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We consider two optimal stopping problems driven by Lévy processes with Omega killing,
which can be understood as the so-called bankruptcy event for an insurance company. The
main question is to decide when to stop the observation before bankruptcy happens in or-
der to obtain the best reward. We work with stable processes and Cramér–Lundberg pro-
cesses respectively under different choices of the gain (payoff) functions and time-dependent
killing processes.

The first problem is the optimal stopping for an Omega-killed stable process. The gain
function is similar to an American call option. We show that under certain conditions, the
solution to the problem driven by a stable process can be transformed from the one driven
by a special type of Lévy process. To see this, we first construct, from the original stable
process, a positive self-similar Markov process (pssMp) and then, we generate, from this
pssMp, a Lévy process via Lamperti transform, which is verified to be of the so-called
double hypergeometric class. After solving the related optimal stopping problem under
such double hypergeometric Lévy process, we show that these results are also valid and can
be interpreted for the original problem with the stable process. We also share a remark on
a similar optimal stopping problem while the gain function is of American put option style
and a Markov additive process is considered with the help of Lamperti-Kiu transform.

In the second project, we study the optimal stopping problem driven by a Cramér-
Lundberg process with piecewise constant killing intensity. The payoff function has a con-
stant penalty p for negative values and is not continuous at zero, which makes it harder to
apply the change of measure formula and to follow the classic verification steps of solving
optimal stopping problems. Under some mild conditions w.r.t. penalty p in terms of the
parameters for Cramér-Lundberg processes, the solutions are fully characterised where the
optimal up-crossing thresholds are explicitly defined. The proofs consist of massive calcu-
lations based on existing explicit expressions for fluctuation functions of Cramér-Lundberg
processes. By introducing a number of lemmas, we solve the optimal stopping problem.
We also give numerical examples to illustrate our result and make discussions for future
direction.
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Chapter 1

Introduction

This thesis deals with two optimal stopping problems with Omega killing, which can be

interpreted as a non-immediate ruin event commonly referred to as bankruptcy event for an

insurance company. In such problems, the insurer observes a random evolution of company

wealth whose future cannot be predicted and the objective is to find stopping times so that

the values of some given functionals can be optimised, or otherwise, bankruptcy occurs and

the whole process is terminated. Lévy processes are often used to model the wealth of an

insurance company or the capital flow for a portfolio of insurance products. Thanks to the

known fluctuation identities of Lévy processes at first passage over a fixed level, analytically

tractable formulas can be achieved when solving the related optimal stopping problems.

In our study, we consider a Lévy process X defined on a filtered probability space

(Ω,F ,F = (Ft)t≥0 ,P). Also, we define an Omega clock with some non-negative den-

sity function ω as

χt :=

∫ t

0

ω(Xs)ds.

Let us extend the probability space above to F ⊗ B(R>0) containing a random variable e,

which is independent of X and exponentially distributed with parameter 1. Then, the time

of killing denoted by T , is defined as

T := χ−1(e) := inf{t ≥ 0 |χt ≥ e}. (1.1)

We are interested in the following optimal stopping problem:

v(x) = sup
τ

Ex [Lτ ] , (1.2)

10



where the supremum is taken over F−adapted stopping times, Ex is the expectation under

Px, which is the law of X given that X0 = x ∈ R and

Lt := 1{t<T}
(
e−rtg(Xt)

)
+ 1{t>T}

(
e−rTg (XT )

)
, for all t ≥ 0,

with r ≥ 0 and g is the so-called gain or payoff function. For a discussion of why it is

sufficient to consider F−adapted stopping times only in (1.2), see [27]. So (1.2) is essen-

tially about finding the optimal stopping strategy such that the insurance company can attain

optimal expected wealth or the insurer can get the optimal expected value of the portfolio

before the Omega clock rings, or otherwise, the insurer is left with a payoff (or fine) equal

to e−rTg(XT ).

The study of optimal stopping problems with state-dependent killing has been popu-

lar in recent years. [21] and [9] consider the case of diffusion processes and [25] derive a

Feynman–Kac formula which characterizes conditional expectations of functionals of killed

time-inhomogeneous Lévy processes. Later, exit problems for different one-sided Lévy

processes which are exponentially killed with a state-dependent killing intensity have been

solved in [36] and [20]. In the case where the Lévy processes are (reflected) spectrally neg-

ative ones, the killing intensity depends on the present level of the process while in the case

where Markov additive processes are studied, the killing intensity is bivariate, which de-

pends on the present states of both the process and the environment. Respective resolvents

are also analyzed in these two papers.

Applications of optimal stopping problem with state-dependent killing can be widely

found in insurance and finance. In Insurance, Omega killing is often related to the event

named “bankruptcy”. The concept of bankruptcy was first introduced in [1]. Later, [24]

and [2] derive analytical results for the bankruptcy probability under the Brownian mo-

tion model and the compound Poisson risk model respectively. [26] considers the Cramér-

Lundberg process and shows that this probability enjoys a linear relation with the classical

ruin probability. In financial problem study, Omega killing can be for instance regarded as

the default risk. [27] enriches the optimal stopping problem for a convertible bond by intro-

ducing such default risk. They look at different types of default intensities and present the

analytical formulae for the no-arbitrage price of the convertible bonds by solving the free
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boundary problems respectively. The study of random maturity American options was in-

troduced by [16], with the maturity date randomized and determined by the waiting time to

a prespecified number of jumps of a standard Poisson process, which is independent of the

underlying asset price process. [40] includes the Omega clock in the optimal stopping prob-

lem for an American call option so that the problem is under a random time-horizon setting.

They show that for different choices of parameters in the Omega clock, optimal strategies

differ as well. They obtain a complete characterization of optimal exercising thresholds in

different scenarios, where it is either an up-crossing strategy or a two-sided exit one.

An optimal stopping problem similar to (1.2) was considered by [40] where they con-

sider spectrally negative processes and piecewise constant omega intensity functions. Dif-

ferent from their work, we consider stable processes and Cramér-Lundberg processes, and

the Omega clock is of a new type for the stable process problem. Usually, optimal stopping

problems are often linked with one- and two-sided exit problems and with the assistance

of a number of known fluctuation identities for Lévy processes, e.g., its overshoot above

or below a certain level and the Laplace transform of the first-passage time, this type of

exit problems have been well studied. See for example, [23], [4], [19], [37] deals with a

general Lévy process. [17], [18], [5], [6] handles the case of spectrally negative processes

while [46] considers reflected spectrally negative Lévy processes. Also, [22] computes the

joint distribution of the exit time and value of a spectrally positive Lévy process for certain

choice of interval and [11] derives an explicit formula for the Laplace transform of the dis-

tribution of the first time that a completely asymmetric stable process exits a finite interval.

However, in our case, due to the existence of state-dependent killing, one- and two-sided

exit strategies may not be optimal for some set of model parameters. Further, in comparison

with most existing studies where problems are under exponential Lévy models, we look at

an identity-type setting, which makes the analysis and computation more complicated.

Based on this framework, we study two problems with different choices of ω and gain

function under stable process and Cramér Lundberg process respectively. The rest of this

thesis is organised as follows.

In Chapter 2, we share a series of definitions and results for Lévy processes. Then, we

give a brief introduction on two possible ways of solving an optimal stopping, i.e., the so-

called martingale approach and Markovian approach. We also present crucial results of the

celebrated Itô formula and its extensions, which will be used in later parts.

12



In Chapter 3, we deal with the optimal stopping for Omega-killed stable process. In

this project, we show that an up-crossing strategy can be optimal under certain conditions

and the existence of an optimal up-crossing stopping time depends on the shape of the gain

function. We do not solve the problem under stable process in (1.2) directly. Instead, we

construct, from the original stable process, a positive self-similar Markov process and then

apply the Lamperti transform to generate a Lévy process, which belongs to the so-called

double hypergeometric class. We solve the optimal stopping problem under the generated

double hypergeometric Lévy process and prove that the solutions can be transformed to

our problem under a stable process. We also make some discussions on a similar optimal

stopping problem while the payoff function is of the American put option style.

In Chapter 4, we tackle the optimal stopping problem for Omega-killed Cramér Lund-

berg process. In this project, ω is of piecewise constant type and our gain function is a simple

identity function for non-negative values with a penalty p < 0 for negative ones. Since g is

not continuous at zero, it makes the whole problem more interesting as well as challenging.

We show that under certain conditions on the parameters of Cramér Lundberg process as

well as p, an up-crossing strategy is optimal for (1.2) with explicit solutions achieved. We

also give numerical examples to show how value function behaves with respect to different

choice of parameters. And finally, an outline of the results is given, based on which, we

discuss the difficulties of solving certain scenarios and propose potential future directions.

13



Chapter 2

Preliminaries

In this chapter, we shall give some essential definitions and important results for Lévy pro-

cesses and optimal stopping problems, which will be used in Chapter 3 and 4.

2.1 Lévy processes

In this section, we present a brief introduction to Lévy processes and its fluctuation theory,

especially for the so-called Cramér–Lundberg risk process and stable process. All these

results can be found in [10] and [30].

2.1.1 General Lévy process

Lévy process is named in honor of the outstanding work of Paul Lévy, a great French math-

ematician, who played an important role in bringing together an understanding and char-

acterisation of processes with stationary independent increments. The definition of a Lévy

process is as follows, see e.g., [30, Definition 1.1].

Definition 2.1 (Lévy process). A process X = (Xt)t≥0 defined on a probability space

(Ω,F ,P) is said to be a Lévy process if it satisfies the following conditions:

1) The paths of X are P-almost surely right-continuous with left limits;

2) P(X0 = 0) = 1;

3) For 0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s;

4) For 0 ≤ s ≤ t, Xt −Xs is independent of (Xu)u≤s. ♢

14



Throughout the study of Lévy processes, an instrumental role belongs to the notion of

infinitely divisible distributions. It is known that any Lévy process can be associated with

an infinitely divisible distribution, that is, for all t ≥ 0,

E
[
eiθXt

]
= e−tΨ(θ))

where Ψ(θ) is called the characteristic exponent and defined by the following theorem (see

[30, Theorem 1.6]).

Theorem 2.2 (Lévy-Khintchine formula). Consider a ∈ R, σ ∈ R and Π is a measure

concentrated on R\{0} such that
∫
R(1∧x

2)Π(dx) <∞. From this triple (a, σ2,Π), define

for each θ ∈ R,

Ψ(θ) := iaθ +
1

2
σ2θ2 +

∫
R

(
1− eiθx + iθx1{|x|<1}

)
Π(dx).

Then, there exists a probability space (Ω,F ,P) on which a Lévy process is defined with

characteristic exponent Ψ. On the other hand, every Lévy process has a unique character-

istic exponent of the above form.

Note that for a killed Lévy process, an extra q > 0 which represents the killing rate

will be added to Ψ. The objective Lévy process X is sent to the cemetery state ∂ at an

exponential random time with rate q, which is otherwise independent of the path of X , and

remains at ∂ forever.

According to the Lévy-Khintchine formula, any characteristic exponent Ψ belonging to

an infinitely divisible distribution can be written in the form for all θ ∈ R

Ψ(θ) = (Ψ(1) +Ψ(2) +Ψ(3))(θ)

where

• Ψ(1)(θ) = iaθ + 1
2
σ2θ2;

• Ψ(2)(θ) = Π(R \ (−1, 1))
∫
|x|≥1

(1− eiθx) Π(dx)
Π(R\(−1,1))

;

• Ψ(3)(θ) =
∫
0<|x|<1

(1− eiθx + iθx)Π(dx).

15



2.1.2 Spectrally Negative Lévy process and scale functions

From the decomposition of Lévy processes, we can see that a general Lévy process allows

its jumps to be in two directions. Those which possess jumps in just one direction turn out to

provide an obvious advantage for many calculations and analysis. Thus, in this subsection,

we would like to offer some useful facts and fluctuation identities about spectrally negative

processes (SNLP), i.e., Lévy processes with only downward jumps, and their scale func-

tions. Note that SNLP does not include the negative of a subordinator. In particular, we

present useful results of Cramér Lundberg process, a special type of SNLP, which will be

used in Chapter 4.

When studying SNLPs, we usually make use of the so-called Laplace exponent, denoted

by ψ, which fulfills the relation

ψ(λ) :=
1

t
logE

[
eλXt

]
= −Ψ(−iλ), λ ≥ 0, (2.1)

instead of the Lévy-Khintchine characteristic exponent. It is known that ψ(λ) is finite if and

only if
∫
|x|≥1

eλxΠ(dx) <∞.

The following results Lemma 2.3 and Remark 2.4 from [30, Section 8.2] describe the

path variation property and the law of change of measure for spectrally negative Lévy pro-

cesses.

Lemma 2.3 (Path Variation of SNLP). Given the triple (a, σ2,Π), where the Lévy measure

Π is concentrated on (−∞, 0), we have the Laplace exponent

ψ(λ) = −aλ+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1(x>−1))Π(dx), (2.2)

where a ∈ R and σ is the Gaussian coefficient. Further, ifX has paths of bounded variation,

we can write it as

ψ(λ) = δλ−
∫
(−∞,0)

(1− eλx)Π(dx),

where

δ = −a−
∫
(−1,0)

xΠ(dx) (2.3)
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is strictly positive.

Note that ψ is a strictly convex function which is zero at zero and tends to infinity at

infinity. For later reference we also introduce the function Φ : [0,∞) → [0,∞) as the right

inverse of ψ on [0,∞) such that for all q ≥ 0

Φ(q) = sup {λ ≥ 0 : ψ(λ) = q} .

Note that when ψ′(0+) ≥ 0, it follows that θ = 0 is the unique solution to ψ(θ) = 0 on

[0,∞). Otherwise, when ψ′(0+) < 0, there exist two solutions: 0 and Φ(0) > 0.

Remark 2.4 (Exponential change of measure). Consider a given SNLP X . For each c ≥ 0,

the process
(
ecXt−ψ(c)t

)
t≥0

is a martingale and we can define the change of measure

dPc

dP

∣∣∣
Ft

= ec(Xt−x)−ψ(c)t, t ≥ 0,

under which X remains to be a SNLP with its Laplace exponent given by

ψc(θ) = ψ(θ + c)− ψ(c), for θ ≥ −c. △

Scale functions are firmly embedded in the study of spectrally negative Lévy processes

and their applications. It is a fundamental aspect in most of known identities concerning

exiting form a half-line and an interval. Below in Definition 2.5 we give the definition

of the scale functions and in Theorem 2.6 one immediate example of a boundary crossing

identity with the application of scale functions is presented. The proofs can be found in [30,

Theorem 8.1].

Definition 2.5 (q−scale function). For a given SNLPX , with Laplace exponentψ, we define

two families of functions indexed by q ≥ 0, W (q) : R → [0,∞) and Z(q) : R → [1,∞), as

follows. For each given q ≥ 0, we have W (q)(x) = 0 when x < 0 and otherwise on [0,∞),

W (q) is a right continuous function and uniquely characterised by

∫ ∞

0

e−βxW (q)(x)dx =
1

Ψ(β)− q
for β > Φ(q).
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Also, for x ∈ R, we have

Z(q)(x) := 1 + q

∫ x

0

W (q)(y)dy.

For convenience we shall always denote W := W (0) and Z := Z(0) with the observation

that Z is equal to 1 for q = 0. Typically we shall refer to the functions W (q) and Z(q) as

q−scale functions while W and Z are usually referred to as just the scale functions. ♢

The behaviour of the scale functions at 0 is of ultimate interest. As shown in [29,

Lemma 3.1],W (q)(0) = 0 if and only ifX has paths of unbounded variation whileW (q)(0) =

1/δ when X has bounded variation.

Theorem 2.6 shows how important scale functions are for studying exit problems. In the

theorem, we write Px and Ex to denote the law of X and its expectation given that X0 = x,

respectively. When x = 0, we simply write P0 = P and E0 = E.

Theorem 2.6 (One- and two-sided exit formulae). Define

τ+a = inf{t ≥ 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}.

(i) For any x ∈ R and q ≥ 0,

E
[
e−qτ

+
x 1{τ+x <∞}

]
= e−Φ(q)x, (2.4)

and

Ex
[
e−qτ

−
0 1{τ−0 <∞}

]
= Z(q)(x)− q

Φ(q)
W (q)(x), (2.5)

where we understand q/Φ(q) in the limiting sense for q = 0.

(ii) For any x ∈ R and q ≥ 0,

Ex
[
e−qτ

+
a 1{τ−0 >τ

+
a }

]
=
W (q)(x)

W (q)(a)
, (2.6)

and

Ex
[
e−qτ

−
0 1{τ−0 <τ

+
a }

]
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
. (2.7)
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Example 2.7 (Cramér-Lundberg process). The surplus for a homogeneous portfolio of in-

surance products held by an insurance company can be modelled by the so-called Cramér-

Lundberg process U = (Ut)t≥0 with

Ut = x+ δt−
Nt∑
i=1

Yi,

where x is the initial capital, δ > 0 denotes the fixed premium rate, (Nt)t≥0 is a Poisson

process with rate λ > 0 describing the number of claims until time t and (Yi)i∈N, repre-

senting the claim sizes, is a sequence of positive, i.i.d. random variables with common law

F , which is also independent of N . Denote its law by Px. We can see that such process U

is nothing more than a compound Poisson process with drift of rate δ and is a special case

of a SNLP. We see that the Lévy measure of U is Π(dx) = λF (−dx). If Yi’s follow an

exponential distribution with parameter ρ > 0, then the Laplace exponent of U is

ψ(z) = δz − λz

ρ+ z
, z ≥ −ρ,

and the q−scale function can be explicitly expressed as

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

e−ζx

ψ′(−ζ)
, x ≥ 0,

where

ζ =
1

2δ

(√
(λ+ q − δρ)2 + 4δqρ− (λ+ q − δρ)

)
,

Φ(q) =
1

2δ

(√
(λ+ q − δρ)2 + 4δqρ+ (λ+ q − δρ)

)
with Φ(q) defined in (2.3) and −ζ being the two solutions to the equation ψ(z) = q. See

e.g. [29, Example 1.3] for details. ◁

2.1.3 Stable process, positive self-similar Markov process and Lam-

perti transform

In this subsection, we shall briefly review definitions and results of stable process and the

so-called positive self-similar Markov process (pssMp). We will also introduce a space-

time transformation, namely the Lamperti transform from [35], through which the bijection
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between the class of pssMp and the class of killed Lévy processes can be expressed.

Definition 2.8 (Stable process). A Lévy process X = (Xt)t≥0 is called a stable process if it

enjoys the scaling property, namely, that when started fromX0 = 0, the process (cXtc−α)t≥0

has the same law as X for any c > 0. ♢

The parameter α ∈ (0, 2] is called the index of X and the case α = 2 corresponds to

Brownian motion, which we exclude. Stable processes can be described in terms of their

Lévy-Khintchine formula as follows: [30, §§1.2.6 and 6.5.3]: σ = 0 and the Lévy measure

Π is absolutely continuous with density given by

c+x
−(α+1)

1{x>0} + c−|x|−(α+1)
1{x<0}, x ∈ R,

where c+, c− ≥ 0 and c+ = c− when α = 1. It holds that a in Theorem 2.2 is equal to

(c+ − c−)/(α − 1) when α ̸= 1 and we specify that a = 0 when α = 1, which ensures that

the symmetric Cauchy process is the only 1−stable process we consider.

When α ∈ (0, 1) ∪ (1, 2), we shall always parameterise the stable process such that

c+ =
Γ(α + 1)

Γ(αρ)Γ(1− αρ)
and c− =

Γ(α + 1)

Γ(αρ̂)Γ(1− αρ̂)
.

where the parameter ρ is called the positivity parameter of X which satisfies ρ = P0(Xt ≥

0), and Γ(·) is the gamma function. For convenience, we write ρ̂ = 1 − ρ. See e.g. [28]

and [45] for more details.

Introduced by [35], a [0,∞)-valued strong Markov process Y is said to be a positive

self-similar Markov process (pssMp) if there exists a constant α > 0 such that, for any

y, c > 0,

the law of (cYc−αt)t≥0 underPy is equal to the law of (Yt)t≥0 underPcy,

where Py is the law of Y when starting from y.

The work of Lamperti [35] provides a bijection between the class of Lévy processes

killed at an independent and exponentially distributed time and the class of positive self-

similar Markov processes, which can be expressed through a straightforward space-time
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transformation; [30, §13] offers a textbook treatment. For t ≥ 0, define

S(t) =

∫ t

0

(Yu)
−α du,

which is continuous and strictly increasing until Y hits zero. Then the process ξ = (ξt)t≥0

with

ξs = log YS−1(t), (2.8)

is a Lévy process. Such real-valued process ξ is often referred to as a Lamperti-Lévy process.

We can equivalently define a process T in terms of ξ as

T (s) =

∫ s

0

exp(αξu)du, s ≥ 0.

Then, for any s ≥ 0,

Ys = exp(ξT−1(s)),

which shows that the Lamperti transform is indeed a bijection between the two classes of

processes.

2.2 Optimal Stopping and Itô’s formula

This section is based on [39] [38] and [43]. We will first exhibit basic results of general

theory of optimal stopping in continuous time, and then review the central results of Itô’s

formula and some extensions of this celebrated formula for later use.

2.2.1 Optimal stopping problems

We will briefly introduce two approaches to solve an optimal stopping problem with one

referred to [38, Corollary 2.9] and the other cited from [43, Theorem 3]. In the following

part of this subsection, we consider a Markov process X = (Xt)t≥0 defined on a filtered

probability space (Ω,F , (Ft)t≥0,P) with values in a state space (E,B). It is assumed that

the paths ofX are right-continuous and left-continuous over stopping times and the filtration

(Ft)t≥0 is right-continuous. Also, we shall use T to denote the set containing stopping times

that are finite a.s. and T to denote the class of all stopping times. Let us first take at the

result from [38] where E = Rd for d ≥ 1.
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Given a measurable function g : E → R satisfying the following condition

E
[
sup
t≥0

|g(Xt)|
]
<∞. (2.9)

Then, we define the optimal stopping problem

v(x) = sup
τ∈T

Ex [g(Xτ )] for x ∈ E, (2.10)

where Ex is the expectation w.r.t the probability measure Px and the supremum is taken over

all F−adapted finite stopping times τ . Due to the Markov property of X , the state space

naturally splits into the so-called continuation set C and the stopping set D = E\C. Thus,

to solve the optimal stopping problem (2.10) requires determining the sets C and D and

finding an (explicit) expression for v. A general definition for C and D based on the fact

that v ≥ g is as follows:

C = {x ∈ E : v(x) > g(x)}

and

D = {x ∈ E : v(x) = g(x)}.

Denote the first entry time τD of X into D as

τD = inf{t ≥ 0 : Xt ∈ D}.

If v is lower semicontinuous and g is upper semicontinuous, then it follows from [38, Corol-

lary 2.9], τD is optimal in (2.10). Further by Remark 2.10 in the same book, if Xt has a limit

X∞ as t → ∞, then T in (2.10) can be replaced by T and τD remains to be optimal, i.e. in

this case, we have

v(x) = sup
τ∈T

Ex [g(Xτ )] = Ex [g (XτD)] , forx ∈ E.

In the work of [43],E is not required to be Rd but simply be a semicompact set.1 Given a

C0-continuous2 function g satisfying (2.9). Then, if the function g is upper semicontinuous,

1A semicompact is a locally separated space with a countable basis.
2The function g(x) is referred to as C0−continuous if Px (lim inft↓0 g(Xt) ≥ g(x)) = 1 and

Px

(
lim supt↓0 g(Xt) ≤ g(x)

)
= 1 hold for x ∈ E.
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the time τD defined above is an optimal stopping time.

2.2.2 Itô’s formula and its extensions

Now we turn our attention to the change of variable formulas. [39, §I, Theorem 54] provides

the change of variable formula for finite variation (FV) processes with continuous paths.

Here, we introduce an extension to FV process with right continuous paths, see e.g. [39,

§II, Theorem 31]. For consistency with the literature we appeal to, we use the notation∫ t
0+

=
∫
(0,t]

to denote the integral over the half-open interval (0, t].

Theorem 2.9 (Change of Variables). Let V be a right continuous FV process, and let f be

such that its derivative f ′ exists and is continuous. Then (f (Vt))t≥0 is an FV process and

f(Vt) = f(V0) +

∫ t

0+

f ′(Vs−)dVs +
∑
0<s≤t

(f(Vs)− f(Vs−)− f ′(Vs−)∆Vs) ,

where ∆Xs = Xs −Xs−.

Theorem 2.9 is a formula for Stieltjes integrals while the famous Itô’s formula below,

which is a generalization of Theorem 2.9, is adaptable for stochastic integrals, see e.g. [39,

§II, Theorem 32].

Theorem 2.10 (Itô’s Formula). Consider a semimartingale X and a C2 real function f .

Then f(X) is also a semimartingale and the following formula holds:

f(Xt) = f(X0) +

∫ t

0+

f ′ (Xs−) dXs +
1

2

∫ t

0+

f ′′ (Xs−) d [X,X]cs

+
∑
0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs} ,

where [X,X] denotes quadratic variation of X and [X,X]c denotes the path-by-path con-

tinuous part of it.

Further, if X is continuous, then the corresponding Itô’s formula for f(X) is simplified

as

f(Xt) = f(X0) +

∫ t

0+

f ′ (Xs) dXs +
1

2

∫ t

0+

f ′′ (Xs) d [X,X]s .
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Chapter 3

Optimal stopping for Omega-killed

stable process

3.1 Introduction

Consider a stable Lévy process X with index α ∈ (0, 2) starting at X0 = x ∈ R \ {0}, to

which we introduce a state-dependent killing, occuring at rate ω(Xt) at time t, where

ω(x) =

 k(−x)−α, x < 0

0, x ≥ 0.

for some parameter k > 0. In line with the actuarial literature, X may be regarded as the

wealth of a company, and the killing is known as an Omega-clock. Since killing occurs at

positive rate only when X is negative, it can be interpreted as a bankruptcy event for the

company. Recall that the random killing time is denoted by T in(1.1). We are interested in

solving the optimal stopping problem

v(x) = sup
τ

Ex
[
g(Xτ )1{τ<T}

]
, (3.1)
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where the supremum is over all stopping times τ for the natural enlarged filtration generated

by X (see [12, Definition 1.3.38]), and

g(x) =

 (xr −K)+, x ≥ 0

0, x < 0,

for some r ∈ R \ {0} and K > 0. Note that at time T , a bankruptcy event happens and the

asset is then not worth anything. So we set g(XT ) = 0 and together with the independence

of e in (1.1), (3.1) is consistent with (1.2).

The main result of this work is the following theorem, which we initially present only in

its broad strokes.

Theorem 3.1. There exists max(0, α − 1) < δ < min (αρ, αρ̂), uniquely characterised

in terms of the parameters of the stable process and the killing coefficient k, such that the

following holds.

1. When 0 < r < δ, the solution of the optimal stopping problem (3.1) is given by the

upwards first passage time

τ ∗ := inf{t ≥ 0 : Xt ≥ b∗},

where b∗ can be found explicitly.

2. When −(δ−α+1) < r < 0 and α ≤ 1, the solution of the optimal stopping problem

(3.1) is given by the first entrance time

τ ∗ := inf

{
t ≥ 0 : 0 < Xt ≤

1

b∗

}

where b∗ can again be found explicitly.

3. When r < −(δ − α + 1) or r > δ, v(x) = ∞ for all x.

In both instances, the quantity b∗ can be found in terms of the parameters of the stable

process, the killing parameter k and the strike K, and there is an explicit expression for

δ. The full version of this result appears as Theorem 3.15, once we have introduced the

necessary notation.
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The problem (3.1) is similar to a perpetual American option on the Omega-killed pro-

cess. American option optimal stopping problems have been studied widely, which are usu-

ally linked to the first passage problem of a Lévy process. Most of the existing research set

the underlying price process as a particular type of Lévy process, such that explicit solutions

can be achieved. Remarkably, [37] provided a closed formula for the price of a perpetual

American call option under a general Lévy process with constant killing rate, in terms of

the overall supremum of it. Part of our setting for the problem is inspired by [40], which

takes an in-depth look at the optimal stopping of an American call option under Omega-

killed spectrally negative Lévy models, where the shape of the value function and optimal

stopping strategies are provided for different choice of clock parameter. They show that

certain parameters would result in the optimality of traditional up-crossing strategies while

for other cases, two-sided exit strategies are the optimal choice. Unlike [40] where the un-

derlying is an exponentiated Lévy process, our price process is a stable process which has

two-sided jumps. Our main idea to solve the problem is to create a positive self-similar

Markov process as the transfer station for the problem so that the solution to (3.1) can be

achieved by solving the corresponding optimal stopping problem for a double hypergeomet-

ric Lévy process, which involves the application of Lamperti transform as well. Some of

the terminologies we use are similar to [8] where an optimal prediction problem for positive

self-similar Markov processes is studied.

The remaining part of the chapter is structured as follows. In Section 3.2, we construct,

from the stable process, a Markov process called the killed path-censored stable process,

which will be proved to be a positive self-similar Markov process by Proposition 3.2. Then,

we introduce and apply the Lamperti transform to generate a Lévy process, the path structure

and characteristic exponent of which will be studied. In Section 3.3, we show that the Lévy

process defined in Section 3.2 belongs to the so-called double hypergeometric class and

solves the related optimal stopping problem. Finally, Section 3.4 provides the proof of the

main results for this chapter with some auxiliary results presented as well. We add Section

3.5 at last to give a remark on a similar optimal stopping problem while the payoff function

is of American put option style.
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3.2 The killed path-censored stable process and its Lam-

perti transform

Since the gain function g in the optimal stopping problem (3.1) is zero on (−∞, 0), it is

natural to consider removing the path sections of X where it is negative. In this section,

we will show that this gives rise to a positive self-similar Markov process, and identify its

distribution using the Lamperti transform.

LetX be a stable process defined on a filtered probability space (Ω,F ,F = (Ft)t≥0 ,P)

where F is the natural enlarged filtration generated by X . X is parametrised by (α, ρ), that

belongs to the following set of admissible parameters:

Ast = {(α, ρ) : α ∈ (0, 1), ρ ∈ (0, 1)}

∪ {(α, ρ) : α ∈ (1, 2), ρ ∈ (1− 1/α, 1/α)} ∪ {(α, ρ) = (1, 1/2)} ,

which encompasses (up to a multiplicative factor) all stable processes with the exception of

Brownian motion, processes jumping only in one direction and symmetric Cauchy processes

with non-zero drift. We write Px for the law of the process started from x, and we will retain

this notation for other stochastic processes wherever this is unambiguous.

Define the positive continuous additive functional

χt =

∫ t

0

ω(Xs) ds, t ≥ 0,

where ω is as defined in the introduction. Note that though we require that the killing

coefficient k is positive for our main results, in fact many of the intermediate results in

Sections 3.2 and 3.3 also work when k = 0. Accordingly, we will give some remarks about

this case along the way. Let e be an exponential random variable of rate 1, independent of

X , and consistent with (1.1), the omega-clock killing time is defined by

T = inf{t ≥ 0 : χt > e}.

The Omega-killed stable process is given by

X†
t = Xt1{t<T}, t ≥ 0.
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We note that here, 0 functions as a cemetery state for X†, which is a common convention

with pssMps.

The role of 0 deserves special attention. Write T0 = inf{t ≥ 0 : Xt = 0} for its

hitting time. When α ≤ 1, the process X cannot hit zero, whereas when α > 1, T0 is

finite almost surely. However, one can also show that, if k > 0, χT0 = ∞, which implies

that X† is always killed before reaching zero. Moreover, regardless of the value of α, when

the process X is started from zero it is killed immediately, and so we can regard 0 as an

absorbing state for X†; this is consistent with the convention for pssMps mentioned above.

In the case k = 0, one should replace X† with the definition X† = Xt1{t<T∧T0} to ensure

that the state 0 is absorbing.

Let C = (Ct)t≥0 be given by

Ct =

∫ t

0

1{X†
s≥0}ds, t ≥ 0,

and call its right-continuous inverse C−1. C counts the time that X† spends above 0. The

killed path-censored stable process Y is the stochastic process

Yt = X†
C−1

t

, t ≥ 0.

The effect of the Markov time-change C−1 is to erase the negative components of X† and

glue the non-negative parts together at the endpoints, up until the time that X† is killed

during one of these negative components.

When k = 0, Y is the path-censored stable process defined in [33], and indeed many of

the arguments below are analogous to ones in that work. However, the presence of killing

when k > 0 introduces some interesting novel features.

Proposition 3.2. The process Y is a positive self-similar Markov process with respect to the

filtration F ◦ C−1 = (FC−1
t
)t≥0.

Proof. The fact that the Markov property holds is a general fact about time-changed Markov

processes [41, §III.21]. We prove the scaling property in two steps: first, we show that X†

is self-similar, and then that Y inherits this property.

1) X† is self-similar; that is, the scaling property introduced in Definition 2.8 applies to

it.
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Fix c > 0. Let X̃t = cXtc−α and define the rescaled process χ̃ as

χ̃t =

∫ t

0

ω(X̃s) ds =

∫ t

0

kc−α (−(Xc−αs))
−α
+ ds

=

∫ c−αt

0

k(−Xu)
−α
+ du

= χc−αt

Let T̃ = inf{t : χ̃t > e} = cαT . The scaling property of X† now follows, using in

the third line the scaling of X:

under Px, (cX†
c−αt)t≥0 =

(
cXc−αt1{c−αt<T}

)
t≥0

=
(
X̃t1{t<T̃}

)
t≥0

d
=
(
Xt1{t<T}

)
t≥0

= X† under Pcx.

2) Y is self-similar.

Let C̃ be the functional C applied to the process (cX†
tc−α)t≥0; a calculation similar to

the one above yields that C̃−1
t = cαC−1

c−αt. We deduce the scaling property of Y :

under Px, (cYc−αt)t≥0 =

(
cX†

C−1

c−αt

)
t≥0

=
(
cX†

c−αC̃−1
t

)
t≥0

d
=
(
X†
C−1

t

)
t≥0

= Y under Pcx,

where we used step 1 in the third equality.

Since Y evidently has state space [0,∞), this completes the proof.

Our next aim is to obtain the characteristic function of the Lamperti-Lévy process ξ

introduced in subsection 2.1.3, using the structure of Y in terms of gluing path sections of

X†.

Define a stopping time

τ−0 = inf{t ≥ 0 : Xt < 0},

that the stable processX passes below zero for the first time. We will denote the first ‘gluing
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time’ of Y by σ0; in fact, σ0 = τ−0 , but the latter notation would be misleading for Y , since

it actually stays positive at this time.

Lemma 3.3. For any x > 0, the joint law of (Yσ0 , Yσ0−) under Px is equal to that of

(xYσ0 , xYσ0−) under P1.

Proof. The proof is very similar to [45, Lemma 3.5], but as the situation is slightly different,

we include it for completeness. Fix c > 0 and define the two rescaled processes (X̃t)t≥0 by

X̃t = cXc−αt and (Ỹt)t≥0 by Ỹt = cYc−αt. Let τ̃−0 = inf{t ≥ 0 : X̃t < 0} and introduce σ̃0

which is the same as τ̃−0 but under the sight of process Y . Then,

cατ−0 = inf{cαt : t ≥ 0, Xt < 0} = inf{t ≥ 0 : cXc−αt < 0} = τ̃−0 .

This implies that cασ0 = σ̃0 which further gives that for every c, x > 0, the measures

Px(Yσ0 ∈ ·) and Pcx(c−1Yσ0 ∈ ·) are equal. The lemma follows by setting c = 1/x.

Denote by p the killing probability of Y at each gluing event, namely

p = Px (Yσ0 = 0) ,

which we assert is independent of x. The following lemma gives the explicit expression for

p.

Lemma 3.4 (Killing probability). The killing probability p is given by

p =
k

c+/α + k
.

Proof. Recall that T is the time at which X† is killed, and so CT is the killing time of Y .

Let R = inf{t > τ−0 : Xt ≥ 0}, the first return time of X above zero. In these terms,

p = Px(T ≤ R).

Consider the dual process X̂ with distribution −X , which is still a stable process (with

different parameters.) Let X̂∗ denote the process X̂ sent to zero at the first time it passes

below zero. It is well-known [14] that the Lamperti transform of the pssMp X̂∗ is killed at

exponential time of rate c+/α, regardless of the value of X̂∗
0 , and said killing time corre-

sponds (through the Lamperti time-change) to the first time that X̂ passes below zero.
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Writing T̂ for the Lamperti time-change applied to X̂ , and as usual denoting by eµ an

exponential random variable with parameter µ independent of everything else, we have the

following calculation:

Px(R < T ) = P−X
τ−0

(
T̂ (ec+/α) < χ−1(e)

)
= P−X

τ−0

[(∫ ·

0

(X̂u)
−αdu

)−1

(ec+/α) <

(∫ ·

0

k(X̂u)
−αdu

)−1

(e)

]

= P−X
τ−0

[(∫ ·

0

(X̂u)
−αdu

)−1

(ec+/α) <

(∫ ·

0

(X̂u)
−αdu

)−1

(ek)

]

=
c+
α

c+
α
+ k

.

Thus, the killing probability is

p = 1− Px(R ≤ T ) =
k

c+/α + k
.

This completes the proof.

Let us use X∗ to denote the stable process killed on exiting [0,∞), with the associated

Lévy process in the Lamperti representation as described in (2.1.3) by ξ∗, whose characteris-

tic exponent is shown in [14]. Together with the results above, we analyze the path structure

of ξ and then present the explicit expression for its Wiener-Hopf factorisation.

Proposition 3.5 (Structure of ξ). The Lévy process ξ is the sum of two independent Lévy

processes ξ1 and ξ2, which are characterised as follows:

1. The Lévy process ξ1 has characteristic exponent

Ψ1(θ) = Ψ∗(θ)− c−
α
, θ ∈ R,

where Ψ∗ is the characteristic exponent of the process ξ∗.

2. The process ξ2 has has characteristic exponent

Ψ2(θ) = (1− p)Ψcpp(θ) + p
c−
α
,

where p = k
c+/α+k

is the killing probability and Ψcpp is the characteristic exponent of
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ξc, a compound Poisson process with jump rate c−/α, which is expressed as

Ψcpp(θ) =
c−
α

(
1− Γ(1− αρ+ iθ)Γ(αρ− iθ)Γ(1 + iθ)Γ(α− iθ)

Γ(αρ)Γ(1− αρ)Γ(α)

)
,

for θ ∈ R.

Proof. The proof is identical to that of Proposition 3.4 in [33] where the path-censored

process is defined by |Xt|1{t<T0} for t ≥ 0. In our problem, ξ is generated from a killed path-

censored stable process due to the existence of the Omega clock. Hence, the proposition will

be proved once we show that ξ is the sum of a process with the law of ξ1 and a killed process

ξ2, which follows a similar step as in [33].

The structure of ξ gives the characteristic exponent of ξ. To give the explicit expression,

we require the following result.

Lemma 3.6. Let

δ =
1

2

(
α− 1

π
arccos

(
p cos π(αρ− αρ̂) + (1− p) cosπα

))
.

Then, δ uniquely satisfies the conditions

max(0, α− 1) ≤ δ < min(αρ, αρ̂) (3.2)

and

(1− p) sinπαρ sin παρ̂ = sinπ(αρ− δ) sinπ(αρ̂− δ). (3.3)

The lower bound in (3.2) holds with equality if and only if k = 0.

Proof. Using product-to-sum identities, condition (3.3) can be rewritten as follows:

(1− p)
(
cos π(αρ− αρ̂)− cosπα

)
= cosπ(αρ− αρ̂)− cos πs

cos(πs) = p cosπ(αρ− αρ̂) + (1− p) cosπα, (3.4)

where s = 2(α/2−δ), and the inequalities (3.2) are equivalent to max(αρ−αρ̂, αρ̂−αρ) <

s ≤ min(α, 2− α).

We divide our analysis into two cases depending on the value of α. When α ∈ (0, 1], we
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have that −α < αρ− αρ̂ < α. If ρ ≥ 1/2, then taking

s =
1

π
arccos

(
p cos π(αρ− αρ̂) + (1− p) cosπα

)
yields 0 < αρ − αρ̂ < s ≤ α ≤ 1. Moreover, this is the unique value of s in the interval

specified which satisfies (3.4). The analysis is similar when ρ < 1/2.

On the other hand, when α ∈ (1, 2), we have instead α − 2 < αρ − αρ̂ < 2 − α. If

ρ ≥ 1/2, then taking s as above gives 0 < αρ−αρ̂ < s ≤ 2−α < 1; again, the uniqueness

argument and the case ρ < 1/2 are similar.

We note some special cases of the previous result: when k = 0, we have p = 0, and then

δ = 0 when α ≤ 1 and δ = α− 1 when α > 1. This case is simply the path-censored stable

process, with no killing, and many further calculations also simplify. When p = 1, which is

not part of our parameter set but corresponds formally to k = ∞, that is, immediate killing

when X goes below zero, we have δ = min(αρ, αρ̂). When ρ = 1/2, the symmetric case,

we have δ = 1
2

(
α− 1

π
arccos

(
p+(1−p) cosπα

))
= α

2
− 1

π
arcsin

(√
1− p sin(πα/2)

)
; this

calculation corresponds to the one cited in [32] for the process denoted there Y ♮.

The following result was announced, without proof, in [32] when ρ = 1
2
.

Corollary 3.7. The characteristic exponent of ξ is expressed as

Ψ(θ) =
Γ(α− iθ)Γ(αρ− iθ)Γ(1 + iθ)Γ(1− αρ+ iθ)

Γ(α− δ − iθ)Γ(δ − iθ)Γ(δ + 1− α + iθ)Γ(1− δ + iθ)
(3.5)

Proof. The beginning of the proof resembles that of [33, Theorem 5.3], but it then diverges

due to the killing. By Proposition 3.5 above, we know that the characteristic exponent of ξ

can be expressed as:

Ψ(θ) = Ψ∗(θ) + (1− p)Ψcpp(θ)− (1− p)
c−
α

=
Γ(α− iθ)Γ(1 + iθ)

Γ(αρ̂− iθ)Γ(1− αρ̂+ iθ)

+ (1− p)
c−
α

− (1− p)
c−
α

Γ(1− αρ+ iθ)Γ(αρ− iθ)Γ(α− iθ)Γ(1 + iθ)

Γ(αρ)Γ(1− αρ)Γ(α)

− (1− p)
c−
α

= Γ(α− iθ)Γ(1 + iθ)
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×
[

1

Γ(αρ̂− iθ)Γ(1− αρ̂+ iθ)
− (1− p)

Γ(αρ− iθ)Γ(1− αρ+ iθ)

Γ(αρ)Γ(1− αρ)Γ(αρ̂)Γ(1− αρ̂)

]
=

1

π2
Γ(α− iθ)Γ(1 + iθ)Γ(αρ− iθ)Γ(1− αρ+ iθ)

× [sin π(αρ− iθ) sinπ(αρ̂− iθ)− (1− p) sinπαρ sin παρ̂] , (3.6)

where we use the expression for c− in the third equation and apply the reflection formula to

the forth equality.

Applying (3.3) gives that

sin π(αρ− iθ) sinπ(αρ̂− iθ)− (1− p) sinπαρ sin παρ̂

=
1

2

[
cosπ(αρ− αρ̂)− cosπ(α− 2iθ)− cos π(αρ− αρ̂) + cos π(α− 2δ)

]
= sinπ(α− δ − iθ) sinπ(δ − iθ)

=
π2

Γ(α− δ − iθ)Γ(1− α + δ + iθ)Γ(δ − iθ)Γ(1− δ + iθ)
, (3.7)

using product-to-sum and sum-to-product identities followed by the reflection formula.

Substituting (3.7) into (3.6) yields the expresssion in (3.5).

3.3 Optimal stopping problems for the Lamperti-Lévy pro-

cess ξ

Having identified the pssMp Y via its Lamperti transform ξ, we are in a position to solve a

related optimal stopping problem for the latter process, which we will later translate into a

solution to the original problem.

The solution to the optimal stopping problem for ξ will rely on the Wiener-Hopf factori-

sation of Lévy processes, which can briefly be described as follows. If Ψ is the characteristic

exponent of a Lévy process ξ which is killed at rate q ≥ 0, then there exists a unique fac-

torisation of Ψ of the form

Ψ(θ) = κ(q,−iθ)κ̂(q, iθ), θ ∈ R, (3.8)

where κ(q, ·) and κ̂(q, ·) are Laplace exponents of two (possibly killed) subordinators, known
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as the ascending and descending ladder height processes. We say that ϕ is the Laplace ex-

ponent of a subordinator H if Ee−λHt = e−tϕ(λ), and κ and κ̂ are called the Wiener-Hopf

factors of Ψ (or of ξ.)

These subordinators describe the way that ξ makes new maxima and minima, which

goes some way to explaining their utility in the context of this problem.

Our first goal in this section is to characterise ξ by identifying it as a double hyperge-

ometric Lévy process. This is a recently defined class of processes with explicit Wiener-

Hopf factorisation. The process ξ is the second known example of a double hypergeomet-

ric process found ‘in the wild’, the other being the ricocheted stable process described by

Budd [13].

3.3.1 Identification of the Lamperti transform ξ

Double hypergeometric processes, introduced in [32], are a family of Lévy processes with

known Wiener-Hopf factorisation. The class can be characterised as follows. Let O be the

set of all (a, b, c, d) ∈ [0,∞)4 satisfying one of

1. For some n ∈ N ∪ {0}, c+ n ≤ a+ n ≤ d ≤ b ≤ c+ n+ 1, or

2. For some n ∈ N, a+ n− 1 ≤ c+ n ≤ b ≤ d ≤ a+ n.

When (a, b, c, d) ∈ O , the function

B(a, b, c, d;λ) :=
Γ(λ+ a)Γ(λ+ b)

Γ(λ+ c)Γ(λ+ d)
, Reλ ≥ 0,

is the Laplace exponent of a subordinator.

Moreover, it is shown in [32, Corollary 2.2] that, when (a, b, c, d), (â, b̂, ĉ, d̂) ∈ O , the

function

Ψ(θ) = B(a, b, c, d;−iθ)B(â, b̂, ĉ, d̂; iθ), θ ∈ R,

is the characteristic exponent of a Lévy process in the double hypergeometric class.

Lemma 3.8. The process ξ is a double hypergeometric Lévy process with parameters

a = αρ, b = α, c = δ, d = α− δ,
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and

â = 1− αρ, b̂ = 1, ĉ = δ + 1− α, d̂ = 1− δ.

Accordingly, the Wiener-Hopf factors of ξ are

κ(q, z) =
Γ(αρ+ z)Γ(α + z)

Γ(δ + z)Γ(α− δ + z)
, (3.9)

and

κ̂(q, z) =
Γ(1− αρ+ z)Γ(1 + z)

Γ(δ + 1− α + z)Γ(1− δ + z)
, (3.10)

where

q =
Γ(αρ)Γ(α)Γ(1− αρ)

Γ(δ)Γ(α− δ)Γ(δ + 1− α)Γ(1− δ)
=
c−
α

k

k + c+
α

.

Proof. The interval for δ given in (3.2) implies that both (a, b, c, d) and (â, b̂, ĉ, d̂) satisfy

condition 1 for membership of O , with n = 0.

It follows from Corollary 2.2 in [32] that the Lévy process ξ with characteristic exponent

Ψ(θ) = B(a, b, c, d;−iθ)B(â, b̂, ĉ, d̂; iθ),

=
Γ(αρ− iθ)Γ(α− iθ)Γ(1− αρ̂+ iθ)Γ(1 + iθ)

Γ(δ − iθ)Γ(α− δ − iθ)Γ(δ + 1− α + iθ)Γ(1− δ + iθ)

exists as a member of the double hypergeometric class. Comparing with (3.5) shows that this

identifies our process ξ, and the result of [32] yields the stated Wiener-Hopf factorisation.

When k = 0, the process ξ is a hypergeometric Lévy process in the simple (α ≤ 1) or

extended (α > 1) class, as described in [33, §5]. The expressions given in the above result

for its Wiener-Hopf factors remain valid in this case, though they can be simplified further.

3.3.2 The solution for a perpetual call option

In this part, we derive the solutions for the optimal stopping problem

w(y) = sup
σ∈SG

Ey
[(
erξσ −K

)+]
, (3.11)

where r ∈ R, and SG indicates the set of all stopping times with respect to G = (Gt)t≥0,

the natural enlarged filtration of ξ. This is a perpetual American call option in which the
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underlying is the process erξ, and has been addressed in [37].

The Wiener-Hopf factors κ and κ̂ of ξ appear as components in the solution. We note

that κ(q, z) is a well-defined holomorphic function for Re z > −αρ, and the same applies

to κ̂(q, z) for Re z > αρ− 1.

Theorem 3.9. Consider the optimal stopping problem (3.11).

1. When 0 < r < δ, the solution is given by

w(y) =
1

E[erξ̄ζ ]
E
[(
er(y+ξζ) −KE

[
erξζ
])+]

, (3.12)

where ζ is an exponential random variable with parameter q, independent of ξ and

ξt = sup0≤s≤t ξs with E
[
erξζ
]
= κ(q,0)

κ(q,−r) . The optimal stopping time is given by

σ∗ = inf{t ≥ 0 : ξt ≥ c∗}

where

c∗ =
1

r
logK

κ(q, 0)

κ(q,−r)
.

2. When −(δ + 1− α) < r < 0, the solution is given by

w(y) =
1

E[erξζ ]
E
[(
e
r(y+ξ

ζ
) −KE

[
e
rξ

ζ

])+]
(3.13)

where ξ
t
= inf0≤s≤t ξs with E

[
e
rξ

ζ

]
= κ̂(q,0)

κ̂(q,r)
. The optimal stopping time is given by

σ∗ = inf{t ≥ 0 : ξt ≤ −c∗}

where

c∗ =
1

|r|
logK

κ̂(q, 0)

κ̂(q, r)
.

3. When r > δ or r < −(δ + 1− α), w(y) = ∞ for all y.

Proof. Theorem 1 in [37] provides a solution for the valuation of the perpetual American

call option for a general Lévy process, expressed in terms of the moment generating function

of its supremum. The proof follows from an application of this result, the main prerequisite

for which is to check the inequality Eerξ1 < 1.
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1. Take r > 0. Condition Eerξ1 < 1 is equivalent to Ψ(−ir) < 0, where Ψ is the

characteristic exponent of the killed Lévy process ξ.

The first zero of Ψ(−ir) occurs at δ, and so in this case Eerξ1 < 1 if and only if

0 < r < δ.

The value function w is now expressed in terms of the moment generating function

of the overall supremum of rξ, which is given by [30, Theorem 6.15] in terms of the

Wiener-Hopf factor:

E
[
erξζ
]
=

κ(q, 0)

κ(q,−r)
.

The result follows from [37].

2. Take now r < 0. In this case, Eerξ1 < 1 if and only if 0 < −r < δ + 1 − α. Since

r < 0, the value function is expressed in terms of

E[erξζ ] =
κ̂(q, 0)

κ̂(q, r)
,

and the result again follows from [37].

3. In this case, it holds that E[erξ1 ] > 1, and so the result follows from [37, Theorem 1(c)

and (d)], where Mordecki shows that arbitrarily large values can be obtained by stop-

ping at deterministic times.

In mathematics, the ordinary hypergeometric function 2F1(a, b; c; z) is a special func-

tion represented by the hypergeometric series. We can express the (3.11) in terms of this

particular function as below.

Corollary 3.10. Let 0 < r < δ. We can express

w(y) = κ(q,−r)
∫ ∞

0

(
er(y+z) −K

κ(q, 0)

κ(q,−r)

)+

u(z) dz,

where

u(x) =
1

Γ(αρ)
e−δx(1− e−x)αρ−1

2 F1(δ − αρ̂, δ, αρ, 1− e−x), x ≥ 0,

and 2F1 is the hypergeometric function.
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Proof. The random variable ξ̄ζ has Laplace transform given by

λ 7→ κ(q, 0)

κ(q, λ)
, Reλ ≥ −δ,

and the double beta subordinator with Laplace exponent κ(q, ·) has a renewal density u

whose Laplace transform is given by λ 7→ 1
κ(q,λ)

. The function u is the convolution of the

two functions

u1(x) =
1

Γ(δ)
e−(α−δ)x(1− e−x)δ−1, x ≥ 0, and

u2(x) =
1

Γ(αρ− δ)
e−δx(1− e−x)αρ−δ−1, x ≥ 0,

which are the renewal densities of Lamperti-stable subordinators corresponding, respec-

tively, to the Laplace exponents λ 7→ Γ(αρ+λ)
Γ(δ+λ)

and λ 7→ Γ(α+λ)
Γ(α−δ+λ) . Computing the convolu-

tion of u1 and u2 yields the expression in the statement.

A different expression for u appears in [32, Theorem 2.1], but in our particular parameter

regime the one given above is simpler.

3.4 Solution of the optimal stopping problem

Now we have studied the characters and optimal stopping problem for the Lamperti-Lévy

process and we need to transform the results for our original problem (3.1). Before giving

our main result, which will encompass Theorem 3.1, we provide the following auxiliary

results. In this section we return to the assumption k > 0.

Since we need to work with several filtrations and their associated stopping times, we

introduce in this section the notation SH, the set of stopping times associated with some

naturally enlarged filtration H.

Lemma 3.11. For x > 0, it holds that

Ex
[
sup
t≥0

g (Xt)1{t<T}

]
= Elog x

[
sup
s≥0

g
(
eξs
)]
.

Further, when r ∈ (−(δ + 1− α), δ) \ {0}, Ex
[
supt≥0 g (Xt)1{t<T}

]
<∞.
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Proof. We begin by observing that the supremum of supt≥0 g(Xt)1{t<T} can only occur at

a time when X is positive. Since the time-change by C−1, which yields Y , does not remove

any such times, we see that

Ex
[
sup
t
g(Xt)1{t<T}

]
= Ex

[
sup
t
g(Yt)1{t<C(T )}

]
. (3.14)

Given a path of Y starting at x, the corresponding path of ξ starts at log x and is a determin-

istic space and time transformation, which implies that

Ex
[
sup
t
g(Yt)1{t<C(T )}

]
= Elog x

[
sup
s
g(erξs)

]
, (3.15)

and this gives the first claim in the statement.

For the second claim, we recall that by Theorem 1(a) in [37], E0

[
sups e

rξs
]
<∞ is true

if E0

[
erξ1
]
< 1 holds, and as outlined in the proof of Theorem 3.9, this can be reduced to

the condition that −(δ + 1− α) < r < δ. This completes the proof.

Lemma 3.12. When r ∈ (−(δ + 1− α), δ) \ {0}, it holds that for x < 0,

Ex
[
sup
t≥0

g (Xt)1{t<T}

]
<∞.

Proof. Denote τ+0 = inf{t ≥ 0 : Xt ≥ 0}. Then, for all x < 0,

Ex
[
sup
t≥0

g (Xt)1{t<T}

]
= Ex

[
sup
t≥0

g
(
X†
t

)]
= Ex

[
sup
t≥0

g
(
X†
t

)
1{τ+0 <T}

]
≤ Ex

[
EX

τ+0

[
sup
t≥0

g
(
X†
t

)]]
.

Further, the inner expectation can be expressed using the scaling property as

Ey
[
sup
t≥0

g(X†
t )

] ∣∣∣∣∣
y=X

τ+0

= E1

[
sup
t≥0

g(y ·X†
t )

] ∣∣∣∣∣
y=X

τ+0

= yrE1

[
sup
t≥0

g(X†
t )

] ∣∣∣∣∣
y=X

τ+0

.
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We know from Lemma 3.11 that E1

[
supt≥0 g(X

†
t )
]
< ∞. Hence, it remains to show that

Ex
[(
Xτ+0

)r]
<∞ for x < 0.

Based on the result in [42], we have for x < 0,

Ex
[(
Xτ+0

)r]
=

∫ ∞

0

yr
sin παρ

π
(−x)αρy−αρ(y − x)−1 dy

=
sin παρ

π
(−x)αρ

∫ ∞

0

yr−αρ(y − x)−1 dy.

By the condition on δ in (3.2), it holds that

r − αρ > −1 and r − αρ− 1 < −1,

which follows that
∫∞
0
yr−αρ(y − x)−1 dy <∞.

This completes the proof.

Based on the lemmas above, we have a theorem as following.

Theorem 3.13. When 0 < r < δ, there exists a set D ⊂ (0,∞) such that

τD := inf{t ≥ 0 : Xt ∈ D}

is an optimal stopping time in (3.1).

Proof. Consider a 2-dimensional optimal stopping problem defined as

V (x, a) = sup
τ∈SF

Ex,a [G(Xτ , χτ )] , (3.16)

where G(x, a) = e−ag(x) and we note that the bivariate process (X,A) with state space

R× [0,∞) is Markovian with respect to the natural enlarged filtration F of X . The notation

here is that Ex,a[F (Xt, χt)] := Ex[F (Xt, χt + a)] for any measurable bounded F . This is

equivalent to the problem (3.1), but viewed from a 2-dimensional perspective.

Let

S = {(x, a) : V (x, a) = G(x, a)} = {(x, a) : V (x, 0) = g(x)}.

According to [38, Corollary 2.9 and Remark 2.10], the first entrance time τS of (X,χ) into

S is optimal for (3.16) when the following four points are verified.
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1) Ex,a [suptG(Xt, χt)] <∞.

Lemma 3.11 tells that Ex
[
supt g(Xt)1{t<T}

]
<∞. Also, we have

Ex
[
sup
t≥0

g(Xt)1{t<T}

]
≥ Ex

[
sup
t≥0

g(Xt)E
[
1{t<T} |Ft

]]
= Ex

[
sup
t≥0

e−χtg(Xt)

]
≥ Ex,a

[
sup
t≥0

e−χtg(Xt)

]
,

where we apply the tower property in the first line. Thus, for all x ∈ R and a ≥ 0,

Ex,a [suptG(Xt, χt)] <∞.

2) G is upper semicontinuous.

In fact, G is even continuous, and hence automatically upper semicontinuous.

3) V is lower semicontinuous.

Fix (x, a) and, for ϵ > 0, let τϵ be some stopping time satisfying

Ex,a [G(Xτϵ , χτϵ)] ≥ V (x, a)− ϵ. (3.17)

Let {(xn, an) ; n ≥ 0} be any sequence which converges to (x, a) when n tends to

infinity. Then,

V (xn, an) ≥ Exn,an [G (Xτϵ , χτϵ)] = E
[
G
(
xn +Xτϵ , an + χ(xn)

τϵ

)]
, (3.18)

where E = E0,0 and

χ
(x)
t =

∫ t

0

ω(Xs + x)ds.

Applying Fatou’s lemma in (3.18) gives

lim inf
n→∞

V (xn, an) ≥ E
[
lim inf
n→∞

G
(
xn +Xτϵ , an + χ(xn)

τϵ

)]
, (3.19)

We consider G(xn+Xτϵ , an+χ
(xn)
τϵ ) pathwise, and look at two cases. First, if Xs− +

x ̸= 0 and Xs + x ̸= 0 for s ∈ [0, τϵ], then |Xs + x| > c for s ∈ [0, τϵ] for some

positive (path-dependent) constant c. From this it follows that, for sufficiently large

n, |Xs + xn| > c also holds. This gives the bound ω(xn + Xs) ≤ kc−α, and by the
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dominated convergence theorem, we have

lim inf
n→∞

χ(xn)
τϵ = χ(x)

τϵ

which gives

lim inf
n→∞

G
(
xn +Xτϵ , an + χ(xn)

τϵ

)
= G

(
x+Xτϵ , a+ χ(x)

τϵ

)
.

If, on the other hand, there exists s ≤ τϵ such that Xs− + x = 0 or Xs + x = 0,

which can only occur if α > 1 since otherwise points are polar for X [10, §VIII], then

χ
(x)
τϵ = ∞, and we have that

lim inf
n→∞

e−χ
(xn)
τϵ ≥ 0 = e−χ

(x)
τϵ .

From this it again follows that

lim inf
n→∞

G
(
xn +Xτϵ , an + χ(xn)

τϵ

)
≥ G

(
x+Xτϵ , a+ χ(x)

τϵ

)
.

This analysis together with (3.19) gives us

lim inf
n→∞

V (xn, an) ≥ E
[
G
(
x+Xτϵ , a+ χ(x)

τϵ

)]
.

Finally, applying (3.17) and letting ϵ→ 0, we have

lim inf
n→∞

V (xn, an) ≥ V (x, a),

which means that function V is lower semi-continuous.

4) limt→∞G(Xt, χt) exists and equals zero.

We calculate

lim
t→∞

G(Xt, χt) = lim
t→∞

e−χtg(Xt)

= lim
t→∞

E
[
1{t<T}g(Xt) |F∞

]
= E

[
lim
t→∞

1{t<T}g(Xt) |F∞

]
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= 0,

where the third equality results from the dominated convergence theorem, applicable

due to Lemma 3.11. It then follows that limt→∞G(Xt, χt) = 0.

We have concluded, by Remark 2.10 in [38], that τS is optimal for the two-dimensional

problem (3.16). If we define

D = {x : V (x, 0) = g(x)},

then it immediately follows that τD is optimal for the equivalent problem (3.1).

To show that D may be chosen as a subset of (0,∞), set D′ = D ∩ (0,∞), and then

consider the following calculation:

Ex[g(XτD)1{τD<T}] = Ex[g(XτD)1{τD<T}1{XτD
>0}] + Ex[g(XτD)1{τD<T}1{XτD

≤0}]

= Ex[g(XτD′ )1{τD′<T}1{τD=τD′}] + 0

≤ Ex[g(XτD′ )1{τD′<T}].

Hence, if D ̸⊂ (0,∞), we can replace it with D′ and obtain at least as good a value; indeed,

since τD is optimal, the values obtained from τD and τD′ must be equal.

Theorem 3.14. When −(δ+1−α) < r < 0 and α ≤ 1, there exists a set D ⊂ (0,∞) such

that

τD := inf{t ≥ 0 : Xt ∈ D}

is an optimal stopping time in (3.1).

Proof. We use a different way compared with Theorem 3.14 to prove the argument, which

mainly refers to [43, Theorem 3].

As we have mentioned in Section 3.2, when α ≤ 1, it holds that T0 = ∞ a.s., which

means that we can treat X as having state space E = R \ {0}. Hence, g(x) is continuous on

E.

Then by [43, Theorem 3], it follows that τD is optimal for (3.1) with

D = {x : v(x) = g(x)},
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and the argument of D ⊂ (0,∞) can be achieved via the same way as in Theorem 3.14.

Our main result, which implies the version given in the introduction, is as follows. Recall

that T is the killing time of the process X .

Theorem 3.15. Let x ∈ R\{0}. The solution of the optimal stopping problem (3.1) is given

as follows.

1. If 0 < r < δ, then the optimal stopping time is given by

τ ∗ = inf{t ≥ 0 : Xt ≥ b∗}

where

b∗ =

(
K

κ(q, 0)

κ(q,−r)

)1/r

.

Moreover E1

[
X
r

T

]
<∞ and the optimal value is given for x > 0 by

v(x) =
1

E1[X
r

T ]
E1

[((
xXT

)r −KE1

[
X
r

T

])+]
, (3.20)

where X t = sups≤tXs.

2. If −(δ + 1− α) < r < 0 and α ≤ 1, then the optimal stopping time is given by

τ ∗ = inf{t ≥ 0 : 0 < Xt ≤ 1/b∗}

where

b∗ =

(
K
κ̂(q, 0)

κ̂(q, r)

)1/|r|

.

Moreover, E1[(Y T )
r] <∞ and the optimal value is given for x > 0 by

v(x) =
1

E1[Y T
r]
E1

[
((xY T )

r −KE1[Y T
r])

+]
, (3.21)

where Y t = infs≤t Ys = infs≤tXC−1
s

.

3. If r > δ or r < −(δ + 1− α), then v(x) = ∞.

Proof. Since g(x) = 0 for x ≤ 0, it is never optimal to stop when X is negative. The

processes X and Y have the same range when restricted to (0,∞), so the optimal stopping
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problem (3.1) is equivalent to

v(x) = sup
τ ′∈SFX◦C−1

Ex [g (Yτ ′)] , (3.22)

where we recall F ◦ C−1 =
(
FC−1

t

)
t≥0

. Moreover, as already outlined, the pssMp Y corre-

sponds to ξ under a time and space change, which implies that

v(y) = sup
τ ′′∈SF◦C−1◦T

Ey
[
g
(
eξτ ′′

)]
, (3.23)

where y = log x and here again we have F ◦ C−1 ◦ T =
(
FC−1

T (t)

)
t≥0

.

We know from Theorem 3.14 that the hitting time τD of some set D ⊂ (0,∞) is optimal

for (3.1), and hence that the first passage time σH of ξ into setH is optimal for (3.23), where

H = {log x : x ∈ D}.

The solution in Theorem 3.9 showed that the solution of the problem (3.11) for ξ is

given by a hitting time σ∗. In (3.23), we optimise over SF◦C−1◦T , and in (3.11) we optimise

over SG. The former set of stopping times is larger, since the filtration contains information

about the times that X spends below zero. Since σH ∈ SG, it follows that it is also optimal

for (3.11). Comparing the form of σ∗ with σH and hence with the original stopping region

D, we obtain that

D =

[(
K

κ(q, 0)

κ(q,−r)

)1/r

,∞

)
if 0 < r < δ,

and

D =

(
0,

(
κ̂(q,−r)
Kκ̂(q, 0)

)1/|r|
]

if − (δ + 1− α) < r < 0.

For part 3, we turn to the corresponding part of Theorem 3.9, where it is shown that arbi-

trarily large values of w can be obtained by stopping at a deterministic time, say t0. Since

time t0 for ξ corresponds to time C−1
Tt0

for X , this is a viable time at which to stop X . It

follows that v(x) = ∞ for x > 0. When x < 0, one can first wait for X to pass above zero,

which happens without being killed with positive probability, and then act as above, again

attaining unbounded values.

Remark 3.16. Though the semi-explicit expressions for v given in the preceding theorem

are only valid when x > 0, one can still express the value function in other cases. Clearly

v(0) = 0. When x < 0, X† is started below zero and we should wait for it to either be
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killed (with probability p independent of x) or jump back above (with probability 1 − p).

Let τ+0 = inf{t ≥ 0 : X†
t ≥ 0}. Then, for all x < 0,

v(x) = Ex[v(X†
τ+0
)]

= (1− p)

∫ ∞

0

v(y)
sin παρ

π
(−x)αρy−αρ(y − x)−1 dy,

where the integral expression comes from [42]. In conjunction with the expression for w

given in Corollary 3.10, this can be used to write v as a double integral suitable for numerical

computation. △

3.5 Remark on a variant stopping problem

In this section, we briefly describe how a gain function akin to that of a put option requires

a different analysis, despite the superficial similarities. We consider the optimal stopping

problem

v(x) = sup
τ

Ex
[
g(Xτ )1{τ<T}

]
, g(x) = (K − x)+, (3.24)

where K ∈ R. Since g(x) may be positive for x < 0, it no longer makes sense to erase

the sojourns of X in (−∞, 0). Instead, we may describe the problem using the so-called

Lamperti-Kiu transform. This givesX† in terms of a Markov additive process (MAP), which

is a process (ξ, J) on R× {±1} obtained by

ξt = log|X†
T (t)| and Jt = sgnX†

T (t), t ≥ 0,

where T is a time-change.

The process (ξ, J) corresponding to X† will be killed at a rate ω(ξt, Jt), where

ω(y, j) =

 0, j = 1,

k, j = −1,

and the problem (3.24) will correspond to

v(x) = v(y, j) = sup
σ

Ey,j
[
g(ξσ, Jσ)1{t<ζ}

]
,
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where (y, j) = (log |x|, sgnx), ζ is the killing time of (ξ, J) and

g(y, j) =

 (K − ey)+ , j = 1,

(K + ey)+ , j = −1.

The MAP (ξ, J) can be described explicitly in terms of its matrix exponent. Unfortunately,

though this translation to a MAP problem is relatively simple to describe, two new issues

arise. The first is that the theory of optimal stopping is much less developed for these

processes, outside of the spectrally negative case [15]. The second is that the presence of

J-dependent killing means that the matrix Wiener-Hopf factorisation of (ξ, J), which is

known when k = 0 [31, 34], is no longer evident.
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Chapter 4

The optimal time to liquidate a portfolio

of insurance products in the presence of

bankruptcy

4.1 Introduction

Let U be a Cramér-Lundberg process starting at U0 = x ∈ R, defined on a filtered probabil-

ity space (Ω,F , (Ft)t≥0,P) where F is the natural enlarged filtration generated by U . For

any t ≥ 0,

Ut = x+ δt−
Nt∑
i=1

ξi, (4.1)

where δ > 0 is the drift, ξi are i.i.d. r.v. which are exponentially distributed with parameter

ρ > 0 and N is an independent Poisson process with intensity λ > 0. U can be used to

describe the capital flow for a portfolio of insurance products where x > 0 is the initial

capital, δ denotes the premium rate and ξi’s represent the claim sizes with N counting the

number of claims. See e.g. [3]. Note that U is a spectrally negative Lévy process with

bounded variation paths and throughout this chapter, we will denote ν(dx) := Π(−dx) =

λρe−ρx1{x>0}dx where Π is the Lévy measure of U .

Define a payoff function g with penalty for negative values as

g(x) =

 x ifx ≥ 0

p ifx < 0,
(4.2)
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where p < 0 is the penalty parameter.

Further, by setting the killing density, introduced in Chapter 1,as

ω(x) = q1{x<0},

with q > 0, we create an Omega clock that ‘ticks’ at a constant rate but only if the capital

level is strictly negative. We are interested in the following optimal stopping problem:

v(x) = sup
τ

Ex
[
e−r(τ∧T )g(Uτ∧T )

]
= sup

τ
Ex [L∗

τ ] , (4.3)

where T is defined in (1.1) and

L∗
t := e−Atg(Ut) +

∫ t

0

q1{Us<0}e
−Asg(Us)ds, t ≥ 0

with At := rt+χt = rt+
∫ t
0
ω(Us)ds. Here the second equality in (4.3) results from taking

expectation with respect to the independent exponentially distributed random variable that

appears in the Omega clock. We will show shortly below in (4.4) that L∗
∞ := limt→∞ L∗

t

exists which allows us to consider stopping times that can also take the value ∞.

The main results are presented in Theorem 4.12and Theorem 4.13, where we prove that

when p, δ, r, λ and ρ satisfy certain conditions, an up-crossing strategy with the stopping

region [a,∞) is optimal for (4.3); further, we show that smooth pasting principle holds

when a > 0 and fails when a = 0. Also, for the cases where an up-crossing strategy has not

yet been proved to be optimal, we give numerical examples and corresponding analysis in

section 4.6.

Many of the existing studies under Cramér-Lundberg model are related to insurance.

Problem with state-dependent killing in insurance was introduced in [1], where the concept

of bankruptcy was established. The insurance company is allowed to continue doing busi-

ness with a negative surplus until bankruptcy occurs. The concept of bankruptcy is exactly

the same as the concept of Omega killing time we introduced in Chapter 1. The bankruptcy

probability and the expectation of a discounted penalty at the time of killing are widely stud-

ied. See [1] and [24] where the surplus process is modeled by a Brownian motion and [2]

under a compound Poisson risk model, for example.

For our problem (4.3), a possible interpretation is as follows. As mentioned above, U
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represents a capital process corresponding to a portfolio of insurance products. The problem

(4.3) is essentially about choosing the optimal time to liquidate the portfolio, that is, to

transfer all insurance policies to another company or otherwise terminate all policies. Then,

the value function v represents the largest expected value that the insurer can obtain from the

portfolio in this model where liquidation is possible. When U goes below zero, the insurer

has limited time to restore the capital level back to positive levels. If this does not happen

quickly enough, i.e. if the Omega clock ‘rings’ at time T , then a regulator steps in to take

over the portfolio and leaves the company with the fine p. Note that we do not allow the

insurer to liquidate the portfolio when the capital U is negative. This means that while U is

below zero, the only possible payoff for the insurer is the penalty p when the Omega clock

rings. This explains why we set g(x) = p for x < 0. Nevertheless, for convenience, we

can simply optimise over all stopping times in the optimal stopping problem (4.3) since it

can anyhow not be optimal to stop when U is negative and g attains its global minimum.

Indeed this is confirmed by our main results. Also, note that for x ≥ 0, the difference

v(x)−g(x) = v(x)−x can be seen as a measure of expected profitability of the portfolio in

this model. In particular, if v(x)− x = 0, then the insurer is best off stopping immediately,

i.e. not to sell these policies in the first place.

The remainder of this chapter is structured as follows. In Section 4.2, we present some

analytical expressions, including the Itô’s decomposition of L∗, the value function for an

up-crossing strategy denoted by va. Then, in Section 4.3, we introduce a partition of the

parameter space which corresponds to different optimal strategies as shown in the main

results. Preliminary results with proofs are provided in Section 4.4, which will be used to

prove the main theorems. Based on the calculations and lemmas, we state the main results

of this chapter in Section 4.5 and give the detailed proofs there. Finally, in Section 4.6, we

outline the results and share discussions with some numerical examples.

4.2 Some analytical expressions

In this section, we first find an alternative way to express L∗ by applying the change of

variable theorem. Then in Section 4.2.2, we derive an expression for the value function

under an up-crossing strategy, in terms of the well-known scale functions. In Section 4.2.3,

we do some analysis related to the smooth pasting property for later use. And at last, we
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prove some results for the candidate optimal value process in Section 4.2.4.

4.2.1 A decomposition of L∗

We begin with a quick observation related to L∗. Recall that for any t ≥ 0,

L∗
t := e−Atg(Ut) +

∫ t

0

q1{Us<0}e
−Asg(Us)ds.

It is clear that

L∗
t ≥ p+ pq

∫ ∞

0

e−rsds = p
(
1 +

q

r

)
,

and under Px with x ∈ R given, we have Ut ≤ x+ δt, from which it follows

L∗
t ≤ e−rt (x+ δt) ≤ Cx, for all t ≥ 0,

where Cx < ∞ depends only on x. Hence, L∗ is a bounded process under any Px. Further-

more, considering the lower bound on payoff function g and the upper bound on Ut, it is

also clear that for any x ∈ R,

L∗
∞ := lim

t→∞
L∗
t = pq

∫ ∞

0

1{Us<0}e
−Asds Px − a.s. (4.4)

Based on this, we have the following lemma.

Lemma 4.1. For any x ∈ R, we have Px−a.s. that

L∗
t = L∗

0 +Mt +

∫ t

0

e−Ask(Us)ds− p

∫ t

0

e−AsdN̂s for all t ≥ 0, (4.5)

where N̂ is a piecewise constant process that has a unit jump size each time U hits zero, M

is a UI-martingale and

k(z) =

 −rp z < 0

δ − λ
ρ
− rz + λ

(
p+ 1

ρ

)
e−ρz z ≥ 0.

(4.6)

52



Proof. Fix some x ∈ R. Define a new payoff function g(n) for n = 1, 2, ..., as

g(n)(x) =

 g(x) x ≥ 0 or x < − 1
n

−pnx − 1
n
≤ x < 0.

(4.7)

Also, define a new process L(n) by replacing g in L∗ with g(n), that is for t ≥ 0

L
(n)
t = e−Atg(n)(Ut) + q

∫ t

0

1{Us<0}e
−Asg(n)(Us)ds. (4.8)

According to similar analysis as we did for L∗ at the start of this subsection, we can see that

p
(
1 + q

r

)
≤ L

(n)
t ≤ e−rt(x+ δt) ≤ Cx <∞ for t ≥ 0.

Although g(n) is not C1 on R, the standard change of variables theorem still holds for

L(n). This can be proved by approximation from the change of variables formula in Theo-

rem 2.9 where the objective function is assumed to be continuous.1 Hence, by applying the

change of variable formula to L(n), we have

L
(n)
t = L

(n)
0 +M

(n)
t −

∫ t

0

e−As
(
r + q1{Us<0}

)
g(n)(Us)ds+ δ

∫ t

0

e−Asg(n),′(Us)ds

+

∫
[0,t]

∫
(0,∞)

e−As
(
g(n)(Us − y)− g(n)(Us)

)
ν(dy)ds+

∫ t

0

q1{Us<0}e
−Asg(n)(Us)ds

= L
(n)
0 +M

(n)
t +

∫ t

0

e−Ask(n)(Us)ds

= L
(n)
0 +M

(n)
t

+

∫ t

0

1{Us≥0}e
−Ask(n)(Us)ds+

∫ t

0

1{Us<− 1
n}e

−Ask(n)(Us)ds

+

∫ t

0

1{Us∈[− 1
n
,0)}e

−Ask(n)(Us)ds, (4.9)

where

M
(n)
t =

∫
[0,t]

∫
(0,∞)

e−As
(
g(n)(Us − y)− g(n)(Us)

)
N(ds× dy)

1Personal communication with Dr Ronnie Loeffen. More precisely, if a function f is only piecewise C1

with a locally bounded derivative, then the change of variables formula from Theorem 2.9 still holds. To see
this e.g. as follows. If x0 is a point where f ′ is not continuous, then one can define a C1 function w(m)

such that w(m)(x) = f(x) when x ∈ R \ (x0 − 1/m, x0 + 1/m) while w(m) and w(m),′ stay bounded on
(x0 − 1/m, x0 + 1/m). Then, Theorem 2.9 can be applied to f with f replaced by w(m) and the indicators:
1{Us∈(x0−1/m,x0+1/m)} and 1{Us∈R\(x0−1/m,x0+1/m)} will be added to the integral term with the former one
equal to 0 and the latter equal to 1 when m → ∞. Same approximation method can be used when analyzing
Z(a) below in Section 4.2.4.
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−
∫
[0,t]

∫
(0,∞)

e−As
(
g(n)(Us − y)− g(n)(Us)

)
ν(dy)ds (4.10)

is a local martingale process, and

k(n)(z) = δg(n),
′
(z)− rg(n)(z) +

∫
(0,∞)

(
g(n)(z − y)− g(n)(z)

)
ν(dy).

Then we break the remaining proof into four steps as below.

1) Determine limn→∞
∫ t
0
1{Us≥0}e

−Ask(n)(Us)ds for t ≥ 0.

When z ≥ 0, we have

k(n)(z) = δ − (r + λ)z

+

∫ z

0

(z − y) ν(dy) +

∫ z+ 1
n

z

−pn(z − y)ν(dy) +

∫ ∞

z+ 1
n

pΠ(dy)

= δ − rz +
λ

ρ

(
e−ρz − 1

)
+

∫ z+ 1
n

z

−pn(z − y)ν(dy) + pλe−ρ(z+
1
n
),

which shows that

−rz − λ

ρ
+ 2pλ ≤ k(n)(z) ≤ δ.

As for any t ≥ 0, Ut is bounded above by x+δt, it follows by dominated convergence

theorem that

lim
n→∞

∫ t

0

1{Us≥0}e
−Ask(n)(Us)ds

=

∫ t

0

1{Us≥0}e
−As lim

n→∞
k(n)(Us)ds

=

∫ t

0

1{Us≥0}e
−As

(
δ − λ

ρ
− rUs + λ

(
p+

1

ρ

)
e−ρUs

)
ds.

2) Determine limn→∞
∫ t
0
1{Us<−1/n}e

−Ask(n)(Us)ds for t ≥ 0.

When z ≤ −1/n, we have k(n)(z) = −rp, which again, by dominated convergence

theorem, gives that

lim
n→∞

∫ t

0

1{Us<−1/n}e
−Ask(n)(Us)ds =

∫ t

0

e−As lim
n→∞

(
1{Us<−1/n}k

(n)(Us)
)
ds

=

∫ t

0

1{Us<0}e
−As(−rp)ds
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3) Determine limn→∞
∫ t
0
1{Us∈[−1/n,0)}e

−Ask(n)(Us)ds for t ≥ 0.

When z ∈ [−1/n, 0), we have

k(n)(z) = −δpn+ rpnz +

∫
(0,∞)

(
g(n)(z − y)− g(n)(z)

)
ν(dy)

where nz ∈ [−1, 0) and g(n)(z − y) − g(n)(z) ∈ (p, 0], which using dominated con-

vergence theorem gives that

lim
n→∞

∫ t

0

1{Us∈[−1/n,0)}e
−As

(
k(n)(Us) + δpn

)
ds

=

∫ t

0

e−As

lim
n→∞

[
1{Us∈[−1/n,0)}

(
rpnUs +

∫
(0,∞)

(
g(n)(Us − y)− g(n)(Us)

)
ν(dy)

)]
ds

= 0.

So the only thing we need to check here is the value of

lim
n→∞

∫ t

0

1{Us∈[−1/n,0)}e
−As(−δpn)ds.

Let us fix some t ≥ 0, and a path s 7→ Us which has on [0, t] only finitely many jumps

and finitely many hitting times of 0 a.s.. Denote by T1, . . . , Tk the hitting times of 0

with T0 = 0 and by J1, . . . , Jl the jump times of the path.

Now, consider all the jumps in U so that UJi < 0 and note their distance to 0. Because

there are only finitely many jumps, the minimal distance is positive i.e.

ϵ1 := inf{|UJi | |UJi < 0} > 0.

Next consider all the points below 0 just before a jump happens i.e. UJi− < 0 and

their distance to 0, which must be positive due to the same reason, i.e.

ϵ2 := inf{|UJi−| |UJi− < 0} > 0.

Let us now take n large enough, in particular so that 1/n < min{ϵ1, ϵ2} and then there

is no interference of jumps whenever Us ∈ (−1/n, 0). More precisely, Us can only
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enter this interval by drifting in from below i.e. by hitting −1/n, then it keeps drifting

without experiencing a jump until it exits the interval again by hitting 0. That is to

say, the set on the time axis {s ≤ t |Us ∈ (−1/n, 0)} consists of the union of disjoint

time intervals (Ti − 1/(nδ), Ti) and we can then write

n

∫ t

0

1{Us∈(−1/n,0)}e
−Asds = n

k∑
i=1

∫ Ti

Ti−1/(nδ)

e−Asds.

Further, for any i

n

∫ Ti

Ti−1/(nδ)

e−Asds = e−ATin

∫ Ti

Ti−1/(nδ)

e−(As−ATi
)ds

where the path s 7→ e−(As−ATi
) is smooth with a value equal to 1 in s = Ti, that is,

lim
n→∞

n

∫ Ti

Ti−1/(nδ)

e−(As−ATi
)ds = lim

n→∞
n

∫ Ti

Ti−1/(nδ)

1ds =
1

δ
.

So it follows that

lim
n→∞

n

∫ t

0

1{Us∈(−1/n,0)}e
−Asds =

1

δ

k∑
i=1

e−ATi =
1

δ

∫ t

0

e−AsdN̂s

where N̂ is defined as the piecewise constant process that has a jump of size 1 each

time U hits 0.

4) Ex
[∫∞

0
e−AsdN̂s

]
<∞.

So far we have computed the limits of the integrals in (4.9). To see the behavior of

M (n), we determine Ex
[∫∞

0
e−AsdN̂s

]
first.

We set Tk = ∞ if path does not hit 0 after the (k − 1)−th hitting. Then,

Ex
[∫ ∞

0

e−AsdN̂s

]
= Ex

[
∞∑
k=1

1{Tk<∞}e
−ATk

]

=
∞∑
k=1

Ex
[
1{Tk<∞}e

−ATk

]
, (4.11)

where we apply the Monotone convergence theorem to the second equation.

Define q0 := P0(T1 < ∞). Recall that ψ denotes the Laplace exponent of U and the
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following holds:

• ψ′(0) > 0 resp. ψ′(0) < 0 ⇐⇒ U drift to ∞ resp. −∞ a.s =⇒ q0 < 1;

• ψ′(0) = 0 ⇐⇒ lim supt→∞ Ut = − lim inft→∞ Ut = ∞ =⇒ q0 = 1.

See e.g. [30, §§8.1].

When ψ′(0) ̸= 0, by homogeneity of U , we have

Px(Tk <∞) ≤ qk−1
0 ,

which shows that

(4.11) ≤
∞∑
k=1

Ex
[
1{Tk<∞}

]
=

∞∑
k=1

Px(Tk <∞) ≤
∞∑
k=1

qk−1
0 =

1

1− q0
. (4.12)

When ψ′(0) = 0, we have Tk <∞ a.s. for all k ≥ 1 and

(4.11) =
∞∑
k=1

Ex
[
e−ATk

]
,

with

Ex
[
e−ATk

]
= Ex

[
e−(AT0

+
∑k

i=1(ATi
−ATi−1

))
]

= e−AT0Ex
[
eAT1

−AT0

] (
Ex
[
eAT2

−AT1

])k−1
, (4.13)

where the second equation results from the fact that ATi − ATi−1
is independent of

each other for i ≥ 1 and is identical for i ≥ 2.

Since Ex
[
eAT2

−AT1

]
∈ (0, 1), by applying the geometric series formula to (4.13), we

have (4.11) <∞ in this case as well.

Hence, we can conclude that Ex
[∫∞

0
e−AsdN̂s

]
<∞.

5) M := limn→∞M (n) exists and is a martingale.

As a result of 1)–4), when letting n → ∞, by dominated convergence theorem, we

have ∫ t

0

e−Ask(n)(Us)ds→
∫ t

0

e−Ask(Us)ds− p

∫ t

0

e−AsdN̂s, (4.14)
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where

k(z) =

 −rp z < 0

δ − λ
ρ
− rz + λ

(
p+ 1

ρ

)
e−ρz z ≥ 0.

Also, (4.8) shows that L(n) is decreasing in n, which by applying monotone conver-

gence theorem gives that limn→∞ L
(n)
t → L∗

t .

Since for t ≥ 0,

M
(n)
t = L

(n)
t − L

(n)
0 −

∫ t

0

e−Ask(n)(Us)ds, t ≥ 0,

by (4.14) and the existence of limt→∞ L
(n)
t and limn→∞ L

(n)
0 , it follows that M (n)

t has

a limit (a.s.) as well, i.e., Mt := limn→∞M
(n)
t exists. Also because that |g(n)(Us −

y)− g(n)(Us)| ≤ δs− p for any s ≥ 0, it follows by Dominated convergence theorem

that

Mt =

∫
[0,t]

∫
(0,∞)

e−As (g(Us − y)− g(Us))N(ds× dy)

−
∫
[0,t]

∫
(0,∞)

e−As (g(Us − y)− g(Us)) ν(dy)ds, (4.15)

which according to [30, Corollary 4.6], is a martingale.

6) M in (4.15) is uniformly integrable.

First note that for y ≥ 0, p − z ≤ g(z − y) − g(z) ≤ 0. Then together with the fact

that At ≥ rt and Ut ≤ x+ δt, it follows

sup
t

∣∣∣∣∣
∫
[0,t]

∫
(0,∞)

e−As (g(Us − y)− g(Us)) ν(dy)ds

∣∣∣∣∣
= sup

t

∫
[0,t]

∫
(0,∞)

e−As (g(Us)− g(Us − y)) ν(dy)ds

=

∫
[0,∞)

∫
(0,∞)

e−As (g(Us)− g(Us − y)) ν(dy)ds

≤
∫ ∞

0

e−rs(x+ δs− p)ds

=
x− p

r
+

δ

r2
. (4.16)
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Further, [30, Theorem 4.4] provides that

E
[∫

[0,∞)

∫
(0,∞)

e−As (g(Us)− g(Us − y))N(ds× dy)

]
= E

[∫
[0,∞)

∫
(0,∞)

e−As (g(Us)− g(Us − y)) ν(dy)ds

]
, (4.17)

which together with (4.16) indicates

E

[
sup
t

∣∣∣∣∣
∫
[0,t]

∫
(0,∞)

e−As (g(Us − y)− g(Us))N(ds× dy)

∣∣∣∣∣
]
<∞.

Hence, according to [39, Theorem 52], M is a uniformly integrable martingale.

This completes the proof.

Lemma 4.2. For x ∈ R, problem (4.3) is equivalent to

v(x) = g(x) + sup
τ

Ex
[∫ τ

0

e−Ask(Us)ds− p

∫ τ

0

e−AsdN̂s

]
. (4.18)

Proof. First note that for any stopping time τ , as M is a UI-martingale, it follows by Doob’s

optional stopping theorem that

Ex [Mτ ] = Ex [M0] = 0.

Then the result automatically follows from (4.3) and Lemma 4.1.

4.2.2 Value function for an up-crossing strategy

In this section, we make computations related to an up-crossing strategy with the motivation

that it will be important later on. As presented in Example 2.7, the expressions for the

Laplace exponent ψ and scale functions of a Cramér-Lundberg process are quite explicit.

Hence, we will make use of these nice expressions to do fundamental computations, which

will be used for later analysis. From now on, we use −η and Φ(r) to denote the two real

solutions to the equation ψ(z) = r, which satisfy

−η < 0 < Φ(r),
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and their explicit expressions can be found in Example 2.7 . Define a stopping time

τ+a = inf{t ≥ 0 : Ut ≥ a}, a > 0,

with inf ∅ = ∞. We denote the corresponding value function by

va(x) = Ex
[
L∗
τ+a

]
= Ex

[
e
−A

τ+a Uτ+a +

∫ τ+a

0

pq1(Us<0)e
−Asds

]
, x ∈ R, a > 0. (4.19)

Let us introduce a function I(r,q) : R → (0,∞) defined in [40] which will be used

below:

I(r,q)(x) :=

∫
(0,∞)

e−Φ(r+q)uW (r)(u+ x)du, for allx ∈ R. (4.20)

which satisfies

I(r,q)(x) = eΦ(r+q)x/q (4.21)

for all x ≤ 0. Also, I(r,q) is continuously twice differentiable over (0,∞) and this holds for

a general spectrally negative Lévy process. See [40] for proof.

Also, to present the result below, we make use of a two variable extension Z(q)(x, θ) of

the scale function, introduced by [7, Definiton 5.8], which is defined as

Z(q)(x, θ) = eθx + (q − ψ(θ))

∫ x

0

eθ(x−y)W (q)(y)dy, θ ∈ C, (4.22)

satisfying Z(q)(x, θ) = eθx for x ≤ 0.

Then, we give the following result of va. Note that even though we work with a Cramér-

Lundberg process, expressions below in Lemma 4.3 remain valid when U is any spectrally

negative Lévy process.

Lemma 4.3. For a > 0, we have

va(x) =


a · e

Φ(r+q)x

qI(r,q)(a)
+ pqh−(x; a) x ≤ 0

a · I
(r,q)(x)

I(r,q)(a)
+ pqh+(x; a) 0 < x < a

x x ≥ a,

(4.23)
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where

h−(x; a) =
1

r + q

(
1− eΦ(r+q)x · Z(r)(a)

Z(r)(a, θ)

)
and

h+(x; a) =
1

r + q

(
Z(r)(x)− Z(r)(x, θ) · Z(r)(a)

Z(r)(a, θ)

)
,

with Z(r)(x, θ) defined in (4.22) and θ = Φ(r + q).

Proof. In the first place, immediately by Proposition 4.1 in [40], we have

Ex
[
e
−A

τ+a Uτ+a

]
= a · I

(r,q)(x)

I(r,q)(a)
, for allx < a. (4.24)

Then, (4.19) can be decomposed into

va(x) =

 a · I(r,q)(x)

I(r,q)(a)
+ pqh(x; a) x < a

g(x) x ≥ a,
(4.25)

where

h(x; a) := Ex

[∫ τ+a

0

1(Us<0)e
−Asds

]
=

 h−(x; a) x ≤ 0

h+(x; a) 0 < x < a.
(4.26)

Below we break into six steps to complete the proof.

1) h(·, a) is continuous on (−∞, a).

We can write

h(x; a) = E0

[∫ τ+a−x

0

1{x+Us<0}e
−A(x)

s ds

]
= E0

[∫ ∞

0

1{s≤τ+a−x}
1{x+Us<0}e

−A(x)
s ds

]

where A(x)
t = rt+

∫ t
0
ω(Us + x)ds.

Fix some x ∈ (−∞, a) and let {xk; k = 1, 2, ...} be a sequence which converges to x

as k tends to infinity. Then, it holds a.s. that for s ≥ 0,

1{s≤τ+a−xk
}1{xk+Us<0}e

−A(xk)
s → 1{s≤τ+a−x}

1{x+Us<0}e
−A(x)

s

when k → ∞.

Since
∫∞
0
e−A

(x)
s ds ≤

∫∞
0
e−rsds = 1

r
, by dominated convergence theorem we also

have that h(xk; a) → h(x; a) as k → ∞.
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2) An expression for h−(x; a).

Denote τ−0 = inf{t > 0 : Ut < 0}. When x ∈ (−∞, 0), by the strong Markov

property of X , we have

h−(x; a) = Ex

[∫ τ+0

0

e−(r+q)sds+ e−(r+q)τ+0 h(0; a)

]

= Ex

[∫ τ+0

0

e−(r+q)sds

]
+ h(0; a)Ex

[
e−(r+q)τ+0 1{τ+0 <∞}

]
. (4.27)

By Theorem 2.6, we have

Ex
[
e−qτ

+
0 1(τ+0 <∞)

]
= eΦ(q)x

which can be used to replace the second term in (4.27). For the first term, we have

Ex

[∫ τ+0

0

e−(r+q)sds

]
=

1

r + q

(
1− Ex

[
e−(r+q)τ+0

])
.

Hence, an expression for h−(·; a) is

h−(x; a) =
1

r + q
+

(
h(0; a)− 1

r + q

)
eΦ(r+q)x. (4.28)

3) An expression for h+(x; a).

When x ∈ (0, a], it follows by the Markov property of U and A that

h+(x; a)

= Ex

[∫ τ+a

0

1(Us<0)e
−Asds

]

= Ex

[
1(τ+a <τ

−
0 )

∫ τ+a

0

1(Us<0)e
−Asds

]
+ Ex

[
1(τ−0 <τ

+
a )

∫ τ+a

0

1(Us<0)e
−Asds

]

= Ex

[
1(τ−0 <τ

+
a )e

−rτ−0 EU
τ−0

[∫ τ+a

0

1(Us<0)e
−Asds

]]
= Ex

[
1(τ−0 <τ

+
a )e

−rτ−0 h−(Uτ−0 ; a)
]
.
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Then by plugging in the expression for h−(·; a) in (4.28), we have

h+(x; a)

=
1

r + q
Ex
[
1(τ−0 <τ

+
a )e

−rτ−0
]

+

(
h(0; a)− 1

r + q

)
Ex
[
1(τ−0 <τ

+
a )e

−rτ−0 +Φ(r+q)U
τ−0

]
=

1

r + q

(
Z(r)(x)− Z(r)(a) · W

(r)(x)

W (r)(a)

)
+

(
h(0; a)− 1

r + q

)(
Z(r) (x,Φ(r + q))− Z(r) (a,Φ(r + q)) · W

(r)(x)

W (r)(a)

)
(4.29)

where the second equation refers to [7, Definition 5.8].

4) Conclusion.

Consider equation (4.29). By 1), it holds that for x ↓ 0

h+(x; a) = h(x; a) → h(0; a).

Hence, we get from (4.29) with this limit an expression for h(0; a):

h(0; a) =
1

r + q

(
1− Z(r)(a)

Z(r)(a, θ)

)
. (4.30)

By plugging (4.30) in (4.28) and (4.29), we have

h−(x; a) =
1

r + q

(
1− eΦ(r+q)x · Z(r)(a)

Z(r)(a, θ)

)
(4.31)

and

h+(x; a) =
1

r + q

(
Z(r)(x)− Z(r)(x, θ) · Z(r)(a)

Z(r)(a, θ)

)
. (4.32)

By plugging (4.31) and (4.32) into (4.26) and then into (4.25), we complete the proof.

A computation for va when a = 0 can be made based on the result in Lemma 4.3.
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Considering (4.28) with h(0; a) = 0, we can get that

v0(x) = Ex[L∗
τ+0
] =


pq

r + q

(
1− eΦ(r+q)x

)
if x < 0

x if x ≥ 0.

(4.33)

Note that since we are dealing with Cramér-Lundberg processes, scale functions and

I(r,q) can be then expressed quite explicitly in Lemma 4.4 below.

Lemma 4.4. For r, q > 0, it holds that

I(r,q)(x) =
eΦ(r)x

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

e−ηx

ψ′(−η) (Φ(r + q) + η)
, forx ≥ 0, (4.34)

with

I(r,q)(0) =
1

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

1

ψ′(−η) (Φ(r + q) + η)
=

1

q
. (4.35)

Also, for x, r, q > 0,

Z(r)(x) = 1 + r

(
eΦ(r)x − 1

ψ′(Φ(r))Φ(r)
− e−ηx − 1

ψ′(−η)η

)
; (4.36)

Z(r)(x,Φ(r + q)) = qI(r,q)(x). (4.37)

Proof. The expression for I(r,q)(x) can be achieved directly by plugging the explicit expres-

sions for scale function (see (2.7)) into (4.20), i.e.

I(r,q)(x) =

∫
(0,∞)

e−Φ(r+q)u

(
eΦ(r)(x+u)

ψ′(Φ(r))
+
e−η(x+u)

ψ′(−η)

)
du

=
eΦ(r)x

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

e−ηx

ψ′(−η) (Φ(r + q) + η)
. (4.38)

Note that (4.38) holds for any x ≥ 0. Also, it follows from the definition of I(r,q) in (4.20)

that I(r,q)(0) = 1/q. As a result, we have

I(r,q)(0) =
1

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

1

ψ′(−η) (Φ(r + q) + η)
=

1

q
.

The expression for Z(r)(x) is an immediate result using the explicit expression for r−scale

function W (r) shown in Example 2.7.
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For Z(r)(x,Φ(r + q)), we first have that

Z(r)(x,Φ(r + q))

= q

(
eΦ(r)x

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

e−ηx

ψ′(−η) (Φ(r + q) + η)

)
+ eΦ(r+q)x

[
1− q

(
1

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

1

ψ′(−η) (Φ(r + q) + η)

)]
, (4.39)

which according to the calculations on I(r,q) above can be simplified as

Z(r)(x,Φ(r + q)) = q

(
eΦ(r)x

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

e−ηx

ψ′(−η) (Φ(r + q) + η)

)
= qI(r,q)(x).

Now in the following corollary, we give the nice expressions for va.

Corollary 4.5. When a > 0, va in (4.23) can be explicitly expressed as

va(x) =


pq
r+q

+ C
(a)
1 eΦ(r+q)x x ≤ 0

C
(a)
2 eΦ(r)x + C

(a)
3 e−ηx 0 < x < a

x x ≥ a,

(4.40)

where

C
(a)
1 =

a

qI(r,q)(a)
− pq

r + q

Z(r)(a)

Z(r)(a,Φ(r + q))
;

C
(a)
2 =

a

I(r,q)(a)

1

ψ′(Φ(r)) (Φ(r + q)− Φ(r))
+

pqr

(r + q)ψ′(Φ(r))Φ(r)

+
pq

r + q

Z(r)(a)

I(r,q)(a)

1

(Φ(r)− Φ(r + q))ψ′(Φ(r))

C
(a)
3 =

a

I(r,q)(a)

1

ψ′(−η) (Φ(r + q) + η)
− pqr

(r + q)ψ′(−η)η

− pq

r + q

Z(r)(a)

I(r,q)(a)

1

(η + Φ(r + q))ψ′(−η)
.

In the special case where va satisfies v′a(a−) = 1 in addition to va(a) = a, i.e. smooth

pasting holds which we will also discuss later, we have the simpler expressions

C
(a)
2 = e−Φ(r)a aη + 1

Φ(r) + η
;
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C
(a)
3 = eηa

aΦ(r)− 1

Φ(r) + η
.

Proof. Then, replacing I(r,q) and scale functions in (4.23) with their explicit expressions

shown in Lemma 4.4 and above gives the expression for va.

When va satisfies smooth pasting condition, we have

 va(a) = C
(a)
2 eΦ(r)a + C

(a)
3 e−ηa = a

v′a(a−) = C
(a)
2 Φ(r)eΦ(r)a − C

(a)
3 ηe−ηa = 1,

which together provide simper expressions for C(a)
2 and C(a)

3 .

We can see from (4.40) that va is C∞ on (−∞, 0) ∪ (0, a) ∪ (a,∞) and continuous on

R with finite left and right derivatives of all orders in x = 0 and x = a.

4.2.3 First-order condition versus smooth fit

Later we will see that an up-crossing strategy is optimal for certain parameter regimes. This

subsection contains some useful results for that later analysis.

Proposition 4.6 (Derivative of va with respect to a). Given x, for any positive a ≥ x, we

have
∂

∂a
va(x) = I(r,q)(x)t(a),

where

t(a) =
I(r,q)(a)− aI(r,q),′(a)− pq

r+q

(
I(r,q)(a)Z(r),′(a)− Z(r)(a)I(r,q),′(a)

)
(I(r,q)(a))

2 .

Proof. For a ≥ x in the case that a > 0, by taking the derivative of va in (4.23) with respect

to a, we have

∂

∂a
va(x) = I(r,q)(x) · I

(r,q)(a)− aI(r,q),′(a)

(I(r,q)(a))
2

− pqZ(r)(x, θ)

r + q
· Z

(r),′(a)Z(r)(a, θ)− Z(r),′(a, θ)Z(r)(a)

(Z(r)(a, θ))
2 . (4.41)
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Then, by Corollary 4.5, (4.41) can be written as

∂

∂a
va(x) = I(r,q)(x) · t(a)

where

t(a) =

[
I(r,q)(a)− aI(r,q),′(a)

(I(r,q)(a))
2 − pq2

r + q

Z(r),′(a)Z(r)(a, θ)− Z(r),′(a, θ)Z(r)(a)

(Z(r)(a, θ))
2

]

=
I(r,q)(a)− aI(r,q),′(a)− pq

r+q

(
I(r,q)(a)Z(r),′(a)− Z(r)(a)I(r,q),′(a)

)
(I(r,q)(a))

2 .

Proposition 4.6 indicates that if an up-crossing strategy is optimal, then the optimal

choice for the up-crossing level a is independent of x and should be the root of

I(r,q)(a)− aI(r,q),′(a)− pq

r + q

(
I(r,q)(a)Z(r),′(a)− Z(r)(a)I(r,q),′(a)

)
= 0. (4.42)

It turns out that the solution to (4.42) also has the property that the corresponding value

function va connects smoothly with g in x = a, in the sense that

va(a−) = va(a) = g(a) = a and v
′

a(a−) = g
′
(a) = 1

as we will see next.

Note that va(a−) = g(a) is true for any a > 0 if U is regular upwards (See e.g. [30,

Definition 6.4]) like the Cramér-Lundberg process. And in such cases, a well-known rule of

thumb in optimal stopping is that the optimal choice for a is determined by smooth pasting,

see e.g. [38].

By taking the first derivative of va(x) with respect to x and letting x ↑ a, we have

v
′

a(a−) =
a

I(r,q)(a)
I(r,q),′(a−) +

pq

r + q

(
Z(r),′(a)− Z(r),′(a, θ)

Z(r)(a)

Z(r)(a, θ)

)
=

a

I(r,q)(a)
I(r,q),′(a−) +

pq

r + q

(
Z(r),′(a)− I(r,q),′(a)

Z(r)(a)

I(r,q)(a)

)
.

The smooth pasting condition requires that 1− v
′
a(a−) = 0, that is

I(r,q)(a)− aI(r,q),′(a−)− pq

r + q

(
Z(r),′(a)I(r,q)(a)− I(r,q),′(a)Z(r)(a)

)
= 0,
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which is exactly the same as (4.42).

Based on this, let us define the function J : (0,∞) → R as

J(a) = 1− v
′

a(a−) (4.43)

which charaterizes the possible optimal level if a root for (4.43) exists on [0,∞). Below we

look at the behaviour of J at zero and +∞.

Lemma 4.7. For a > 0, J defined in (4.43) can be explicitly expressed as

J(a) = 1− C
(a)
2 Φ(r)eΦ(r)a + C

(a)
3 ηe−ηa (4.44)

where C(a)
2 and C(a)

3 are given in Corollary 4.5.

Further, it holds that

J(0+) := lim
a↓0

J(a) =
1

q
− p

(
1

δ
− Φ(r + q)

r + q

)
, (4.45)

and

lim
a→∞

J(a) = −∞. (4.46)

Proof. When a > 0, we have

J(a) = I(r,q)(a)− aI(r,q),′(a)− pq

r + q

(
I(r,q)(a)Z(r),′(a)− Z(r)(a)I(r,q),′(a)

)
, (4.47)

which by expressions in Example 2.7, we have

J(0+) = I(r,q)(0)− pq

r + q

(
I(r,q)(0)Z(r),′(0)− Z(r)(0)I(r,q),′(0+)

)
=

1

q
− pq

r + q

(
rW (r)(0)

q
− Φ(r + q)

q
+W (r)(0)

)
=

1

q
− pq

r + q

(
r

δq
− Φ(r + q)

q
+

1

δ

)
=

1

q
− p

(
1

δ
− Φ(r + q)

r + q

)
.

Further, let (4.47) divided by I(r,q)(a) and a→ ∞, we have

lim
a→∞

J(a)

I(r,q)(a)
= lim

a→∞

{
1− a

I(r,q),′(a)

I(r,q)(a)
− pq

r + q

(
Z(r),′(a)− Z(r)(a)

I(r,q),′(a)

I(r,q)(a)

)}
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= lim
a→∞

{
1− aΛ(a)− pq

r + q

(
Z(r),′(a)− Z(r)(a)Λ(a)

)}
= lim

a→∞

{
1− aΛ(a)− pq

r + q

(
rW (r)(a)− Z(r)(a)Λ(a)

)}
= lim

a→∞

{
1− aΛ(a)− pq

r + q
W (r)(a)

(
r − Z(r)(a)

W (r)(a)
Λ(a)

)}

where Λ(a) = I(r,q),′ (a)

I(r,q)(a)
is strictly decreasing over [0,∞) with Λ(∞) = Φ(r) (see [40,

Lemma 4.2]). Also, (2.7) shows that Z(r)(a)

W (r)(a)
is decreasing in a on (0,∞) and [29, Lemma 3.3]

gives that

lim
a→∞

Z(r)(a)/W (r)(a) = r/Φ(r).

Then, combining all these together, we can see that lima→∞ J(a) = −∞.

Note that although we do not use Proposition 4.6 later on, it is a nice result that may well

still be useful in solving the cases we haven’t been able to solve yet.

4.2.4 Analysis of a candidate value process

If we use an up-crossing strategy with level a as our stopping time, then the corresponding

value process is the process Z(a) =
(
Z

(a)
t

)
t≥0

defined as

Z
(a)
t = e−rtva(Ut) + pq

∫ t

0

1{Us<0}e
−Asds for all t ≥ 0. (4.48)

In this subsection, we look at some useful properties of this process.

By the same justification as in Lemma 4.1, we can apply Itô’s formula to Z(a), which

gives that

Z
(a)
t = Z

(a)
0 −

∫ t

0

e−As
(
r + q1(Us<0)

)
va(Us)ds+ δ

∫ t

0

e−Asv
′

a(Us)ds

+

∫ t

0

∫ ∞

0

e−As (va(Us − y)− va(Us)) ν(dy)ds+ pq

∫ t

0

1(Us<0)e
−Asds

+ M̃t

= Z0 +

∫ t

0

e−Aska(Us)ds+ M̃t,
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where

ka(z) := δv
′

a(z)−
(
r + q1(z<0)

)
va(z) + pq1(z<0) +

∫ ∞

0

(va(z − y)− va(z)) ν(dy)

(4.49)

and

M̃t =

∫
[0,t]

∫
(0,∞)

e−As (va(Us − y)− va(Us))N(ds× dy)

−
∫
[0,t]

∫
(0,∞)

e−As (va(Us − y)− va(Us)) ν(dy)ds

is a martingale which can also be verified following same steps as in Lemma 4.1.

Below we provide a result related to ka.

Lemma 4.8. For any a > 0, it holds that

ka(z) = δ − rz − λ

ρ
+Bae

−ρz for z > a, (4.50)

where Ba is a constant which depends on a.

Also, for a = 0, we have

k0(z) = δ − rz − λ

ρ
+ λe−ρz

(
1

ρ
+

pq

r + q

Φ(r + q)

Φ(r + q) + ρ

)
for z > 0. (4.51)

Proof. For z > a with a > 0 given and fixed, by plugging the expression (4.23) for va into

(4.49), we have

ka(z) = δ − rz − z

∫ ∞

0

λρe−ρydy +

∫ ∞

0

va(z − y)λρe−ρydy

= δ − (r + λ)z +

∫ z−a

0

(z − y)λρe−ρydy

+

∫ z

z−a
va(z − y)λρe−ρydy +

∫ ∞

z

va(z − y)λρe−ρydy

= δ − rz − λ

ρ
+

(
λ

ρ
− aλ

)
eρae−ρz

+

∫ ∞

z

(
a

qI(r,q)(a)
eΦ(r+q)(z−y) +

pq

r + q

(
1− Z(r)(a)

Z(r)(a, θ)
eθ(z−y)

))
λρe−ρydy

+

∫ z

z−a

a

I(r,q)(a)
I(r,q)(z − y)λρe−ρydy
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+

∫ z

z−a

pq

r + q

(
Z(r)(z − y)− Z(r)(a)

Z(r)(a, θ)
Z(r)(z − y, θ)

)
λρe−ρydy,

where θ = Φ(r + q).

By calculating the integrals separately, we have∫ ∞

z

eθze−(θ+ρ)ydy =
1

θ + ρ
e−ρz;∫ ∞

z

(
1− Z(r)(a)

Z(r)(a, θ)
eθ(z−y)

)
e−ρydy =

(
1

ρ
− 1

θ + ρ

Z(r)(a)

Z(r)(a, θ)

)
e−ρz;∫ z

z−1

I(r,q)(z − y)e−ρydy =

[
A1

Φ(r) + ρ

(
e(ρ+Φ(r))a − 1

)
+

A2

ρ− η

(
e(ρ−η)a − 1

)]
e−ρz,

where A1 =
1

ψ′(Φ(r))(θ−Φ(r))
and A2 =

1
ψ′(−η)(θ+η) ;∫ z

z−a
Z(r)(z − y)e−ρydy =

(
1− r

(
1

ψ′(Φ(r))Φ(r)
− 1

ψ′(−η)η

))
1

ρ
(eρa − 1) e−ρz

+
r

ψ′(Φ(r))Φ(r) (Φ(r) + ρ)

(
ea(Φ(r)+ρ) − 1

)
e−ρz

− r

ψ′(−η)η (ρ− η)

(
ea(ρ−η) − 1

)
e−ρz;

∫ z

z−a
Z(r)(z − y, θ)e−ρydy

=

(
1 + q

(
1

ψ′(Φ(r)) (Φ(r)− θ)
− 1

ψ′(−η) (θ + η)

))
1

θ + ρ

(
e(θ+ρ)a − 1

)
e−ρz

+
q

ψ′(−η)(θ + η)(ρ− η)

(
ea(ρ−η) − 1

)
e−ρz

− q

ψ′(Φ(r))(Φ(r)− θ)(ρ+ Φ(r))

(
ea(Φ(r)+ρ) − 1

)
e−ρz.

From the calculations of these integrals, we can conclude that

ka(z) = δ − rz − λ

ρ
+Bae

−ρz,

where Ba is a constant in terms of the those derived above and it depends on a.

When a = 0, we simply need to replace the expression for va in (4.49) with v0 defined

in (4.33), which gives that for any z ≥ 0,

k0(z) = δ − rz − λ

ρ
+ λe−ρz

(
1

ρ
+

pq

r + q

Φ(r + q)

Φ(r + q) + ρ

)
.
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One thing worth pointing out is that the reason that the expression (4.50) for ka is so

relatively simple is the fact that U is a Cramér-Lundberg process with exponential jumps.

Lemma 4.9. For z ∈ R, the stopped process
(
Z

(a)

t∧τ+a

)
t≥0

is a Pz−martingale.

Proof. Define a new processH = (Ht)t≥0 asHt = Ex [M |Ft] whereM is a F∞-measurable

and integrable random variable, then it is well known that H is a martingale. Based on this,

we prove the result as follows.

For x ∈ R, let M = e
−A

τ+a va(Uτ+a ) + pq
∫ τ+a
0

1{Us<0}e
−Asds and by plugging this into

H we have

Ht = Ex

[
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

∣∣∣Ft

]

= Ex

[
1{τ+a ≤t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)∣∣∣∣∣Ft

]

+ Ex

[
1{τ+a >t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)∣∣∣∣∣Ft

]
. (4.52)

The first expectation in the second equation of (4.52) can easily be simplified as

1{τ+a ≤t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)
(4.53)

since it is Ft−measurable.

For the second expectation, we split the calculation in two parts. For the first one,

Ex
[
1{τ+a >t}e

−A
τ+a va

(
Uτ+a

) ∣∣∣Ft

]
= Ex

[
1{τ+a >t}e

−r(t+(τ+a −t))−q
(∫ t

0 1{Us<0}ds+
∫ τ+a
t 1{Us<0}ds

)
va
(
Uτ+a

) ∣∣∣∣∣Ft

]

= Ex
[
1{τ+a >t}e

−At · e−r(τ
+
a −t)−q

∫ τ+a
t 1{Us<0}dsva

(
Uτ+a

) ∣∣∣Ft

]
= 1{τ+a >t}e

−AtEUt

[
e
−A

τ+a va
(
Uτ+a

)]
, (4.54)

where the last equation comes from the Markov property of U and A.

Then, for the second one, we derive that

Ex

[
1{τ+a >t}

∫ τ+a

0

1{Us<0}e
−Asds

∣∣∣Ft

]
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= Ex

[
1{τ+a >t}

(∫ t

0

1{Us<0}e
−Asds+

∫ τ+a

t

1{Us<0}e
−Asds

)∣∣∣Ft

]

= 1{τ+a >t}

∫ t

0

1{Us<0}e
−Asds+ Ex

[
1{τ+a >t}

∫ τ+a

t

1{Us<0}e
−Asds

∣∣∣Ft

]

= 1{τ+a >t}

∫ t

0

1{Us<0}e
−Asds+ Ex

[
1{τ+a >t}e

−At

∫ τ+a

t

1{Us<0}e
−(At−As)ds

∣∣∣Ft

]

= 1{τ+a >t}

[∫ t

0

1{Us<0}e
−Asds+ e−AtEUt

[∫ τ+a

0

1{Us<0}e
−Asds

]]
, (4.55)

where again we make use of the Markov property.

Following by plugging (4.53), (4.54) and (4.55) into (4.52), we have

Ht = 1{τ+a ≤t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)
+ 1{τ+a >t}e

−AtEUt

[
e
−A

τ+a va
(
Uτ+a

)]
+ pq1{τ+a >t}

[∫ t

0

1{Us<0}e
−Asds+ e−AtEUt

[∫ τ+a

0

1{Us<0}e
−Asds

]]

= 1{τ+a ≤t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)

+ 1{τ+a >t}e
−AtEUt

[
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

]

+ pq1{τ+a >t}

∫ t

0

1{Us<0}e
−Asds

= 1{τ+a ≤t}

(
e
−A

τ+a va
(
Uτ+a

)
+ pq

∫ τ+a

0

1{Us<0}e
−Asds

)

+ 1{τ+a >t}

(
e−Atva (Ut) + pq

∫ t

0

1{Us<0}e
−Asds

)
= Z

(a)

t∧τ+a
,

which is a martingale as we discussed at that beginning.

This completes the proof.
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4.3 Partitioning the parameter space

So far we have defined three important functions: drift function k of the process L∗ in (4.6),

smooth pasting function J in (4.43) and drift function ka of the process Z(a) in Lemma 4.8.

In this section we discuss a partition of the parameter space. We focus on expressing the

parts in terms of the penalty parameter p ∈ (−∞, 0), and base it on the sign of the maximum

of k and k0.

First we consider the condition

k(x) = δ − λ

ρ
− rx+ λe−ρx

(
1

ρ
+ p

)
≤ 0 for all x ≥ 0. (4.56)

Note that, uniform in x ≥ 0, k is increasing in p and that for p > −δ/λ we have k(0) > 0.

Hence p̂ := p̂(δ, λ, ρ, r) ∈ (−∞,−δ/λ] exists so that (4.56) holds iff p ∈ (−∞, p̂].

To specify p̂, let us introduce xmax to denote the maximiser of k. It can be seen from

(4.6) that k(xmax) is a continuous and increasing function of p and k(∞) = −∞. Then, we

make the following partition and analysis:

• for p < −(r/λ+ 1)/ρ, k is concave with k′(0) > 0 and hence

xmax = −1

ρ
log

(
− r

λ(1 + ρp)

)
, k(xmax) = δ − r + λ

ρ
+
r

ρ
log

(
− r

λ(1 + ρp)

)
;

• for −(r/λ+ 1)/ρ ≤ p < −1/ρ, k is concave with k′(0) ≤ 0 and hence

xmax = 0, k(xmax) = δ + λp;

• for p ≥ −1/ρ, k is convex and decreasing hence again

xmax = 0, k(xmax) = δ + λp.

It follows that p̂ is the unique root on (−∞, 0) of the mapping

p 7→

 δ − r+λ
ρ

+ r
ρ
log
(
− r
λ(1+ρp)

)
p < −(r/λ+ 1)/ρ

δ + λp p ≥ −(r/λ+ 1)/ρ
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which yields

p̂ = p̂(δ, λ, ρ, r) =

− δ
λ

δ − (r + λ)/ρ ≤ 0

−1
ρ

(
r
λ
e(δρ−λ−r)/r + 1

)
δ − (r + λ)/ρ > 0.

(4.57)

Next let us consider k0 defined in (4.51). Note that k0 is identical to k except that p is

multiplied by a factor
q

r + q

Φ(r + q)

Φ(r + q) + ρ
∈ (0, 1).

So under the analysis with k above, we can immediately get that k0(x) ≤ 0 for all x ≥ 0

holds iff
q

r + q

Φ(r + q)

Φ(r + q) + ρ
p ≤ p̂

i.e. iff p ∈ (−∞, p̂0] where

p̂0 = p̂0(δ, λ, ρ, r) :=
r + q

q

Φ(r + q) + ρ

Φ(r + q)
p̂ ∈ (−∞, 0) (4.58)

with p̂ as defined in (4.57). Note that p̂0 < p̂.

4.4 Preliminary results

In this section, we provide several preliminary results which will be used in Section 4.5 to

prove the main results of this chapter.

Lemma 4.10. The set D := {x | v(x) = g(x)} is closed and is the optimal stopping region

in the sense that

τ ∗ := {t ≥ 0 |Ut ∈ D}

is an optimal stopping time for v.

Proof. Consider a 3-dimensional optimal stopping problem defined as

V (x,m, n) = sup
τ

Ex,m,n [G(Uτ , Aτ , Iτ )] , (4.59)

where It =
∫ t
0
1{Us<0}e

−Asds and G(x,m, n) = e−mg(x) + pqn. This trivariate process

(U,A, I) is Markovian with respect to the filtration generated by U . Also, problem V in
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(4.59) can regarded as the same problem in (4.3) under a 3-dimensional perspective with

m = n = 0. The resulting optimal stopping region is a subset of the state space R ×

[0,∞)× [0,∞) of this trivariate process. Let

D = {(x,m, n) |V (x,m, n) = G(x,m, n)}.

According to [38, Corollary 2.9 and Remark 2.10], the first entrance time τD of (U,A, I)

into D is optimal for (4.59) when the following three points are verified.

1) Ex,m.n [suptG(Ut, At, It)] <∞.

As shown at the beginning of subsection 4.2.1, for any t ≥ 0, L∗
t is a bounded process

under Px and when t → ∞, we have L∗
∞ = pq

∫∞
0
1{Us<0}e

−Asds Px−a.s., which

gives that Ex,m.n [suptG(Ut, At, It)] <∞.

2) G is upper semicontinuous.

The upper semicontinuous property of G automatically holds due to the fact that g is

upper semicontinuous and the discounting and integral terms are continuous.

3) V is lower semicontinuous. Now fix (x,m, n) and let ϵ > 0. Let τϵ be an ϵ/2 optimal

stopping time i.e.

Ex,m,n [G(Uτϵ , Aτϵ , Iτϵ)] = E
[
G(x+ Uτϵ ,m+ A(x)

τϵ , n+ I(x)τϵ )
]

≥ V (x,m, n)− ϵ

2
, (4.60)

where E = E0,0,0, A(x)
t = rt+ q

∫ t
0
1{x+Us<0}ds and I(x)t =

∫ t
0
1{x+Us<0}e

−A(x)
s ds.

Let us also define for l > 0 the stopping time

σϵ,l =

 τϵ if x+ Uτϵ ̸= 0

inf{t > τϵ |x+ Ut ≥ l} if x+ Uτϵ = 0.

Since U is regular upwards, we have that σϵ,l ↓ τϵ as l ↓ 0. Further since G is right

continuous in its first argument and continuous in its other two arguments, and the
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processes A(x) and I(x) are continuous, it also follows that

lim
l↓0

G
(
x+ Uσϵ,l ,m+ A(x)

σϵ,l
, n+ I(x)σϵ,l

)
= G

(
x+ Uτϵ ,m+ A(x)

τϵ , n+ I(x)τϵ

)
and using the integrability condition in 1) we also get, using dominated convergence

lim
l↓0

E
[
G
(
x+ Uσϵ,l ,m+ A(x)

σϵ,l
, n+ I(x)σϵ,l

)]
= E

[
G
(
x+ Uτϵ ,m+ A(x)

τϵ , n+ I(x)τϵ

)]
.

Hence an l̂ > 0 small enough exists so that with σϵ := σϵ,l̂ we have that

∣∣∣E [G (x+ Uσϵ ,m+ A(x)
σϵ , n+ I(x)σϵ

)]
− E

[
G
(
x+ Uτϵ ,m+ A(x)

τϵ , n+ I(x)τϵ

)] ∣∣∣ ≤ ϵ

2
.

(4.61)

Hence we now have that, the first inequality by (4.61) and the second by (4.60)

E
[
G
(
x+ Uσϵ ,m+ A(x)

σϵ , n+ I(x)σϵ

)]
≥ E

[
G
(
x+ Uτϵ ,m+ A(x)

τϵ , n+ I(x)τϵ

)]
− ϵ

2

≥ V (x,m, n)− ϵ

2
− ϵ

2
= V (x,m, n)− ϵ.

Next, let {(xk,mk, nk) ; k ≥ 0} be any sequence which converges to (x,m, n) when

k tends to infinity. Then,

V (xk,mk, nk) ≥ Exk,mk,nk
[G(Uσϵ , Aσϵ , Iσϵ)]

= E
[
G(xk + Uσϵ ,mk + A(xk)

σϵ , nk + I(xk)σϵ ))
]
, (4.62)

where the inequality comes directly from the definition of V .

By letting k → ∞ in (4.62), it follows that

lim inf
k→∞

V (xk,mk, nk) ≥ lim inf
k→∞

E
[
G(xk + Uσϵ ,mk + A(xk)

σϵ , nk + I(xk)σϵ )
]

≥ E
[
lim inf
k→∞

G(xk + Uσϵ ,mk + A(xk)
σϵ , nk + I(xk)σϵ )

]
= E

[
G(x+ Uσϵ ,m+ A(x)

σϵ , n+ I(x)σϵ )
]

= Ex,m,n [G(Uσϵ , Aσϵ , Iσϵ)] ,

where second inequality results from Fatou’s Lemma and the first equation is due to
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the continuity of G by construction of σϵ which let us avoid the discontinuity G has

when its first argument crosses zero. So together with (4.60) and letting ϵ → 0, we

have

lim inf
(xk,mk,nk)→(x,m,n)

V (xk,mk, nk) ≥ V (x,m, n),

which shows that the function V is lower semi-continuous.

Then, according to [38, Corollary 2.9 and Remark 2.10], τD is optimal for (4.59).

Further, for any (x,m, n), by the Markov property, we have

V (x,m, n) = sup
τ

Ex,0,0 [G (Uτ ,m+ Aτ , n+ Iτ )]

= sup
τ

Ex,0,0
[
e−(m+Aτ )g(Uτ ) + pq

∫ τ

0

1{Us<0}e
−(m+As)ds+ n

]
= e−m sup

τ
Ex,0,0

[
e−Aτ g(Uτ ) + pq

∫ τ

0

1{Us<0}e
−Asds

]
+ n

= e−mV (x, 0, 0) + n = e−mv(x) + n.

Hence, the stopping region S can be written as

S = {(x,m, n) | e−mv(x) + n = e−mg(x) + n} = {(x,m, n) | v(x) = g(x)}.

So for any (x,m, n), the optimal stopping time for V (x,m, n) is

τ ∗ := inf{t ≥ 0 |Ut ∈ D},

where D = {x | v(x) = g(x)}.

In particular, τ ∗ is also optimal for V (x, 0, 0) = v(x). This completes the proof.

Lemma 4.11. If k(x0) > 0, then x0 /∈ D.

Proof. When k(x0) > 0, due to the right-continuity of k and the fact that k is positive

on (−∞, 0), we can find some interval (x0 − h, x0 + h) on which k > 0 with h small

enough. Then define the first exit time from this interval as τh, i.e. τh = inf{t ≥ 0 |Ut /∈

(x0 − h, x0 + h)}. It follows by the expression for value function v in (4.18) that

v(x0) ≥ g(x0) + Ex0
[∫ τh

0

e−Ask(Us)ds− p

∫ τh

0

e−AsdN̂s

]
> g(x0),
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where the first inequality comes from the definition of v and the second one results from the

fact that k is positive on (x0 − h, x0 + h). Thus, x0 /∈ D.

4.5 Main results and proofs

Recall that for our optimal stopping problem (see (4.3))

v(x) = sup
τ∈T0,∞

Ex [L∗
τ ] ,

D = {x | v(x) = g(x)} is the optimal stopping region (see Lemma 4.10) and va is the value

function corresponding to an up-crossing strategy with level a. We have achieved a simple

expression for va as shown in (4.23) and for v0 in (4.33). Also, the drift function k of the

process L∗ and ka of the process Z(a) are defined in (4.6) and (4.50) respectively.

Now we present the two main results below.

Theorem 4.12. Let p ∈ (−δ/λ, 0). Denote by z1 the unique strictly positive root of k. Let a∗

denote the largest root of J in [z1,∞). We have that D = [a∗,∞) i.e. v = va∗ . Furthermore

we have smooth pasting: v′(a∗−) = g′(a∗) = 1.

Proof. The proof is broken down into a number of points as below.

1) D is a subset of [z1,∞) and D is not empty.

From Lemma 4.10 and Lemma 4.11 it follows that D ⊆ [z1,∞).

Further, assume that D is empty. Then for any x > 0, we have

v(x) = Ex [L∗
∞] = pqEx

[∫ ∞

0

1{Us<0}e
−Asds

]
< 0 < g(x),

which contradicts v ≥ g. Hence, D is not an empty set.

2) Define a∗ := infD. Then a∗ is a root of J defined in (4.43).

Again from Lemma 4.10 and Lemma 4.11, we have that a∗ ∈ D, which together with

step 1) gives that a∗ ∈ [z1,∞). Hence, va∗(x) = v(x) ≥ g(x) for all x ≤ a∗.

Then, as va∗(a∗) = g(a∗) by definition of the stopping set, together with that va∗ is C1
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on (0, a) shown in (4.40), it follows that

v
′

a∗(a
∗−) ≤ g

′
(a∗) = 1.

Assume that v′
a∗(a

∗−) < 1, which equivalently means J(a∗) > 0. Then by the

continuity of J on (0,∞) which can be seen from Lemma 4.7, there exists some

c, h > 0 such that

J(a) ≥ c, for all a ∈ (a∗, a∗ + h),

which means that v′
a(a−) ≤ 1− c for a ∈ (a∗, a∗ +h). By mean value theorem, there

exists ξa ∈ (a∗, a) so that va(a)− va(a
∗) = (a− a∗)v′a(ξa), which gives

va(a
∗) = a− (a− a∗)v′a(ξa).

So for a > a∗, va(a∗) ≤ v(a∗) = a∗ gives that v′a(ξa) ≥ 1.

Again, by mean value theorem and the fact that va is C2 on (0, a) shown in (4.40),

there exists some ξ̂a ∈ (ξa, a) such that

v′′a(ξ̂a) =
v′a(a−)− v′a(ξa)

a− ξa

≤ 1− c− 1

a− ξa
= − c

a− ξa
.

As a ↓ a∗, ξa ↓ a∗ and ξ̂a ↓ a∗, it follows that

a− ξa ↓ 0 and v′′a(ξ̂a) → −∞,

which contradicts the fact shown in (4.40) that v′′a is bounded away from −∞ uni-

formly in a on some interval around a∗.

Hence, it follows that v′
a∗(a

∗−) = 1, i.e. a∗ is a root of J .

3) va∗ ≥ g on R.

Note that va∗(x) = g(x) for all x ≥ a∗ while for x < a∗ we know that va∗(x) =

v(x) ≥ g(x) from step 2), which shows that va∗ ≥ g on R.

4) Z(a∗) is uniformly integrable.
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Recall from (4.48) that for any t ≥ 0,

Z
(a)
t = e−rtva(Ut) + pq

∫ t

0

1{Us<0}e
−Asds.

Then, by (4.40), it is clear that

Z
(a∗)
t ≥ e−rt

(
pq

r + q
+ C

(a∗)
1 eΦ(r+q)x

1{x≤0}

)
+ pq

∫ ∞

0

1{Us<0}e
−rsds

≥ pq

r + q
+
pq

r
(4.63)

where the second line comes from the fact that C(a∗)
1 > 0 as can be seen in (4.40).

Also, under Px with x ∈ R given, it is true that

va(x) ≤ max{B(a), x},

where B(a) = maxz≤a va(z) <∞. Then, it holds for any t ≥ 0 that

Z
(a∗)
t ≤ e−rtmax{B(a∗), x+ δt} ≤ B̃(a∗)

x (4.64)

due to that Ut ≤ x+ δt for any t ≥ 0 and here B̃(a∗)
x < ∞ depends only on x and a∗.

So it follows from (4.63) and (4.64) that Z(a∗) is uniformly integrable.

5) Z(a∗) is a supermartingale.

For the supermartingale property, recall the drift function ka∗ from (4.49) and (4.50).

We have proved in Lemma 4.9 that the stopped process (Z(a∗)

t∧τ+
a∗
)t≥0 is a Pz-martingale

for all z ∈ R and hence necessarily ka∗(z) = 0 for z < a∗. Due to the continuity

and piecewise C1 property of va∗ seen from (4.40) and in particular, the fact that va∗

connects with g in a C1 fashion as shown in step 2), it then holds that ka∗ defined by

(4.49) is continuous except at zero. Hence ka∗(a∗+) = ka∗(a
∗) = ka∗(a

∗−) = 0.

Further it is clear from (4.50) that ka∗(∞) = −∞, and that ka∗ is either concave or

convex. Then if k′a∗(a
∗+) ≤ 0, it holds that ka∗ ≤ 0 on [a∗,∞), from which it follows

that Z(a∗) is a supermartingale. Hence, we will show that k′a∗(a
∗+) ≤ 0 below.
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For 0 < z < a∗

0 = k′a∗(z) = δv′′a∗(z)− (r + λ)v′a∗(z) +

∫ ∞

0

v′a∗(z − y)λρe−ρydy,

where differentiation inside the integral can be justified since va∗ is continuous and

piecewise C1 and v′a∗ is bounded (see e.g. [44]). Then taking the limit for z ↑ a∗ we

get using dominated convergence and smooth pasting that

0 = δv′′a∗(a
∗−)− (r + λ) +

∫ ∞

0

v′a∗(a
∗ − y)λρe−ρydy. (4.65)

Similarly for z > a∗ we have va∗(z) = z and hence

k′a∗(z) = δv′′a∗(z)− (r + λ)v′a∗(z) +

∫ ∞

0

v′a∗(z − y)λρe−ρydy

= −(r + λ) +

∫ ∞

0

v′a∗(z − y)λρe−ρydy.

Further, taking the limit for z ↓ a∗ yields

k′a∗(a
∗+) = −(r + λ) +

∫ ∞

0

v′a∗(a
∗ − y)λρe−ρydy

and it follows from (4.65) that

k′a∗(a
∗+) = −δv′′a∗(a∗−).

Hence it is enough to show that v′′a∗(a
∗−) ≥ 0. To see this, note that for 0 < x < a∗

we have ∫ a∗

x

∫ a∗

y

v′′a∗(u)dudy = va∗(x)− x.

Assume that v′′a∗(a
∗−) < 0. Then for x close enough to a∗, we have v′′a∗ < 0 on (x, a∗)

and hence also va∗(x)−x < 0, which contradicts the fact given by step 2) that for any

x < a∗ we have va∗(x) = v(x) ≥ x. Hence, v′′a∗(a
∗−) ≥ 0, i.e. k′a∗(a

∗+) ≤ 0 and

thus Z(a∗) is a supermartingale.

6) D = [a∗,∞).

We have shown that va∗ ≥ g and Z(a∗) is a UI-supermartingale in steps 3) – 5). Then
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for any x ∈ R and any stopping time τ we have that

va∗(x) = Ex
[
Z

(a∗)
0

]
≥ Ex

[
Z(a∗)
τ

]
≥ Ex [L∗

τ ]

where optional sampling theorem is applied in the first inequality. This together with

step 2) implies that va∗(x) ≥ v(x) i.e. indeed va∗(x) = v(x) and D = [a∗,∞).

7) a∗ is the largest root of J .

Suppose that J has a larger root a0 > a∗. As shown in Lemma 4.7 that J is a mixture

of exponential functions and J(∞) = −∞, there would exist an a1 ∈ (a∗, a0) so that

J(a1) > 0. Then by a similar argument as in step 2), we can derive a contradiction,

which shows that a∗ must be the largest root of J .

This completes the proof.

In Theorem 4.12, a unique strictly positive root exists for k while in the following the-

orem, we show that when such root does not exist, an up-crossing strategy is still optimal

when the parameters satisfy certain conditions.

Theorem 4.13. In the following two cases, an up-crossing strategy is also optimal for (4.3).

(i) If p ≤ p̂0 then D = [0,∞) i.e. v = v0. In this case smooth pasting fails to hold i.e.

v′0(0−) ̸= g′(0+) = 1 unless p = − r+q
qΦ(r+q)

.

(ii) If p ∈ (p̂0, p̂] and δ − (r + λ)/ρ ≤ 0 then D = [a∗,∞) i.e. v = va∗ where a∗ >

0 denotes the largest root of J in (0,∞). Furthermore smooth pasting holds i.e.

v′(a∗−) = g′(a∗) = 1.

Proof. Ad (i). In this case, the verification argument in Theorem 4.12 can be applied. It

readily follows from (4.33) that v0(x) ≥ g(x) for all x ∈ R and by assumption k0(x) ≤ 0

for all x ≥ 0. Hence the same arguments used in steps 3)–6) in the proof of Theorem 4.12

show that v = v0.

Ad (ii). By Lemma 4.10, Lemma 4.11 and the same argument as in point step 1) of the

proof of Theorem 4.12, we know that D is a non-empty, closed set and D ⊆ [0,∞). Again,

we set a∗ = infD ≥ 0.
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First we show that J(0+) > 0. We have

p̂0 =
r + q

q

Φ(r + q) + ρ

Φ(r + q)
p̂ = −r + q

q

Φ(r + q) + ρ

Φ(r + q)

δ

λ
.

Since

r + q = ψ(Φ(r + q)) = δΦ(r + q)− λΦ(r + q)

ρ+ Φ(r + q)

we note that δΦ(r + q)− (r + q) > 0 and we can further simplify

p̂0 = −1

q

1

Φ(r + q)/(r + q)− 1/δ
,

which shows that since p > p̂0 we have together with equation (4.45) that

J(0+) =
1

q
− p

(
1

δ
− Φ(r + q)

r + q

)
> 0.

Next we show that a∗ > 0. If it were true that a∗ = 0 then we would have v(0) = g(0) =

0. But since J(0+) > 0, 1 − v′a(a−) has a positive limit as a ↓ 0 i.e. v′a(a−) has a limit

less than 1. Since va(a) = g(a) = a, for a close enough to 0 we have that va(0) > 0 which

contradicts with va(0) ≤ v(0) = g(0) = 0.

Now we can follow steps 2)–7) from the proof of Theorem 4.12 to arrive at the result.

4.6 Discussion and future work

Based on the partition from Section 4.3, we make an overview of the results from the above

Section 4.5 in terms of the optimal stopping region as follows:

Range of p δ − (r + λ)/ρ ≤ 0 δ − (r + λ)/ρ > 0

(−δ/λ, 0) [a∗,∞) where a∗ > 0 [a∗,∞) where a∗ > 0

(p̂,−δ/λ] — [a∗,∞) where a∗ > 0

(p̂0, p̂] [a∗,∞) where a∗ > 0 [a∗,∞) where a∗ > 0 for p closer to p̂0; or

[a∗, b∗] ∪ [c∗,∞) where 0 ≤ a∗ ≤ b∗ < c∗

for p closer to p̂.

(−∞, p̂0] [0,∞) [0,∞)
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Here, the symbol ‘—’ means that the corresponding case in the cell does not exist, while

those in bold italics denote the cases that we are not yet solved but have made rational

guesses which can be seen shortly below. We can see from above that there are seven

possible scenarios and for the case δ − (r + λ)/ρ ≤ 0, we have fully solved the problem;

while when δ − (r + λ)/ρ > 0, we are left with two cases to figure out. In the following

part, we make discussions together with numerical work on each of these scenarios.

In the numerical examples below, we work with a Cramér-Lundberg process U , as de-

fined in (4.1), with parameters

λ = 0.4, ρ = 1, q = 0.1, r = 0.1,

and we change the value of δ and p to distinguish possible cases.

4.6.1 When δ − (r + λ)/ρ ≤ 0.

In this subsection, we set δ = 0.5 so that δ − (r + λ)/ρ ≤ 0 holds. We provide three

examples where p belongs to (−δ/λ, 0), (p̂0, p̂] and (−∞, p̂0] respectively.

Example 4.14. When p = −1 ∈ (−δ/λ, 0).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
a

50

40

30

20

10

J

Figure 4.1: A plot of J when δ = 0.5 and p = −1.
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Figure 4.2: A plot of v = va∗ in red and g in blue when δ = 0.5 and p = −1. Here
a∗ = 2.0318.

As shown in Figure 4.1 that J is actually monotone and has a unique root a∗ = 2.0318

here, which by Theorem 4.12 is the optimal level. We can see from Figure 4.2 that smooth

pasting holds in x = a∗ and as we mentioned before, va∗ is not C1 across x = 0. ◁

Example 4.15. When p = −5 ∈ (p̂0, p̂].

0.5 1.0 1.5 2.0 2.5 3.0
a

20
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5

J

Figure 4.3: A plot of J when δ = 0.5 and p = −5.
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Figure 4.4: A plot of v = va∗ in red and g in blue when δ = 0.5 and p = −5. Here
a∗ = 1.022.

According to case (ii) in Theorem 4.13, same comments can be made here as for Fig-

ure 4.1 and Figure 4.2. One thing worth to obeserve here is that the value function in

Figure 4.4 is below the one from Figure 4.2, which is due to the fact that v is uniformly

decreasing in p. ◁

Example 4.16. When p = −15 ∈ (−∞, p̂0].

0 1 2 3 4 5 6
a

300

250

200

150

100

50

J

Figure 4.5: A plot of J when δ = 0.5 and p = −15.
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Figure 4.6: A plot of v = va∗ in red and g in blue when δ = 0.5 and p = −15. Here a∗ = 0.

According to case (i) in Theorem 4.13, D = [0,∞) here and Figure 4.6 shows that

smooth pasting breaks down as a consequence of the discontinuity in g. Also note from

Figure 4.5 that J is still monotone but no longer has a root. ◁

4.6.2 When δ − (r + λ)/ρ > 0.

In this subsection, we set δ = 0.6 so that δ − (r + λ)/ρ > 0 holds. There are four possible

scenarios in this case w.r.t different choice of p. We have solved two of them while we do

not yet know what happens for p ∈ (p̂0,−δ/λ]. We expect when p ∈ (p̂0,−δ/λ] that we get

to see optimal stopping regions at least as intricate as [a∗, b∗] ∪ [c∗,∞) and we will present

several examples to sparkle ideas.

Example 4.17. When p = −1 ∈ (−δ/λ, 0).

1 2 3 4 5
a

40
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10

J

Figure 4.7: A plot of J when δ = 0.6 and p = −1.
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Figure 4.8: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −1. Here
a∗ = 2.863.

It is nice to observe that Figure 4.7 and Figure 4.8 look quite similar to those in Exam-

ple 4.14 and Example 4.15. In particular, Figure 4.7 shows that J is monotone with a unique

root again. ◁

When p ∈ (p̂,−δ/λ]. We will give two examples with p close to p̂ and −δ/λ respec-

tively.

Example 4.18. When p = −1.52 ∈ (p̂,−δ/λ] and close to −δ/λ.

0.5 1.0 1.5 2.0
x
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0.01
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k

Figure 4.9: A plot of k when δ = 0.6 and p = −1.52.

89



1 2 3 4 5
a

40

30

20

10

J

Figure 4.10: A plot of J when δ = 0.6 and p = −1.52.
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Figure 4.11: A plot of ka∗ when δ = 0.6 and p = −1.52.

As can be seen from Figure 4.9 and Figure 4.10, J has a unique root which is greater

than the largest root of k. Then by define a∗ equal to the unique root of J , we make the

plot for the drift function ka∗ of Z(a∗) as shown in Figure 4.11, which holds that ka∗ = 0 on

(−∞, a∗] and ka∗ < 0 on (a∗,∞). Based on this these observations, we also make the plot

for va∗ in Figure 4.12 below.
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Figure 4.12: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −1.52. Here
a∗ = 2.8168.

Figure 4.12 looks quite similar to Figure 4.2, Figure 4.4 and Figure 4.8 where an up-

crossing strategy is optimal with a∗ defined as the largest root of J . Also, it can be seen that

va∗ is not differentiable at zero.
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0.5
k0

Figure 4.13: A plot of k0 when δ = 0.6 and p = −1.52.

We also make a plot for k0 and as shown in Figure 4.13, k0 is positive on a certain

interval, which indicates that a = 0 is not optimal.

Then, according to step 6) in Theorem 4.12, when choosing a∗ = 2.8168, Figure 4.12

shows that the smooth pasting holds at a∗ and va∗ ≥ g. Also, it can be seen from Figure 4.11

that supermartingale property for process Z(a∗) holds. Hence, it seems that D = [a∗,∞)

with a∗ = 2.8168 is still optimal even though we have not been able to prove that yet. ◁
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Example 4.19. When p = −1.67 ∈ (p̂,−δ/λ] and close to p̂.
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Figure 4.14: A plot of k when δ = 0.6 and p = −1.67.
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Figure 4.15: A plot of J when δ = 0.6 and p = −1.67.
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Figure 4.16: A plot of ka∗ when δ = 0.6 and p = −1.67.

Similar to those in Example 4.18, J has a unique root a∗ greater than the largest root of

k and ka∗ indicates that Z(a∗) is a supermartingale.
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Figure 4.17: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −1.67. Here
a∗ = 2.803.

We again make plots for va∗ and again, it looks almost the same as Figure 4.2, Figure 4.4,

Figure 4.8 and Figure 4.12.
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Figure 4.18: A plot of k0 when δ = 0.6 and p = −1.67.

Further, if letting a = 0, k0 is positive on a certain interval [0, x0), which means that Z(0)

is not a supermartingale, and hence an up-crossing strategy with threshold equal to zero is

not optimal.

Now similar to Example 4.18, by setting a∗ = 2.803, we can observe that Z(a∗) is a

supermartingale in Figure 4.16 and va∗ ≥ g in Figure 4.17, which again according to step

6), indicates that D = [a∗,∞) with a∗ = 2.803 remains to be optimal although we have not

been able to verify that yet. ◁

We also give two examples when p ∈ (p̂0, p̂] with p close to p̂ from left and p̂0 from right

respectively.

Example 4.20. When p = −1.7 ∈ (p̂0, p̂] and close to p̂.
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Figure 4.19: A plot of k when δ = 0.6 and p = −1.7.
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Figure 4.20: A plot of J when δ = 0.6 and p = −1.7.
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Figure 4.21: A plot of ka∗ when δ = 0.6 and p = −1.7.

One interesting observation here is that k has no root on [0,∞) while J has a unique

root. By setting a∗ equal to the unique root of J , we can see from the shape of ka∗ in

Figure 4.21. that the supermartingale property of Z(a∗) holds.
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Figure 4.22: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −1.7. Here
a∗ = 2.800.

Also, va∗ behaves similar to those before with an upcrossing strategy to be optimal and

it is also not differentiable at 0.
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Figure 4.23: A plot of k0 when δ = 0.6 and p = −1.7.

Figure 4.23 again implies that a = 0 is not optimal. For the same reasons as discussed in

Example 4.18 and Example 4.19, all these plots in Example 4.20 indicate that D = [a∗,∞)

for some a∗ > 0 would be optimal still though this has not yet been solved. ◁

Example 4.21. When p = −9 ∈ (p̂0, p̂] and close to p̂0. This is somehow the most interest-

ing example we look at.
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Figure 4.24: A plot of k when δ = 0.6 and p = −9.
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Figure 4.25: A plot of J when δ = 0.6 and p = −9.

As we can see from Figure 4.24 and Figure 4.25, both k and J are not monotone and k

has no root while J has two roots on (0,∞).
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Figure 4.26: A plot of ka∗ when δ = 0.6 and p = −9.
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Figure 4.27: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −9. Here
a∗ = 1.148.

By setting a∗ equal to the largest root of J , we make the plots for ka∗ and va∗ and from

Figure 4.27, one can observe that va∗ is below g at first and then goes above. To see this

more clearly, we make a plot for va∗ − g as follows.
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Figure 4.28: A plot of va∗ − g. Here a∗ = 1.148.

Figure 4.28 shows that va∗ is less than g on [0, x0) with x0 around 0.7. However, from

the definition of v, we have that v ≥ g and hence va∗ with a∗ = 1.148 is not equal to v, that

is, [1.148,∞) cannot be the optimal stopping region D.
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Figure 4.29: A plot of k0 when δ = 0.6 and p = −9.

We also make a plot for k0 in Figure 4.29. By [38, Theorem 2.2], if [0,∞) were the

optimal stopping region, then process Z(0) would be a supermartingale, which equivalently

means that k0 ≤ 0 would hold everywhere. However, it can be seen from Figure 4.29 that

k0 > 0 on a certain interval, from which it follows that Z(0) is not a supermartingale and

hence [0,∞) is not optimal.

So far we have shown that [0,∞) and [1.148,∞) are not optimal. Below we make

analysis of possible stopping strategies.

First note that D cannot be empty due to the same reason as shown in step 1) from the

proof of Theorem 4.12. Also, D cannot be of the form [a∗, b∗] with 0 ≤ a∗ < b∗ < ∞, as

for x large enough, [a∗, b∗] is so far away that due to the discounting this situation is very

similar to an empty stopping region and hence is not optimal.

Next, (a0, a∗) is not in D where a0 < a∗ = 1.148 denote the two roots observed in

Figure 4.25. This is because that for a ∈ (a0, a1), we have va(a) = a while v′a(a−) < 1 due

to J(a) > 0 as shown in Figure 4.25. It then follows that v(x) ≥ va(x) > x = g(x) for x

close enough to a, i.e. x /∈ D.

In fact,D cannot be of the form [a,∞) for a ≥ 0. We have already seen thatD ̸= [0,∞),

so below we consider a > 0. According to step 2) and 6) from the proof of Theorem 4.12,

if D = [a,∞), then a must be the root of function J , i.e., a equals either a0 or a∗. But

we have shown above that (a0, a∗) is not in D and D ̸= [1.148,∞), it then follows that an

up-crossing strategy is not optimal in this example.

Accordingly, we think that a stopping region of the form [a∗, b∗] ∪ [c∗,∞) for some

0 ≤ a∗ ≤ b∗ ≤ a0 and c∗ ≥ a∗ may be optimal here. Such guess may make sense in
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practice as well. When p becomes more negative, the insurer would choose to stop when

U is close to zero from above to avoid killing and the following penalty; while when U is

comparatively far away from negative half, it is also optimal to stop so that the profit can be

taken.

In sum, combining the results shown in Example 4.20 and Example 4.21 together where

p ∈ (p̂0, p̂], we expect that the optimal stopping region is either of the form [a∗,∞) as

implied by Example 4.20, or of the form [a∗, b∗]∪[c∗,∞) as suggested by Example 4.21. ◁

Example 4.22. When p = −12 ∈ (−∞, p̂0] and close to p̂.
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Figure 4.30: A plot of J when δ = 0.6 and p = −12.
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Figure 4.31: A plot of v = va∗ in red and g in blue when δ = 0.6 and p = −12. Here a∗ = 0.

Again, by case (i) in Theorem 4.13, we have D = [0,∞) and v0 is similar to 4.16, v0 is

not C1 across x = 0. While comparing Figure 4.30 with Figure 4.5, we can notice that J is

no longer monontone here. ◁
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4.6.3 Other discussions

As shown in Theorem 4.12 and Theorem 4.13, an up-crossing strategy is optimal in certain

cases. However, due to the existence of the penalty in payoff function g and an Omega

clock in the model, traditional up-crossing strategies may not always be the optimal choice

for some set of model parameters, e.g. see Example 4.21.

Consider penalty parameter p, we can immediately know that when p decreases, the op-

timal value function v must decrease as well, uniformly in x, and hence the optimal stopping

region can only grow as p decreases. This can be seen for instance, from Example 4.14 and

Example 4.15.

Consider the killing parameter q, if we let q → ∞, the bankruptcy constructed by the

Omega clock would be reduced to classical ruin, i.e. when the first time U drops below 0,

ruin occurs and the insurer is forced to stop and left with the fine p < 0. Also note that p̂

given by (4.57) is independent of q while p̂0 → p̂ as q → ∞. Hence, based on our existing

results, we expect that a stopping region of the form D = [a∗,∞) with a∗ ≥ 0 would be

optimal for our optimal stopping problem if the Omega clock is replaced by classic ruin.
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