similar. However, there are some surprises in store for the self-similar equation,
which we now describe.

The self-similar growth-fragmentation equation

Let α ∈ R. The self-similar version of (0-GF) is as follows:

∂t〈µt, f〉 =

〈
µt, x 7→ xα

[
axf ′(x) +

∫
[12,1)

{
f (xy) + f (x(1− y))− f (x) + (1− y)xf ′(x)

}
K(dy)

]〉
.

(α-GF)
The presence of the term xα modifies the overall speed of evolution of a particle of size x. Thus, if α < 0, then
small particles (with size close to zero) grow and fragment rapidly, while larger particles have their behaviour
slowed down; the opposite holds when α > 0.

Theorem 2

We assume that certain Malthusian hypotheses are satisfied. This means that there exists some ω ∈ domκ
such that κ(ω) = 0, and either α < 0 and κ′(ω) > 0, or else α > 0 and κ′(ω) < 0. Under these conditions, we
have the following results.

•There exists a solution (µt) to (α-GF), such that 〈µt, x 7→ xω〉 ≡ 1 and µ0 = δ1.

– It is given by 〈µt, f〉 = E1[X(t)−ωf (Xt)].

•There exists another solution (γt), such that 〈γt, x 7→ xω〉 ≡ 1 for t > 0 but γ0 = 0.

– If α < 0, it is given by 〈γt, f〉 = E0[X(t)−ωf (Xt)].

– If α > 0, it is given by 〈γt, f〉 = E+∞[X(t)−ωf (Xt)].

Here, X is a positive, self-similar Markov process with index of self-similarity −α, which is driven (through
the Lamperti transform) by a Lévy process with Laplace exponent κ(·+ω); the paramter ω is the Malthusian
exponent appearing above.

This indicates that the solutions can exhibit spontaneous generation of mass, and precludes uniqueness.

Open questions

Some possible topics: existence of a minimal solution — study of the nonlinear semigroup and KPP equation
— process variant of ‘starting from zero mass’ — study of biased mass functions ‘〈µt, x 7→ xq〉’...
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