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In the context of loss-carry-forward taxation on the capital of an insurance company,
we introduce two tax processes, latent and natural tax processes and show they are
equivalent. This equivalence relation enables us to deal straightforward with the ex-
istence and uniqueness of the natural tax process, which is defined via an integral
equation, and allows us to translate results from one model to the other. We clarify
by our results the existing literature on tax processes. Using our equivalence relation,
we derive an explicit expression for the expected deficit at ruin and the maximum
surplus prior to ruin for the natural tax process when ruin happens before it reaches
some positive level. We explain the relation of this expression with the draw-down
literature. We introduce and solve two optimal control tax problems for a spectrally
negative Lévy risk process. The first one aims to find the maximum tax value function
and the tax strategy that achieves this. We prove a value function is the optimal value
by putting it through a verification lemma. We find that, when the Lévy measure has
a log-convex tail, the optimal tax strategy is a piecewise constant natural tax strategy.
We show, on a special case, that our solution agrees with the solution of an optimal tax
control problem considered in a previous literature. In the second optimal control tax
problem, we add the bail-out concept to the model such that ruin is not allowed. An
optimal strategy is defined as a tax and bail-out admissible strategy that maximises
the net profit of taxation. In order to find the optimal tax value in this model, we
introduce a new approach to find unknown fluctuation identities. Our work shows that
the function representing the net present value of tax can be uniquely characterised
by a PDE and a set of boundary conditions, and we use this to derive an explicit for-
mula for this function. We verify that, on special cases, our results agree with existing
results in the literature. We find, under no condition on the Lévy measure, that the
optimal strategy is a piecewise constant tax rate function and a bail-out process which
allows the capital to be injected back to zero whenever it becomes strictly negative.
We introduce a natural tax model with bail-outs when ruin is allowed if the deficit at
ruin exceeds some pre-specified level. We derive a new fluctuation identities for the
Lévy process reflected at its infimum. We use these identities and our new approach,
to find the net profit of taxation in this model. We do this under an assumption on
the Lévy process, that it has positive Gaussian coefficient in the unbounded variation
case.
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Chapter 1

Introduction

An insurance company usually monitors the evolution of the wealth, or surplus, that

it has over the time in order to manage its businesses in the market. This allows the

company to realise if it is gaining/losing money, or at risk of being in debt or bankrupt

at some point of time. For this reason, the change of the wealth in time is modelled

by the so called risk process. It refers to a collection of real valued random variables

indexed by a subset of the real line, where randomness comes from the possible random

events (or situations) that the company can face, and the indexed set interpreted as

time. If we denote this risk process by X = (Xt)t≥0, then Xt represents the capital of

the company at time t. From the paths of X, one can easily understand if the company

gains (when paths are increasing over time), or loses (when paths are decreasing). For

instance, as an insurance company receives claims, and hence loses for covering these

claims, then the paths of X are decreasing by downward jumps that represents the

amounts of these claims. Denote the running maximum of X by X t = sup0≤s≤tXs.

As an example for X and X, see figures 1.1a and 1.1b, respectively. The model

X can be modified in order to cover any desirable features. For example, when an

insurance company needs to pay out dividends of its surplus to its beneficiaries. De

Finetti in [20] introduced this dividend model, and argued that, for a fixed level b > 0,

any excess in capital of the barrier b is paid out to shareholders. That is, dividends

at time t are given by (b ∨ X t) − b, where we use the notation b ∨ a = max {b, a}.

Note that, the process X reflected at its supremum with initial value say, b, is given

by (b ∨X t) −Xt. Therefore, we can say that paying out dividends according to this

strategy is the same as reflecting the paths of X at the barrier b. The resulting paths

9
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(a) Path of a risk process X with X0 = 7.
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(b) The supremum process X.

Figure 1.1: Plot of a risk process X and its supremum X
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Figure 1.2: Paths of a risk process X (blue lines) and the associated tax process Uγ

(red lines) with X0 = 7 and γ = 0.4.

of X, which describes the reserve of the company after paying dividends, is given by

Ut := Xt − ((b ∨X t)− b) = Xt + b− (b ∨X t). (1.1)

Further, X can be modified to model the case where dividends are paid out at a given

fixed rate, say δ > 0, whenever the capital is above a pre-specified level, say b > 0.

This can be modelled by refracting the paths of X at the given level with a certain

angle. This means that, a linear drift at rate δ is subtracted from the paths of X

whenever it passes above level b. This modification is given in [31]. There is a class of

modified risk processes between the reflected and refracted processes, which we study

in this thesis and it is called tax processes. We give an example of a tax process, with

constant tax rate, in order to simplify the idea of a tax process, and note that, our

main tax model in this thesis is more general than this example. For a constant tax

rate γ ∈ (0, 1), we introduce the tax process Uγ : = (Uγ
t )t≥0 with

Uγ
t = Xt − γ

(
X t −X0

)
, t ≥ 0. (1.2)

Figure 1.2 shows how the process X is transformed to Uγ by the subtraction of taxes,

which can be seen as a partial reflection since γ < 1. That is, taxation with rate

γ < 1 is similar to paying out dividends at a weaker rate than reflection. Suppose that

X0 = b, and γ is not constant, in such a way that before X reaching level b, γ = 0,

and γ = 1 whenever X is above or equal to b, then, the two processes (1.1) and (1.2)

are equal.
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Looking at graph 1.2, it can be noticed that whenever the surplus process reaches a

new maximum, partial reflection occurs. The times of these partial reflections can be

understood to correspond to tax payments which happens only whenever the insurance

company is in a profitable situation. This regime is called in the literature loss-carry-

forward taxation. This phrase is explained as follows. Suppose that tax is due on an

income of a company, but this income is negative. In this case, the company is allowed

to carry this loss forward, and when it makes profit again, that previous loss can be

used to offset the current profit. This procedure is called a loss-carry-forward taxation

because it carries forward a tax loss at some time into a future time. A great deal of

literature exists in the study of loss-carry-forward tax process, and was introduced in

[2]. While γ is constant in some of these studies, like in [6], some authors extend γ to

be a function that depends on the surplus process X, such as [33]. In the latter article,

an unusual property of the process Uγ is, the tax rate function γ is a taxation at time t

that depends on X t, the running maximum of X, and not on the running maximum of

the process Uγ itself, U
γ

= sups≤t U
γ
s . That is, as explained in [1], the amount of tax

payments the company makes at time t is not determined by the amount of capital the

company has at that time but it depends on a latent capital level, namely X t, which

is the amount of capital that the company would have at time t, if no taxes were paid

out at all. For that reason, in this thesis, we define a new tax process V δ = (V δ
t )t≥0,

where δ is a tax rate function that depends on V
δ

t = sups≤t V
δ
s such that δ < 1. We call

V δ a natural tax process or a tax process with natural tax rate δ, and Uγ a latent tax

process or the tax process with latent tax rate γ (see [1]). Whereas latent and natural

tax processes look quite different when considering their definitions, it appears that

these two classes of tax processes are essentially equivalent. This observation has not

been noticed in the literature before. In fact, this equivalence relation entitles us to

deal in a straightforward way with the existence and uniqueness of the natural tax

process, and again no one has studied this point before.

It is known that a risk process X has the Markov property when the future states of

the process depends only upon the present state, not on the past states that preceded

it. When X is modelled by a Markov process, we have the advantage that the two-

dimensional process (V δ, V
δ
) is Markov. This advantage and the equivalence relation

that we found between the two tax processes Uγ and V δ enables us, for the first
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time in literature, to easily translate results derived for the latent tax process into

results on the natural tax process, or vice versa, and present them in two dimensional

expressions.

A risk process X belongs to a large class of random functions which is called

stochastic processes. The literature is rich in various categories of stochastic processes

based on their properties, and Lévy processes are one of them. In particular, in

recent actuarial literature, see for example [29], the surplus of an insurance company

is described as spectrally negative Lévy process. It is a Lévy process with downward

jumps only, which correspond to the claims that a company receives. This feature

makes it a suitable model for the capital process of insurance companies. Furthermore,

many fluctuation identities in terms of a class of functions known as scale functions

for spectrally negative Lévy process are available explicitly in literature, and this

helps us to find many expressions of interest. As an example, in this thesis, for a

natural tax process V δ driven by spectrally negative Lévy process X, we derived the

expected accumulated discounted tax payments in terms of scale functions for X. This

expression is counted until ruin time (i.e when the company runs out of businesses or

go bankrupt and mathematically defined as the first time that the tax process go below

the zero level), and which is called the tax value function. Also, we established an

analytic expression for the so-called overshoot identity, the expectation concerning the

overshoot of the tax process over a fixed level. We derived some useful applications of

this identity, such as the expected deficit at ruin and the expected aggregate surplus

prior to ruin, before reaching some positive level. Moreover, an expression for the

two sided exit problem is found, which is an identity concerning the exit of the tax

process from a half-line or a strip. This latter identity gives a company an indication

about the probability of ruin. For a spectrally negative Lévy process X, some research

like [60] and [37] studied problems related to a first downward crossing time of the

process X at a level that depends on X, the so called draw-down time. Authors in [65,

Section 4.1] explained how draw-down problems in models without tax is related to

loss-carry-forward tax ruin problems. We point out here that, [64] found the overshoot

identities of the latent tax process Uγ for a constant tax γ, by using this relation with

the draw-down literature. In this thesis, we show that these overshoot identities found

in [64] can be generalised for the latent tax process Uγ with γ a function of X. We
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present these results for the natural tax process V δ using our equivalence relation that

we proved between the two tax processes.

As this thesis title indicates, we deal with optimal control of taxation for spectrally

negative Lévy process. In general, an optimal control problem can be described briefly

as follows. For a risk process X, we choose a control π that belongs to some pre-

specified set of admissible controls depending on the problem that we study. The

dynamics of X are changed by this control π, the controlled process is denoted by

Uπ, e.g Uγ in (1.2) and a value function vπ is assigned to each control. The value

function vπ usually represents a cost or a reward corresponding to the control π, and

defined as an expectation of a random variable that depends on the control π and the

controlled process Uπ. The optimal control problem is characterised as, finding the

optimal value function, denoted by v∗, which is defined as the supremum (or infimum)

of all value functions among all possible controls, and finding the optimal control π∗

that achieves this value. In the optimal control problem that we study in this thesis,

the tax payments takes the role of the control π. Naturally, a government wants to

maximise the expected tax revenue and hence wants to know what is the tax strategy

which produces this. We study in this work this type of optimal control problem,

which was solved first in [57], where the control is the tax function γ that depends on

X and the controlled process is Uγ. In this thesis, we generalise the optimal control

problem they considered by defining a more general class of controls. Furthermore,

by using our equivalence relation that we proved between Uγ and V δ, we show that

the solution of our problem is a natural tax process which agrees with the solution

derived in [57] on a special case. Our work have lots of insight from the optimal control

problem studied in many cases for dividends, such as [43, 45]. The methodology we

use, which is the verification lemma for optimal control problem, and the condition we

need to solve the problem, which is a condition on the Lévy measure of the spectrally

negative Lévy process X, are similar to the ones considered for dividends.

It is normal to look at the optimal control problem for taxation when the govern-

ment is bailing-out the company. In this thesis, we also study the tax process V δ in the

case of adding bail-outs. We mean by the word ’bail-out’, when the government gives

money from the tax fund they gain to the bankrupt institution, and in our work it is an

insurance company, in order for this institution to survive and continue its businesses.
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Figure 1.3: Paths of a natural tax process V δ, with δ = 0.4, before (blue lines) and
after (red lines) adding the bail-out.

We denote by Kδ the bail-out process, which represents the capital injections made

by the government whenever the tax process V δ becomes strictly negative. Figure 1.3

shows an example of the process V δ before and after adding the bail-out. We study

two types of bailing-out. The first type, is when the bail-out is allowed forever. That

is, the government always support the company by injecting the capital, whenever the

aggregate process becomes below zero. We denote this tax process by V δ,∞, and we

call it a natural tax process with forced bail-out. We derive the net present value of

profit that the government can gain. The tax value function is denoted by vtax, and

we denote by vinj the total amount of bail-out injected by the government. Therefore,

the net present value of profit is given by vδ,∞ = vtax − η vinj, where η ≥ 1 represents

the rate of loss the government can have when bailing-out, and called a bail-out cost

factor. Authors in [3] and [4] found vtax, vinj and hence vδ,∞, respectively, when the tax

rate function is constant, while in our work, we generalise this expression for general

natural tax rate function.

We point out that, the method we follow in finding each value function is created

from the normal approach in literature of solving an optimal control problem by using

a verification lemma. Our results prove that, if a function f of two variables satisfies

some PDE and some boundary conditions, then it is the required value function; it

turns out those conditions uniquely specify f , and we use them to derive an explicit

formula for f . The first step in this method is that, we state and prove a lemma which

includes the conditions and the PDE that a function should satisfy in order to be the
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required value function. Then, assuming that a function f satisfies these conditions

and by using the Markov property of the process (V, V ), we derive a first order ODE

for this f . We solve this ODE and find a candidate value function, f . At last, we verify

that f satisfies all the conditions mentioned in the lemma given at the first step. We

find that our methodology is flexible, as by changing some boundary conditions, we

can find a different desirable value function. While we use our new approach to find

the value functions, we needed to derive a two dimensional formula for some function

satisfying some regularity conditions, which is called for the one dimensional case a

Meyer-Itô formula.

In this thesis, for the first time in literature, we introduced an optimal control

problem for the process V δ,∞, to find the maximum tax net profit value and the optimal

tax and bail-out strategy which produces this value. The second type of bailing-

out, is when the bail-out is allowed to some pre-specified limited level. That is, the

government is bailing-out the company only if the ruined process does not exceed a level

c < 0, otherwise the government chooses to stop the bail-out process. We call the tax

process in this type a natural tax process with limited bail-out. We derive, in a similar

way to the forced bail-out case, the net present value of tax profit that the government

make and we denote it by vδ,−c. Moreover, we find that vδ,∞ = limc↓−∞ v
δ,−c.

This thesis is organised as follows. In Chapter 2, we present some background on

general Lévy processes, then especially on spectrally negative Lévy process and their

scale functions.

In Chapter 3, we clarify the equivalence relation between the two tax processes

that we defined above, a latent tax process Uγ and the corresponding natural tax

process V δ. This is proved in Theorem 3.2.3, which allows us to use the corresponding

results given in [33], for the latent tax processes, in deriving results for the natural tax

process. We illustrate in the examples section, an existing natural tax process and a

relation of our work with an existing literature.

In Chapter 4, we state and prove Theorem 4.1.2, which gives an Itô expansion for

a two dimensional function defined on some specific space. This theorem will be used

to prove many results all over the next chapters. Moreover, it allows us to establish,

for the process (V δ, V
δ
), an analytic expression of its overshoot over a certain level in

terms of some given operator and the scale function. This work is in Theorem 4.1.4, in
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which we obtain an expression for the expectation concerning the overshoot of V δ over

some level c, and the maximum V
δ

prior to crossing that level, when crossing level

c happens before reaching some positive level a. In addition, we use Theorem 3.2.3

to establish an explicit expression for that expectation in the case c = 0. Then, we

provide some useful applications of the derived formula. In Section 4.3, we introduce

our new approach to obtain useful identities of the natural tax process which will be

implemented to find the net present tax value function in Chapter 6 and 7.

In Chapter 5, we introduce and solve a more general control problem than the one

studied in [57]. A verification lemma is proved and used to show that a piecewise

constant natural tax rate is an optimal strategy under suitable assumption imposed

on the Lévy measure. This optimal solution agrees with the one found in [57] on a

special case. Remarkably, we found out that Wang and Hu obtained a natural tax

process as the optimal solution to the problem of controlling a latent tax process.

In Chapter 6, we define a natural tax process together with the effect of the minimal

capital injections required to keep the surplus non-negative, where ruin is not allowed.

An algorithm is given in Section 6.2 to explain the construction of this tax process and

a proposition is proved to show its existence. The net present value of tax in this case

is derived, by our new approach given in Section 4.3, for a general natural tax rate

function. We verified at the end that our result agrees with [3] and [4] in the constant

tax case. For the first time in literature, an optimal control problem of the natural

taxation with forced bail-out case is introduced and solved, under no conditions on

the Lévy measure.

In Chapter 7, we study the same natural tax process with bail-out introduced in

Chapter 6 but in the case where ruin and injections are both allowed after ruin. The

surplus is injected back to zero whenever it becomes negative as long as the deficit

is above or equal some parameter c < 0. While we use in the previous chapter some

results of the reflected Lévy process given in [10], we derived in Section 7.2 our own

identities, such as the two sided-exit problem and the expected accumulated discounted

amount of capital injections. The net present value of tax payments in this case is

obtained in Section 7.3.

In Chapter 8, we give briefly, the progress in the study of loss-carry-forward tax in

general. We state in summary, the existing literature and the corresponding problems
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they addressed.



Chapter 2

Preliminaries

The aim of this chapter is to provide a short review of definitions and results on Lévy

processes. We also place emphasis on spectrally negative Lévy processes and scale

functions that will be used in this research.

2.1 Lévy processes

We first give the definition of a Lévy process as in [30, Definition 1.1].

Definition 2.1.1 (Lévy process). A process X = {Xt : t ≥ 0}, defined on a probabil-

ity space (Ω,F ,P), is said to be a Lévy process if it possesses the following properties:

i) The paths of X are P-almost surely right-continuous with left limits.

ii) P(X0 = 0) = 1.

iii) For 0 ≤ s ≤ t , Xt −Xs is equal in distribution to Xt−s.

iv) For 0 ≤ s ≤ t , Xt −Xs is independent of {Xu : u ≤ s}.

It is clear from part iv) that all Lévy processes satisfy the Markov property, which is

for each B ∈ B(R) and s, t ≥ 0,

P(Xt+s ∈ B|Ft) = P(Xt+s ∈ B|σ(Xt)),

where σ(Xt) is the smallest σ-algebra such that Xt is measurable. The strong Markov

property for Lévy processes is given by the next result.

19
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Theorem 2.1.2 ([30, Theorem 3.1]) Suppose that τ is a stopping time. Define on

{τ <∞} the process X̃ = {X̃t : t ≥ 0} where

X̃t = Xτ+t −Xτ , t ≥ 0.

Then, on the event {τ < ∞}, the process X̃ is independent of Fτ , has the same law

as X and hence in particular is a Lévy process.

Let Π be a Borel measure concentrated on R \ {0} such that∫
R\{0}

(1 ∧ x2)Π(dx) <∞.

According to Theorems 1.3 and 1.6 in [30], there exist parameters (a, σ2, Π) with

a ∈ R, σ ≥ 0 called the Gaussian coefficient, and a measure Π, that identify the

distribution of Xt via its characteristic function

E[eiθXt ] = e−tΨ(θ),

where

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθx1{|x|<1})Π(dx).

It is known that every Lévy process is a semi-martingale, see Theorem 9 in [52].

The next result gives a condition that clarifies when a Lévy process X is of bounded

variation.

Lemma 2.1.3 ([30, Lemma 2.12]) A Lévy process with triplet (a, σ2, Π) has paths

of bounded variation if and only if

σ = 0 and

∫
R
(1 ∧ |x|)Π(dx) <∞.

A Lévy process is càdlàg, that is, right-continuous process with left limits. There-

fore, the only type of discontinuities it can have is jump discontinuities. Let the jump

of a Lévy process X at time t be defined as

∆Xt = Xt −Xt−.

In order to explain the jump structure of a Lévy process X, and also excursions of X,

we need to understand the meaning of a Poisson random measure and a Poisson point

process.
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Definition 2.1.4 ([30, Definition 2.3]) Let (S,S, η) be an arbitrary sigma-finite

measure space and (Ω,F ,P) a probability space. Let N : Ω× S → {0, 1, 2, ...} ∪ {∞}

in such a way that the family {N(., A) : A ∈ S} are random variables defined on

(Ω,F ,P). Then N is called a Poisson random measure on (S,S, η) (or Poisson random

measure on S with intensity η) if

(i) for mutually disjoint A1, ..., An in S, the variables N(A1), ..., N(An) are indepen-

dent,

(ii) for each A ∈ S, N(A) is Poisson distributed with parameter η(A), where we allow

0 ≤ η(A) ≤ ∞,

(iii) N(.) is a measure P almost surely.

The supporting random set of points of N on (S,S, η) is called Poisson point process

on S with intensity η.

Let A ∈ B[0,∞)× B(R \ {0}) and define

N(A) = card {(t,Λ) ∈ A, t > 0} ,

where card means the cardinality of a set, and which can be written as,

N(A) =
∑

0≤s≤t

1Λ(∆Xs).

Then, by Lemma 2.2 in [30], N : B[0,∞)×B(R\{0})→ {0, 1, 2, ...}∪{∞} is a Poisson

random measure with intensity dt×Π(dx) that describes the jumps of a Lévy process

X.

The next result is a combination of Theorem 4.4 and Corollary 4.6 in [30]. It

generalizes Theorem 2.7 in [30] and gives the compensation formula for a Lévy process

X.

Theorem 2.1.5 Suppose φ : [0,∞)×R×Ω→ [0,∞) is a random time-space function

such that

(i) φ(t, x)[ω] is measurable,

(ii) for each t ≥ 0, φ(t, x)[ω] is B(R)×Ft-measurable,
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(iii) for each x ∈ R, with probability one, {φ(t, x) : t ≥ 0} is a left continuous process.

Then, for all t ≥ 0,

E
(∫

[0,t]

∫
R
φ(s, x)N(ds× dx)

)
= E

(∫
[0,t]

∫
R
φ(s, x)Π(dx)ds

)
(2.1)

with the understanding that the right-hand side is infinite if and only if the left-hand

side is. Moreover, if for all t ≥ 0,

E
(∫

[0,t]

∫
R
φ(s, x)Π(dx)ds

)
<∞,

then we have that

Mt :=

∫
[0,t]

∫
R
φ(s, x)N(ds× dx)−

∫
[0,t]

∫
R
φ(s, x)Π(dx)ds, t ≥ 0, (2.2)

is a martingale.

According to Theorem 42 in [52], a Lévy process X with characteristic triple

(a, σ2, Π) has a decomposition

Xt = σBt + at+

(∫
[0,t]

∫
{|x|<1}

xN(ds× dx)− t
∫
{|x|<1}

xΠ(dx)

)
+
∑

0<s≤t

∆Xs1{|∆Xs|≥1}, (2.3)

where B is a Brownian motion, N is a Poisson random measure with intensity dt ×

Π(dx), such that for any A ∈ B[0,∞) × B(R \ {0}), N(A) is a Poisson process

independent of B.

A spectrally negative Lévy process is a Lévy process without upward jumps. We

give an example of this type of processes, which is explained in details in Section 1.3.1

[30].

Example 2.1.6 Cramér-Lundberg process. Suppose that the capital of an insur-

ance company is modelled as X at time t

Xt = X0 + c t−
Nt∑
i=1

ξi,

where X0 denotes the initial surplus, c > 0 represents the premium rate, (Nt)t≥0

is a Poisson process with rate λ, and the sequence (ξi)i≥1 consists of positive random

variables which represent the claims. They are independent and identically distributed
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with a common distribution F , and (Nt)t≥0, (ξi)i≥1 are independent. The summation

itself is called a compound Poisson process. The process X is a spectrally negative

Lévy process that has triplet (c− λ
∫ 1

0
xF (dx), 0, λ F (−dx)1{x<0}).

For the rest of this chapter, the process X will only be considered as a spectrally

negative Lévy process. We also exclude the cases of X having monotone paths. We

define the Lévy measure of X, ν(dx) := Π(−dx), as a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x2)ν(dx) <∞.

We define the Laplace exponent as follows;

ψ(θ) := −Ψ(−iθ).

That is, the Lévy triplet of X is given by (a, σ2, ν), and for θ ≥ 0,

ψ(θ) =
1

t
logE

(
eθXt

)
= −aθ +

1

2
σ2θ2 −

∫
(0,∞)

(
1− e−θx − θx1{0<x<1}

)
ν(dx).

One of the important properties of this Laplace exponent is that it is infinitely differ-

entiable and strictly convex on (0,∞). The right inverse of ψ is defined as

Φ(q) = sup{θ ≥ 0: ψ(θ) = q}, (2.4)

for q ≥ 0. Also, ψ′(0+) = E[X1] ∈ [−∞,∞) and the asymptotic behaviour of X can

be recognized by ψ′(0+) as in [30, Theorem 7.2]. So, ψ′(0+) > 0 if and only if X drifts

to infinity, ψ′(0+) < 0 if and only if X drifts to minus infinity, and ψ′(0+) = 0 if and

only if X oscillates. As given in [30, Theorem 3.6], the Laplace exponent ψ(θ) is finite

if and only if ∫
|x|≥1

e−θxν(dx) <∞.

Under this assumption, one can show that

Et(θ) = eθXt−ψ(θ)t, t ≥ 0,

is a unit mean martingale with respect to F. Then we can define a change of measure

as
dPθt
dP

∣∣∣∣
Ft

= Et(θ), 0 ≤ t <∞, θ ≥ 0,
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which means that for A ∈ Ft

Pθt (A) = E (1AEt(θ)) , 0 ≤ t <∞, θ ≥ 0,

which is called the Esscher transform. It is well known that (Xs,Pθs)0≤s≤t is also a

spectrally negative Lévy process, as shown in [30, p.83]. If we perform the change of

measure
dPΦ(q)

t

dP

∣∣∣∣∣
Ft

= Et(Φ(q)),

to the spectrally negative Lévy process (X,P), then the Laplace exponent of (X,PΦ(q))

is given by ψΦ(q)(θ) = ψ(θ+ Φ(q))− q. Note that, by the strict convexity of ψ and for

q > 0, ψ′Φ(q)(0+) = ψ′(Φ(q)) > 0. This implies that (X,PΦ(q)) drifts always to infinity

for q > 0.

For an F-stopping time τ , as t ∧ τ ≤ t, then by Doob’s optional sampling theorem,

[52, Theorem 16, p.9], for A ∈ Ft∧τ ,

Pθt (A) = E
[
1Ae

θXt−ψ(θ)t
]

= E
[
1Ae

θXt∧τ−ψ(θ)(t∧τ)
]
. (2.5)

2.2 Scale functions

In this section, we define the q-scale functions of X and state some of their properties

and significant results. The existence of these scale functions is proven in [30, Theorem

8.1], which is presented in the following theorem.

Theorem 2.2.1 There exist a family of functions W (q) : R→ [0,∞) and

Z(q)(x) := 1 + q

∫ x

0

W (q)(y) dy, for x ∈ R,

defined for q ≥ 0, such that the following hold:

i) For any q ≥ 0, we have W (q)(x) = 0 for x < 0 and W (q) is characterised on [0,∞)

as a strictly increasing and continuous function whose Laplace transform satisfies∫ ∞
0

e−βxW (q)(x) dx =
1

Ψ(β)− q
for β > Φ(q).

ii) Let ρ−0 = inf{t ≥ 0 : Xt < 0}, then for any x ∈ R and q ≥ 0

Ex[e−qρ
−
0 1(ρ−0 <∞)] = Z(q)(x)− q

Φ(q)
W (q)(x),
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where we understand q
Φ(q)

in the limiting sense for q = 0, so that

Px
(
ρ−0 <∞

)
=

1− ψ′(0+)W (x) if ψ′(0+) ≥ 0

1 if ψ′(0+) < 0.

(2.6)

iii) For any x ≤ a and q ≥ 0, let ρ+
a = inf{t ≥ 0 : Xt > a}, then

Ex[e−qρ
+
a 1(ρ−0 >ρ

+
a )] =

W (q)(x)

W (q)(a)
, (2.7)

and

Ex[e−qρ
−
0 1(ρ−0 <ρ

+
a )] = Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
, (2.8)

where Ex[·] = E[·|X0 = x].

If we let W
(q)

(y) =
∫ y

0
W (q)(z) dz, then the relation between W (q) and W

(q)
is given

by

Lemma 2.2.2 [10, Lemma 1] For y ∈ [0, a] and a > 0, it holds that

W
(q)

(y)

W
(q)

(a)
≤ W (q)(y)

W (q)(a)
.

For q = 0, we shall write W instead of W (0) and we call it the scale function instead

of the 0-scale function. It is known that, as shown in [30, Section 8.2], for q ≥ 0,

W (q)(x) = eΦ(q)xWΦ(q)(x), (2.9)

where it is clear that WΦ(q) is the scale function for the process (X,PΦ(q)). By relation

(2.9), it is proven in [44] that W (q) is log-concave on (0,∞) for all q ≥ 0. That is, for

q ≥ 0, log(W (q)(x)) is concave on (0,∞). It has been shown in [28, Lemma 2.3], that

for any q ≥ 0, W (q) is absolutely continuous with respect to the Lebesgue measure and

strictly increasing. We denote by W (q)′ the associated density. Moreover, we have the

following result.

Lemma 2.2.3 [28, Lemma 2.4] For each q ≥ 0, the scale function W (q) is contin-

uously differentiable if and only if at least one of the following three criteria holds,

(i) σ 6= 0

(ii)
∫

(0,1)
x ν(dx) =∞
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(iii) The tail of the Lévy measure, ν(x,∞) =
∫∞
x
ν(dr), is continuous.

And in the unbounded variation case, we have the next result.

Theorem 2.2.4 [16, Theorem 1] Suppose that X has a Gaussian component. For

each fixed q ≥ 0, the function W (q) is twice continuously differentiable on (0,∞).

By the help of (2.9), the asymptotic behaviour of the scale function at infinity is given

through the following result.

Lemma 2.2.5 [19, Lemma 3.3] For q ≥ 0, we have

lim
x↑∞

e−Φ(q)xW (q)(x) =
1

ψ′(Φ(q))
,

and

lim
x↑∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
, (2.10)

where the right hand side above is understood in the limiting sense limq↓0
q

Φ(q)
= 0 ∨

( 1
ψ′(0+)

) when q = 0.

Therefore, by the above lemma and as given in [35], when q > 0, the function

W (q)(x) behaves like the exponential function eΦ(q)x for large x. Thus, for q > 0,

limx→∞W
(q)′(x) =∞.

The behaviour of W (q) in the neighbourhood of the origin is given in the next

result.

Lemma 2.2.6 ([35, Lemma 1]) As x ↓ 0, the value of the scale function W (q)(x)

and its right derivative are determined for every q ≥ 0 as follows:

W (q)(0+) =


1

d
when σ = 0 and

∫ 1

0
xν(dx) <∞,

0 otherwise,

(2.11)

W (q)′(0+) =



2

σ2
when σ > 0,

ν(0,∞) + q

d2
when σ = 0 and ν(0,∞) <∞,

∞ otherwise,

(2.12)
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where d = a+
∫ 1

0
xν(dx) > 0 stands for the drift of X when it is of bounded variation.

Let Yt := Xt − It, where It = inf0≤s≤t(Xs ∧ 0). We call Y , the reflected process at

its infimum. The next result gives the analytical expression of the Laplace transform

of the entrance time of the reflected process Y into (a,∞) with a > 0.

Lemma 2.2.7 [50, Proposition 2] For a > 0, define T+
a := inf{t ≥ 0 : Yt > a}.

Let x ∈ [0, a], and q ≥ 0. Then we have

Ex
[
e−qT

+
a

]
=
Z(q)(x)

Z(q)(a)
.

Recall that ρ+
a = inf{t ≥ 0 : Xt > a} and ρ−0 = inf{t ≥ 0 : Xt < 0}. Through the

proof of Lemma 2.2.7 in [50], it is shown that

{e−q(t∧ρ
+
a ∧ρ−0 ) W (q)(Xt∧ρ+

a ∧ρ−0
), t ≥ 0}, (2.13)

and

{e−q(t∧ρ
+
a ∧ρ−0 ) Z(q)(Xt∧ρ+

a ∧ρ−0
), t ≥ 0} (2.14)

are martingales. Moreover, we have the following result which is proved in [10, Propo-

sition 2].

Lemma 2.2.8 Define

Z
(q)

(y) =

∫ y

0

Z(q)(z) dz = y + q

∫ y

0

∫ z

0

W (q)(w) dw dz, y ∈ R. (2.15)

If ψ′(0+) > −∞, then{
e−q(t∧ρ

−
0 )

[
Z

(q)
(Xt∧ρ−0

) +
ψ′(0+)

q

]
, t ≥ 0

}
(2.16)

is a martingale.

A key object which plays a central role in scale functions theory, is the excursion

measure, which helps to prove many fluctuation identities and results, within the

context of spectrally negative Lévy process. For example, the proof of Theorem 3.2.9

in Chapter 3 below shows how we use excursion measure to find the net present value

of taxation. The basic idea of excursion theory for a Lévy process is to describe

the successive sections of its trajectory, which make up excursions from its previous

maximum. This is explained in defining the excursion space below. In order to give

this definition, we need to introduce a new time-scale which locates the times at which

a Lévy process X creates new maxima, which we call a local time at the maximum of

X, and denote it by L.
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Definition 2.2.9 ([30, Definition 6.1]) A continuous, non-decreasing, [0,∞)-valued,

F-adapted process, L = {Lt : t ≥ 0}, is called a local time at the maximum if the

following hold.

(i) The support of the Stieltjes measure dL is the closure of the random set of times

{t ≥ 0 : X t = Xt}.

(ii) For every F-stopping time T such that XT = XT on {T <∞} almost surely, the

shifted process

{LT+t − LT : t ≥ 0}

is independent of FT on {T <∞} and has the same law as L under P.

Remark 1 Let X = sup0≤s≤tXs, then L = X satisfies Definition 2.2.9.

The inverse local time, L−1 := {L−1
t : t ≥ 0}, is defined in [30, Section 6.2] as

L−1
t :=

inf{s > 0 : Ls > t} if t < L∞

∞ otherwise,

(2.17)

where in this definition t is a local time and L−1
t is the real time at which X reaches

a new maxima.

The next result is the change of variables formula for Stieltjes integrals.

Lemma 2.2.10 ([54, Proposition 4.9]) Let A be an increasing, possibly infinite,

right-continuous function and for t ≥ 0,

Ct = inf{s > 0 : As > t}

is the right-continuous inverse of A. If f is a positive Borel function on [0,∞), then∫ ∞
0

f(u) dA(u) =

∫ A∞

0

f(Cs) ds.

Note that, we can use Lemma 2.2.10 with A = L, the local time of the process X at

the maximum.

We are now able to give the definition of an excursion space, which is based on

Section 2.3 in [19]. The space of excursions, E , is the space of real valued, right-

continuous paths with left limits, and which are killed at the first hitting time of
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(−∞, 0]. These paths are the excursions of X from its running supremum and denoted

by εt, where

εt = {εt(s) := XL−1
t
−XL−1

t−
+s : 0 < s ≤ L−1

t − L−1
t− },

whenever L−1
t − L−1

t− > 0. The height of each excursion ε is given by ε̄ = sups≥0 ε(s).

According to Definition 2.1.4, the process {(t, εt(s)) : t ≥ 0, 0 < s ≤ L−1
t − L−1

t− } is a

Poisson point process on [0,∞) × E with intensity dt × dn, where n is the excursion

measure defined on the space (E ,F), with F = σ(Et(s)). The n- measurable functional,

ε̄, has a very useful formula related with the scale function, given in [30, Chapter 8],

which is

n(ε̄ > x) =
W ′(x)

W (x)
, (2.18)

such that x is not a point of discontinuity in W ′.

Explicit forms of scale functions are found in many examples in the literature such

as [26]. Also, [30, Chapter 9] explains a method for generating many examples of

spectrally negative Lévy process such that one can compute their associated scale

functions explicitly. In [28, pp.157-181], several numerical methods with examples are

explained to compute scale functions for a general spectrally negative Lévy process.



Chapter 3

Tax processes

This chapter is taken from our published article [1] with some modification on the

assumptions that gives a slight generalisation on the results.

3.1 Introduction

We start this chapter by rigorously defining the type of tax processes that we are

interested in this thesis. First, we make some assumptions on X. We redefine X as

X t := X0 ∨ sup
0≤s≤t

Xs, t ≥ 0,

where we assume that X0 = x and X0 = x̄ such that x ≤ x̄. We assume that X is a

stochastic process where X is a continuous process. An example of such a process, is a

stochastic process with càdlàg paths and without upward jumps. Also, X is associated

with probabilities

Px,x̄ [·] = P
[
·|X0 = x,X0 = x̄

]
,

and

Px [·] = Px,x [·] .

In the loss-carry-forward taxation regime for the risk process X, we define the tax

process Uγ := (Uγ
t )t≥0 by

Uγ
t = Xt −

∫ t

0+

γ(Xs) dXs, t ≥ 0, (3.1)

where γ : [x̄,∞) → [0, 1) is a measurable function. This tax process was introduced

first in [33] for spectrally negative Lévy process X. Note that, the notation
∫ t

0+ =
∫

(0,t]

30
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means the integral over (0, t]. Due to the assumptions on X, every path t 7→ X t is

continuous, therefore, the integral in (3.1) is a well-defined Lebesgue-Stieltjes integral.

We call Uγ a latent tax process or the tax process with latent tax rate γ (see [1]).

We explain this latent tax process in the following way. For a small h > 0, in the

time interval [t, t+ h], a fraction γ(X t) of the increment X t+h−X t represents the tax

payment. These tax payments are made only whenever X reaches a new maximum

(which is whenever Uγ reaches a new maximum as proved in Lemma 3.2.1), which is

why we can see the taxation structure in (3.1) to be of the loss-carry-forward type.

Since γ < 1, this can be seen as partial reflection. Note that, the case γ = 1[b,∞)

corresponds to fully reflecting the path at the barrier b.

The motivation of this part of research started by [33], [53] and [57]. This was while

trying to understand the reason that the two tax value functions [57, Equation 5.7]

and [53, Equation 14] are different, although the two articles use the same latent

tax process Uγ. We noticed an unnatural property of the process Uγ, which is the

taxation at time t depends on X t, the running maximum of X, and not on the running

maximum of the process Uγ itself, U
γ

= sups≤t U
γ
s . Moreover, when X is modelled

by a Markov process, the process (Uγ, U
γ
) is not Markovian, and in order to have the

Markov property, one needs to consider the three-dimensional process (Uγ, U
γ
, X). In

this chapter, we introduce the tax process V δ = (V δ
t )t≥0, which satisfies the equation

V δ
t = Xt −

∫ t

0+

δ(V
δ

s) dXs, (3.2)

where V
δ

t = sups≤t V
δ
s and δ : [x̄,∞) → [0, 1) is a measurable function. As given in

[1], we call V δ a natural tax process or a tax process with natural tax rate δ. It can be

seen that (3.2) is an integral equation, and hence, it is not immediately clear whether

a process V δ exists and if so if it is uniquely defined. We will give, in this chapter, a

simple condition for existence and uniqueness of V δ. Remarkably, if we assume that X

is a Markov process and existence and uniqueness of the natural tax process V δ holds,

then we have the advantage that the two-dimensional process (V δ, V
δ
) is Markovian.

We realised that authors in [7] looked at tax processes with a natural tax rate in the

case where X is a Cramér-Lundberg risk process while they were studying the ruin

probability, though they did not provide a definition of the tax process in terms of an

integral equation and did not discuss existence and uniqueness of such a process. In
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the setting where X is a Cramér-Lundberg risk process, [68] and [18] considered a more

general class of natural tax processes than ours in which the associated premium rate

is allowed to be surplus-dependent. Although [68, Section 1] and [18, Equation (1.2)]

contain the definition (3.2) for the natural tax process, with δ = 0 and the function

c(·) being constant, respectively, neither paper mentions the question of existence and

uniqueness of the tax process.

Note that, most of the context of this chapter is copied from [1] verbatim except

the point that we present the results here for any x and x̄ such that x ≤ x̄, whereas

the results in our article only represents the case x = x̄. Moreover, Theorem 3.2.9 and

Remark 5 are added to the thesis, while they are not written in the article. In Section

3.2, Theorem 3.2.3 clarifies the equivalence relation between the two tax processes

(3.1) and (3.2). This relation enables us to translate results derived for Uγ into results

on V δ and vice versa, and by using this feature, some Corollaries of Theorem 3.2.3 are

proved. We give two examples for applying our result in Section 3.3.

Before we go to the next section, we emphasise that our assumptions allow for a

large class of stochastic processes for X that includes, amongst others, spectrally neg-

ative Lévy processes, spectrally negative Markov additive processes (see [8]), diffusion

processes (see [36]) and fractional Brownian motion. However, from a practical mod-

elling point of view, (3.1) and (3.2) might not, in all cases, be the right way to define

a taxed process. For instance, when one considers a Cramér-Lundberg risk process

where the company earns interest on its capital as well as pays tax according to a

loss-carry-forward scheme, then one should not work with a process of the form (3.1)

or (3.2), but instead define the tax process differently, as in [68]. Our definitions (3.1)

and (3.2) are practically suitable for modelling tax processes when the underlying risk

process without tax X has a spatial homogeneity property, which is the case for, for

instance, spectrally negative Lévy processes or spectrally negative Markov additive

processes.

3.2 The equivalence of two tax processes

In this section, we give the main result of the chapter, which is Theorem 3.2.3. This

theorem gives the equivalence relation between Uγ and V δ defined in (3.1) and (3.2)
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respectively. This equivalence allows us to deal in a rather straightforward way with

the existence and uniqueness of the natural tax process, which is something that

has not been dealt with before. In order to present our results, we will need to

consider the following ordinary differential equation, for a given measurable function

δ : [x̄,∞)→ [0, 1):

dyδx̄(t)

dt
= 1− δ

(
yδx̄(t)

)
, t ≥ 0,

yδx̄(0) = x̄.

(3.4)

We say that yδx̄ : [0,∞)→ R is a solution of this ODE if it is an absolutely continuous

function and satisfies (3.4) for almost every t. The next results are applicable for all

x̄ ≥ x.

Before we state and prove Theorem 3.2.3, we need to present first the following

lemmas. We first start with a lemma generalising a result from [33].

Lemma 3.2.1 Let H = (Ht)t≥0 be a stochastic process for which every path is mea-

surable as a function of time and such that Ht < 1 for every t ≥ 0. Define

Yt = Xt −
∫ t

0+

Hs dXs, t ≥ 0.

Then,

Y t = X t −
∫ t

0+

Hs dXs,

where Y t = sups≤t Ys. Moreover, {t ≥ 0 : Yt = Y t} = {t ≥ 0 : Xt = X t}.

Proof Since Ht < 1 for all t ≥ 0, the proof in [33, Lemma 2.1] works without

alteration.�

Lemma 3.2.2 Let δ : [x̄,∞)→ [0, 1) be a measurable function and assume that there

exists a unique solution yδx̄ of (3.4). Define γδx̄ : [x̄,∞)→ [0, 1) by γδx̄(s) = δ
(
yδx̄(s− x̄)

)
.

If there exists a solution V δ = (V δ
t )t≥0 to the integral equation

V δ
t = Xt −

∫ t

0+

δ(V
δ

r) dXr, t ≥ 0, (3.5)

then V
δ

t = yδx̄(X t − x̄) and hence V δ is a latent tax process with latent tax rate given

by γδx̄.
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Proof Suppose that V δ solves (3.5). By Lemma 3.2.1,

V
δ

t = X t −
∫ t

0+

δ(V
δ

r) dXr, t ≥ 0. (3.6)

We define Lt = X t − x̄ and we let L−1
a be its right-inverse, i.e.

L−1
a :=

inf{t > 0 : Lt > a} = inf{t > 0 : X t > a+ x̄}, if 0 ≤ a < L∞,

∞, if a ≥ L∞.

As t 7→ X t is continuous, then this implies

XL−1
a

= x̄+ (a ∧ L∞). (3.7)

Using respectively (3.6) for t = L−1
a = L−1

a∧L∞ , (3.7) and the change of variables

formula, Lemma 2.2.10, with r = L−1
b , we have for a ≥ 0,

V
δ

L−1
a∧L∞

= XL−1
a∧L∞

−
∫ L−1

a∧L∞

0+

δ(V
δ

r) dXr

= x̄+ (a ∧ L∞)−
∫ ∞

0+

1{r≤L−1
a∧L∞}δ(V

δ

r) dXr

= x̄+ (a ∧ L∞)−
∫ ∞

0

1{0<L−1
b ≤L

−1
a∧L∞}δ(V

δ

L−1
b

) db

= x̄+

∫ a∧L∞

0

(
1− δ

(
V
δ

L−1
b

))
db,

where for the last equality we used that L−1
b is strictly increasing on [0, L∞], which

follows because t 7→ X t is continuous. By the hypothesis that (3.4) has a unique

solution yδx̄, we deduce,

V
δ

L−1
a∧L∞

= yδx̄ (a ∧ L∞) = yδx̄

(
XL−1

a∧L∞
− x̄
)
, a ≥ 0, (3.8)

where the last equality follows by (3.7). As t 7→ X t is continuous, XL−1
Lt

= X t for all

t ≥ 0, which implies via (3.6) that V
δ

L−1
Lt

= V
δ

t for all t ≥ 0. So by invoking (3.8) for

a = Lt, we conclude that V
δ

t = yδx̄(X t − x̄) for all t ≥ 0.�

Now, we are ready to state and prove the main result in this chapter.

Theorem 3.2.3 Recall that X0 = x̄.

(i) Let Uγ be the tax process with latent tax rate γ, where γ : [x̄,∞) → [0, 1) is a

measurable function. Define γ̄x̄ : [x̄,∞)→ R by

γ̄x̄(s) = x̄+

∫ s

x̄

(1− γ(y)) dy, s ≥ x̄, (3.9)
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and consider its inverse γ̄−1
x̄ : [x̄,∞]→ [x̄,∞], with the convention that γ̄−1

x̄ (s) =

∞ when s ≥ γ̄x̄(∞). Define δγx̄ : [x̄, γ̄x̄(∞))→ [0, 1) by δγx̄(s) = γ(γ̄−1
x̄ (s)). Then,

U
γ

t = γ̄x̄(X t), t ≥ 0, (3.10)

and Uγ is a natural tax process with natural tax rate δγx̄.

(ii) Let δ : [x̄,∞) → [0, 1) be a measurable function and assume that there exists a

unique solution yδx̄(t) of (3.4). Define γδx̄ : [x̄,∞)→ [0, 1) by γδx̄(s) = δ
(
yδx̄(s− x̄)

)
.

Then, the integral equation (3.2) defining the natural tax process has a unique

solution V δ = (V δ
t )t≥0. Moreover,

V
δ

t = yδx̄(X t − x̄), t ≥ 0, (3.11)

and so the solution V δ to (3.2) is a latent tax process with latent tax rate given

by γδx̄.

Proof (i) Fix t ≥ 0. By Lemma 3.2.1, we have

U
γ

t = X t −
∫ t

0+

γ(Xr) dXr.

By applying the change of variable y = Xr, we obtain

U
γ

t = X t −
∫ Xt

x̄

γ(y) dy = γ̄x̄(X t),

where we recall that γ̄x̄(s) = x̄+
∫ s
x̄

(1− γ(y)) dy. Hence, γ̄−1
x̄ (U

γ

t ) = X t, and so

γ(X t) = γ(γ̄−1
x̄ (U

γ

t )) = δγx̄(U
γ

t ). It follows that Uγ is a natural tax process with

natural tax rate δγx̄ .

(ii) The uniqueness of a solution to (3.2), and the equality (3.11), follow directly from

Lemma 3.2.2. So it remains to prove the existence of a solution to (3.2). By the

hypothesis there exists a unique solution yδx̄ to (3.4). With γδx̄(z) = δ
(
yδx̄(z − x̄)

)
,

we define δ̄ : [x̄,∞)→ [0, 1) by

δ̄(z) = γδx̄
(
(γ̄δx̄)

−1(z)
)

= δ
(
yδx̄

((
γ̄δx̄
)−1

(z)− x̄
))

,

where (γ̄δx̄)
−1 is the inverse function of

γ̄δx̄(z) = x̄+

∫ z

x̄

(1− γδx̄(y)) dy. (3.12)
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By part (i), the tax process with latent tax rate γδx̄ is a natural tax process with

natural tax rate δ̄. Thus, it remains to show that δ̄(z) = δ(z) for z ≥ x̄.

Note that, γ̄δx̄ is an absolutely continuous function and hence (γ̄δx̄)
′ exists almost

everywhere. By (3.4) we have that, for z such that (γ̄δx̄)
′(z) exists,

d

dz

(
yδx̄((γ̄

δ
x̄)
−1(z)− x̄)

)
=
[
1− δ

(
yδx̄
(
(γ̄δx̄)

−1(z)− x̄
))] d

dz

(
(γ̄δx̄)

−1(z)
)

=
[
1− γδx̄

(
(γ̄δx̄)

−1(z)
)] d

dz

(
(γ̄δx̄)

−1(z)
)
.

Since by the inverse function theorem [51, Theorem 31.1],

d

dz

(
(γ̄δx̄)

−1(z)
)

=
1

(γ̄δx̄)′
(
(γ̄δx̄)−1(z)

) =
1

1− γδx̄
(
(γ̄δx̄)−1(z)

) ,
we see that

d

dz

(
yδx̄((γ̄

δ
x̄)
−1(z)− x̄)

)
= 1 a.e.,

and therefore, by the absolute continuity, for some constant c, we have that

yδx̄((γ̄
δ
x̄)
−1(z)− x̄) = z + c, z ≥ x̄.

Since (γ̄δx̄(x̄))−1 = x̄ = yδx̄(0), we get that c = 0. We conclude that δ̄(z) = δ(z)

for z ≥ x̄, and this completes the proof.�

This theorem states that a sufficient condition for existence and uniqueness of solutions

to (3.2) can be given in terms of a simple ODE. From the proofs given above, it is not

difficult to see that the existence and uniqueness of the ODE (3.4) is also a necessary

condition for existence and uniqueness of a solution to (3.2). Theorem 3.2.3 also gives a

precise relationship between the two types of tax processes. In particular, every latent

tax process is a natural tax process, though the corresponding latent and natural tax

rates may differ. Conversely, every well-defined natural tax process is also a latent

tax process. The next example illustrates this equivalence for piecewise constant tax

rates.

Example 3.2.4 Let X0 = X0 = x. Define the piecewise constant function f b by

f b(z) =

α, z ≤ b,

β, z > b,

(3.13)
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(b) x = 10, b = 20 and b′ = 16.

Figure 3.1: Plots of the risk process X (dashed line) and the associated latent tax pro-

cess U fb or equivalently natural tax process V fb
′

(solid line), where f b is the piecewise
constant function defined by (3.13) with α = 0.4 and β = 0.9. The dashed-dot lines
mark the values of b and b′.

where b > x = X0 and 0 ≤ α ≤ β < 1. Note that, the ODE (3.4) with δ = f b has a

unique solution, see e.g. Example 3.3.1. It is clear that the tax process with latent tax

rate f b differs from the tax process with natural tax rate f b, unless α = β or α = 0.

However, from Theorem 3.2.3 we deduce that the tax process with latent tax rate f b

is equal to the tax process with natural tax rate f b
′

for

b′ = (1− α)b+ αx.

Note that b′ depends on the starting point x, unless α = 0. Figure 3.1 contains two

plots in which an example of X and the corresponding tax process U fb , or equivalently

V fb
′
, are drawn. From this figure, we see that indeed the first time X reaches the level

b, is equal to the first time the tax process reaches the level b′.

We give the following remark about the natural tax process V δ.
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Remark 2 (i) Markov property. If X is a Markov process, then it follows

from the integral equation (3.2) for the natural tax process V δ that the pro-

cess (V δ, V
δ
) is Markov. One might expect that the equivalence between the

two types of tax processes should imply the same for (Uγ, U
γ
) where Uγ is an

arbitrary latent tax process, since we know by Theorem 3.2.3i that Uγ is also a

natural tax process. However, the corresponding natural tax rate is δγx̄ = δγ
X0

,

which depends upon the initial value of X. Looked at another way, although one

can recover X from the formula X t = γ̄−1
x̄ (U

γ

t ), this too depends on knowledge

of the initial value X0. For this reason, we do not obtain the Markov property

for (Uγ, U
γ
) in general.

(ii) An alternative definition of the natural tax process. It would also appear

to be reasonable to define a natural type of tax process by W κ = (W κ
t )t≥0 with

W κ
t = Xt −

∫ t

0+

κ(W
κ

s ) dW
κ

s ,

where κ : [x̄,∞) → [0,∞). However, due to Lemma 3.2.1, the process W κ is

actually equivalent to the natural tax process V δ, where κ = δ
1−δ . We believe

that describing this process in terms of the natural tax rate δ is more customary,

as it defines the tax rate as a proportion of the increments of capital prior to

taxation, rather than after taxation.

Next, we present and prove our results for the natural tax process V δ associated with

the spectrally negative Lévy process X. Before that, we recall first the results for the

latent tax process Uγ as given in [33]. In these results, for a > 0, the first passage

times are defined by σ+
a := inf{t > 0 : Uγ

t > a} and σ−0 := inf{t > 0 : Uγ
t < 0}. Note

also in these results, that X0 = X0 = x.

Theorem 3.2.5 [33, Theorem 1.1](Two sided exit problem) For any 0 ≤ x ≤

a and q ≥ 0, we have

Ex
[
e−qσ

+
a 1{σ+

a <σ
−
0 }

]
= exp

{
−
∫ a

x

W (q)′(y)

W (q)(y)(1− γ(γ̄−1
x (y)))

dy

}
.

Theorem 3.2.6 [33, Theorem 1.2](Net present value of tax paid until ruin)

For any x ≥ 0 and q ≥ 0, we have

Ex

[∫ σ−0

0+

e−qrγ(Xr)dXr

]
=

∫ ∞
x

exp

{
−
∫ t

x

W (q)′(γ̄x(s))

W (q)(γ̄x(s))
ds

}
γ(t) dt.
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The next two results are corollaries to Theorem 3.2.3.

Corollary 3.2.7 Let X be a spectrally negative Lévy process on the probability space

(Ω,F ,Px,x̄) such that Px,x̄(X0 = x,X0 = x̄) = 1. Let δ : [x̄,∞)→ [0, 1) be a measurable

function such that there exists a unique solution yδx̄ to (3.4). Let V δ be the tax process

with natural rate δ associated with the spectrally negative Lévy process X. Then, for

any 0 ≤ x ≤ x̄ < yδx̄(∞) and q ≥ 0, we have

Ex,x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]

=
W (q)(x)

W (q)(x̄)

∫ yδx̄(∞)

x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
δ(y)

(1− δ(y))
dy. (3.14)

Proof The taxation starts when the process V δ reaches x̄. So, using the strong

Markov property of the process (V δ, V
δ
), we have the following

Ex,x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]

= Ex,x̄

[∫ τ−0

τ+
x̄

e−qrδ(V
δ

r) dXr 1{τ+
x̄ <τ

−
0 }

]

= Ex,x̄

[
Ex,x̄

[∫ τ−0

τ+
x̄

e−qrδ(V
δ

r) dXr 1{τ+
x̄ <τ

−
0 }
|Fτ+

x̄

]]

= Ex,x̄

[
1{τ+

x̄ <τ
−
0 }
e−qτ

+
x̄ Ex,x̄

[
eqτ

+
x̄

∫ τ−0

τ+
x̄

e−qrδ(V
δ

r) dXr|Fτ+
x̄

]]

= Ex,x̄

[
e−qτ

+
x̄ 1{τ+

x̄ <τ
−
0 }

E
V δ
τ+
x̄

,V
δ

τ+
x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]]

= Ex,x̄
[
e−qτ

+
x̄ 1{τ+

x̄ <τ
−
0 }

]
Ex̄,x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]

=
W (q)(x)

W (q)(x̄)
Ex̄,x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]
,

where in the last equality, since the process V δ before reaching x̄ is just the process

X, we can use the third part of Theorem 2.2.1. Then, since by part ii in Theorem

3.2.3, V δ is a latent tax process with a latent tax rate given by γδx̄, where for z ≥ x̄,

γδx̄(z) := δ
(
yδx̄(z − x̄)

)
, we can apply Theorem 3.2.6 and get

Ex̄,x̄

[∫ τ−0

0+

e−qrδ(V
δ

r) dXr

]
= Ex̄,x̄

[∫ σ−0

0+

e−qr γδx̄(Xr) dXr

]

=

∫ ∞
x̄

exp

{
−
∫ t

x̄

W (q)′(γ̄δx̄(s))

W (q)(γ̄δx̄(s))
ds

}
γδx̄(t) dt. (3.15)
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Use the change of variables r = γ̄δx̄(s) and then t = (γ̄δx̄)
−1(y), then (3.15) equals∫ γ̄δx̄(∞)

x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− γδx̄(γ̄δx̄)−1(r))
dr

}
γδx̄(γ̄

δ
x̄)
−1(y)

(1− γδx̄(γ̄δx̄)−1(y))
dy.

From the proof of Theorem 3.2.3, part ii, we proved that γδx̄(γ̄
δ
x̄)
−1(s) = δ(s) for all

s ≥ x̄. Also, since γ̄δx̄(∞) = yδx̄(∞), therefore, we get the required result.�

Corollary 3.2.8 Suppose that we have the assumptions given in Corollary 3.2.7.

Then, for q ≥ 0 and 0 ≤ x ≤ x̄ < a < yδx̄(∞), we have

Ex,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

=
W (q)(x)

W (q)(x̄)
exp

{
−
∫ a

x̄

W (q)′(y)

W (q)(y)(1− δ(y))
dy

}
, (3.16)

where W (q)′ denotes a density of W (q) on (0,∞). On the other hand, if a ≥ yδx̄(∞),

then Ex,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= 0.

Proof From (3.11) we see that τ+
a = ∞ when a ≥ yx̄(∞). Hence, we can assume

without loss of generality that a < yδx̄(∞). By part ii of Theorem 3.2.3, we know that

V δ is a latent tax process with latent tax rate γδx̄. Hence, we can use Theorem 3.2.5

to conclude that,

Ex̄,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= Ex̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= exp

{
−
∫ a

x̄

W (q)′(y)

W (q)(y)
(
1− γδx̄

(
(γ̄δx̄)−1(y)

)) dy

}
,

where (γ̄δx̄)
−1 is the inverse of the function γ̄δx̄ given by (3.12). Note that in [33], the

additional assumption
∫∞

0
(1− γδx̄(z)) dz =∞ is made on the latent tax rate, but from

the proof of Theorem 1.1 in [33] it is clear that this assumption is unnecessary when

a < yδx̄(∞). In the proof of Theorem 3.2.3ii we showed that γδx̄
(
(γ̄δx̄)

−1(y)
)

= δ(y) for

all y ≥ x̄, so we get

Ex̄,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= exp

{
−
∫ a

x̄

W (q)′(y)

W (q)(y) (1− δ(y))
dy

}
.

In order to finish the proof, we use the strong Markov property of (V δ, V
δ
) similarly

as in the proof of Corollary 3.2.7.�

The next theorem gives the net present value of tax payments when initial values

x and x̄ belong to [0, a] for some 0 < a < yδx̄(∞). To prove this result, we adapt the

proof of [33, Theorem 1.2] which uses excursion theory. We will need this result in

Chapter 6.
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Theorem 3.2.9 Let X be a spectrally negative Lévy process on the probability space

(Ω,F ,Px,x̄) such that Px,x̄(X0 = x,X0 = x̄) = 1. Let δ : [x̄,∞)→ [0, 1) be a measurable

function such that there exists a unique solution yδx̄ to (3.4). Let V δ be the tax process

with natural rate δ associated with the spectrally negative Lévy process X. Then, for

q ≥ 0 and any 0 ≤ x ≤ x̄ ≤ a < yδx̄(∞), where a > 0, we have

Ex,x̄

[∫ τ−0 ∧τ
+
a

0+

e−qr δ(V
δ

r) dXr

]

=
W (q)(x)

W (q)(x̄)

∫ a

x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
δ(y)

(1− δ(y))
dy. (3.17)

Proof First, we show that

Ex̄,x̄

[∫ τ−0 ∧τ
+
a

0+

e−qrδ(V
δ

r) dXr

]
=

∫ a

x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
δ(y)

(1− δ(y))
dy.

Let Lt = X t − x̄ be the local time at the maximum for the process X under Px̄,x̄. For

simplicity of notations, let T = τ−0 ∧ τ+
a and Gt = L−1

Lt−. Then, since the process X

does not increase on the time interval (GT , T ), we have

Ex̄,x̄
[∫ T

0+

e−qr δ(V̄r) dX̄r

]
= Ex̄,x̄

[∫ GT

0+

e−qr δ(V̄r) dX̄r

]
= Ex̄,x̄

[∫ ∞
0+

1{r<GT } e
−qr δ(V̄r) dLr

]
= Ex̄,x̄

[∫ L∞

0

1{L−1
t <GT } e

−qL−1
t δ(V L−1

t
) dt

]
, (3.18)

where we use Lemma 2.2.10 in the last equality. Since t < L∞ inside the integral

(3.18), then by definition (2.17) and by (3.11), V L−1
t

= yδx̄(t). Also, since L−1
t is

strictly increasing on [0, L∞] and by Fubini’s theorem, (3.18) equals

Ex̄,x̄
[∫ L∞

0

1{t<LT } e
−qL−1

t δ(yδx̄(t)) dt

]
=

∫ L∞

0

Ex̄,x̄
[
e−qL

−1
t 1{t<LT }

]
δ(yδx̄(t)) dt

=

∫ L∞∧(yδx̄)−1(a)

0

Ex̄,x̄
[
e−qL

−1
t 1{t<L

τ−0
}

]
δ(yδx̄(t)) dt, (3.19)

where we get the last equality since we know that 1{t<LT } = 1{t<L
τ−0
}1{t<L

τ+
a
}, and

also, from (3.11), Lτ+
a

= Xτ+
a
− x̄ = (yδx̄)

−1(a). Moreover, since X is increasing, then

(yδx̄)
−1(a) = Xτ+

a
− x̄ ≤ X∞ − x̄ = L∞. Therefore, L∞ ∧ (yδx̄)

−1(a) = (yδx̄)
−1(a). Let
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ε be the excursion of the process V δ from its running maximum and ε̄t = sup0≤s≤t εs

and

A = {(s, ε̄s) : 0 ≤ s ≤ t, ε̄s > yδx̄(s)}.

Then A is a Poisson point process with parameter

η(A) =

∫
1A ds n(dε) =

∫ t

0

n(ε̄s > yδx̄(s)) ds.

Next, let τ = L−1
t and we perform the change of measure at τ ∧m = L−1

t ∧m, where m

is a finite deterministic time and so that according to (2.5), we have for any B ∈ Fτ∧m,

PΦ(q)
m,x̄,x̄(B) = Ex̄,x̄

[
1B e

Φ(q)(Xτ∧m−x̄)−q(τ∧m)
]
. (3.20)

Since {t < Lτ−0 } and {ε̄s ≤ yδx̄(s) for all 0 ≤ s ≤ t} represents the same event for any

t ≥ 0, then by (3.20) we have that

PΦ(q)
m,x̄,x̄

(
1{ε̄s≤yδx̄(s) for all 0≤s≤t∧Lm}

)
= Ex̄,x̄

[
1{ε̄s≤yδx̄(s) for all 0≤s≤t∧Lm}e

Φ(q)(Xτ∧m−x̄)−q(τ∧m)
]
. (3.21)

Since XL−1
t

= XL−1
t

, then t = XL−1
t
− x̄ = XL−1

t
− x̄. Then (3.19) becomes

∫ (yδx̄)−1(a)

0

e−Φ(q)t Ex̄,x̄
[
1{ε̄s≤yδx̄(s) for all 0≤s≤t}e

−qτ eΦ(q)(Xτ−x̄)
]
δ(yδx̄(t)) dt

=

∫ (yδx̄)−1(a)

0

e−Φ(q)t

× lim
m→∞

Ex̄,x̄
[
1{ε̄s≤yδx̄(s) for all 0≤s≤t∧Lm}e

Φ(q)(Xτ∧m−x̄)−q(τ∧m)
]
δ(yδx̄(t)) dt, (3.22)

where we use the dominated convergence theorem in the last equality since we have

that

|Xτ∧m| ≤ |Xτ∧m| ≤ (yδx̄)
−1(a).

Therefore, by (3.21), (3.22) equals∫ (yδx̄)−1(a)

0

e−Φ(q)t lim
m→∞

PΦ(q)
m,x̄,x̄

(
1{ε̄s≤yδx̄(s) for all 0≤s≤t∧Lm}

)
δ(yδx̄(t)) dt

=

∫ (yδx̄)−1(a)

0

e−Φ(q)t lim
m→∞

exp

{
−
∫ t∧Lm

0

nΦ(q)

(
ε̄s > yδx̄(s)

)
ds

}
δ(yδx̄(t)) dt

=

∫ (yδx̄)−1(a)

0

e−Φ(q)t exp

{
−
∫ t

0

W ′
Φ(q)(y

δ
x̄(s))

WΦ(q)(yδx̄(s))
ds

}
δ(yδx̄(t)) dt, (3.23)
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where we used (2.18) in the last equality. Recall now that

W ′
Φ(q)(y

δ
x̄(s))

WΦ(q)(yδx̄(s))
=
W (q)′(yδx̄(s))

W (q)(yδx̄(s))
− Φ(q).

Thus, (3.23) becomes∫ (yδx̄)−1(a)

0

e−Φ(q)t exp

{
−
∫ t

0

[
W (q)′(yδx̄(s))

W (q)(yδx̄(s))
− Φ(q)

]
ds

}
δ(yδx̄(t)) dt

=

∫ (yδx̄)−1(a)

0

exp

{
−
∫ t

0

W (q)′(yδx̄(s))

W (q)(yδx̄(s))
ds

}
δ(yδx̄(t)) dt

=

∫ (yδx̄)−1(a)

0

exp

{
−
∫ yδx̄(t)

x̄

W (q)′(z)

W (q)(z)(1− δ(z))
dz

}
δ(yδx̄(t)) dt

=

∫ a

x̄

exp

{
−
∫ y

x̄

W (q)′(z)

W (q)(z)(1− δ(z))
dz

}
δ(y)

1− δ(y)
dy,

where for the last two equalities, we use the change of variables, z = yδx̄(s) and then

y = yδx̄(t). In order to get (3.17), we use the strong Markov property of (V δ, V
δ
).�

Remark 3 If we let a ↑ yδx̄(∞) in Theorem 3.2.9, we have an alternative way of

proving the analytical expression of the net present value given in (3.14).

Remark 4 Note that, for x = x̄ ≥ 0, if we apply Corollary 3.2.7 for a constant tax

rate γ < 1, we get the expected discounted tax value function

vγ,q(x) := Ex,x

[∫ τ−0

0+

e−qrγ dXr

]

=
γ

1− γ

∫ ∞
x

(
W (q)(x)

W (q)(s)

)1/(1−γ)

ds,

which coincides with [6, Equation (3.2)].

3.3 Examples

In this section, we present two examples. The first one demonstrates existence of the

tax process V δ with progressive natural tax rate δ. The second example proves the

tax identity for the process V δ.

Example 3.3.1 When the tax rate increases with the amount of capital one has,

the taxation regime is typically called progressive. We will show that, when δ is an

increasing (in the weak sense) measurable function δ : [x̄,∞) → [0, 1), then the ODE
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(3.4) has a unique solution, which implies the existence and uniqueness of the natural

tax process with tax rate δ.

For existence, since δ is an increasing function, we have that

g(z) :=
1

1− δ(z)
, z ≥ x̄,

is a strictly positive, increasing measurable function, and hence integrable, so

G(y) :=

∫ y

x̄

g(z) dz, y ≥ x̄,

is absolutely continuous. Moreover, since G is continuous and strictly increasing, G−1

exists and, as G′ > 0 a.e., G−1 is absolutely continuous [15, Vol. I, p. 389]. Thus,

(G−1)′(t) exists for almost every t, and it follows that a solution to (3.4) is given by

yx̄(t) = G−1(t). This is because, by the inverse function theorem [51, Theorem 31.1],

it holds that

dG−1(t)

dt
=

1

g(G−1(t))
= 1− δ(G−1(t)), for a.e. t > 0,

and since G(x̄) = 0, we have G−1(0) = x̄.

For uniqueness, since δ is increasing, the right hand side of (3.4) is decreasing.

This guarantees uniqueness, as can be proved using, for instance, [27, Theorem 1.3.8].

Example 3.3.2 Assume we are in the setting of Corollary 3.2.8 where X0 = X0 =

x. We are interested here in the tax identity: a relationship between the survival

probability of the natural tax process V δ and the one of the risk process with out tax

X. To this end, let

φδ(x) = Px
(

inf
t≥0

V δ
t ≥ 0

)
and φ0(x) = Px

(
inf
t≥0

Xt ≥ 0

)
be the survival probability in the risk model with and without taxation, respectively.

If yδx(∞) < ∞, the process V δ cannot exceed the level yδx(∞). Since from every

starting level (and thus in particular from yδx(∞)), there is a strictly positive proba-

bility of V δ going below zero, a standard renewal argument shows that the survival

probability φδ(x) is zero in this case.

On the other hand, if yx(∞) = ∞, then we can apply Corollary 3.2.8 to get a

relation between the two survival probabilities. Namely, by letting q → 0 and a→∞
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in (3.16) and using the well-known expression for φ0(x) when ψ′(0+) > 0 as in (2.6),

we have that

φδ(x) = exp

{
−
∫ ∞
x

W ′(y)

W (y)(1− δ(y))
dy

}
= exp

{
−
∫ ∞
x

d ln(φ0(y))

dy
· 1

(1− δ(y))
dy

}
.

This agrees with [7, Proposition 3.1] for the special case where X is a Cramér-Lundberg

risk process, which confirms that in [7] natural tax processes are considered.

Remark 5 We explain the renewal argument used in Example 3.3.2 in the case

yδx(∞) <∞. Suppose that, on the same probability space, we take two paths, one of

them is the process X with dividends such that the dividend barrier is yδx̄(∞), and the

other path is the process V δ. This implies that the V δ path will lie below the X with

dividends path. Denote by Qx,yδx̄(∞) the probability of the process X with dividends

with dividend barrier yδx̄(∞) and starting point x, and by Px,x̄ the probability of the

process V δ which starts at x and begins tax when it reaches level x̄. Then, clearly we

have the relation between the two paths for the ruin probability as follows:

Px,x(ruin occurs) ≥ Px,x̄(ruin occurs) ≥ Qx,yδx̄(∞)(ruin occurs).

So, we only need to prove that Qx,yδx̄(∞)(ruin occurs) = 1. The path starts from x and

if we consider the upcrossing times of x, then the periods between these upcrossing

times are finite. Now define N by saying that N = n if and only if ruin occurs between

(n − 1)st and nth upcrossings, or N = ∞ if no ruin occurs. We know that, before

reaching level yδx̄(∞), the process is the Lévy processes X, so the path sections between

the (i−1)st and ith upcrossing times are identically independent distributed and each

has positive probability of having ruin occur. So N is geometric random variable and

hence finite a.s.



Chapter 4

Identities for natural tax processes

The expectation concerning the overshoot of a risk process X over some level c is a

well studied object in the actuarial literature. For instance, in [41], for a spectrally

negative Lévy process X, an analytic expression has been derived for the following

expectation

Ex
[
e−qρ

−
c f(Xρ−c

) 1{ρ−c <ρ+
a }
]
, (4.1)

where−∞ < c < a <∞, q ≥ 0, x ∈ (c, a], ρ−c := {t ≥ 0 : Xt < c}, ρ+
a := {t ≥ 0 : Xt > a}

and f : (−∞, c]→ R is a function satisfying some regularity conditions. In many appli-

cations of spectrally negative Lévy process, (4.1) appears, such as solving exit problems

for refracted Lévy processes in [31]. At some point in the work of Chapter 6, we needed

to have expression (4.1) for the natural tax process, V δ, and its maximum, V
δ
, in order

to find the net present value of taxation. In this chapter, we derive this expression by

using a similar technique to the proof of [41, Theorem 2]. The key difficulty in our

proof compared to the one in [41, Theorem 2], was the need to have a two dimensional

(extant second derivative) Meyer-Itô formula on a function that satisfies some specific

regularity conditions. In Section 4.1, we define the space of such functions and derive

the required Itô expansion. Then, we state and prove the main result for this chap-

ter, Theorem 4.1.4, in which we obtain an expression for the expectation concerning

the overshoot of V δ over some level c, and the maximum V
δ

prior to crossing that

level, when crossing level c happens before reaching some positive level. Then, we

use Theorem 3.2.3, to deduce an explicit expression for that expectation in the case

c = 0. In Section 4.2, we give some applications of Theorem 4.1.4. Further, we explain

the relation of some of these applications with the draw-down literature and a recent

46
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article [64]. Section 4.3 is devoted for explaining our new approach to find fluctuation

identities of interest for natural tax process.

4.1 Deficit at and maximum surplus prior to ruin

Recall the first passage times

τ−c = inf{t ≥ 0 : V δ
t < c} and τ+

a = inf{t ≥ 0 : V δ
t > a},

where c, a ∈ R. In this section, we derive the following expectation

Ex,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
) 1{τ−c <τ+

a }
]
, (4.2)

where τ−c is the time of ruin, −V δ
τ−c

is the deficit at ruin, and V
δ

τ−c
is the maximum

surplus prior to ruin, before the surplus reaching some level a > 0. First, we give a

space definition, which will be used in most of the next upcoming statements of our

results.

Recall that, we say a function f ∈ C1[b, a] when f and its first derivative are

continuous on (b, a), right-continuous at b and left-continuous at a. Also, we recall that

L1 is the space of measurable functions whose absolute value is Lebesgue integrable.

Definition 4.1.1 For b ≤ a < ∞ and c ≤ d < ∞, suppose that Y and Z are

stochastic processes, where Z is a continuous process of bounded variation, such that

Y0 ∈ [b, a] and Z0 ∈ [c, d]. Let ν be the Lévy measure of X. Let S[b,a]×[c,d] be the

function space consisting of finite sums of measurable functions f : Df → R, where

[b, a]× [c, d] ⊆ Df , and of the form f(y, z) = g(y)h(z) such that the following holds,

(I) (a) If Y is of unbounded variation, g ∈ C1[b, a] with the derivative being abso-

lutely continuous on [b, a] and having a density which is in L1 on [b, a].

(b) If Y is of bounded variation, g is absolutely continuous on [b, a] with a

locally bounded density on [b, a].

(II) There exists λ > 0 such that s 7→
∫∞
λ
g(s− θ) ν(dθ) is bounded on (b, a).

(III) h is absolutely continuous on [c, d] with a locally bounded density on [c, d].
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In order to prove most of our results in this section and the upcoming chapters,

we need a two dimensional (extant second derivative) Meyer-Itô formula on a function

f ∈ SR×R. For that reason, we state and prove the next theorem which gives an Itô

expansion for this specific f .

Theorem 4.1.2 Suppose that Y and Z are semi-martingales, where Z is a continuous

process of bounded variation. Let f : R× R→ R be in SR×R. Then,

e−qtf(Yt, Zt)− f(Y0, Z0)

=

∫ t

0+

−qe−qsf(Ys−, Zs) ds+

∫ t

0+

e−qs
∂f

∂y
(Ys−, Zs) dYs

+

∫ t

0+

e−qs
∂f

∂z
(Ys−, Zs) dZs +

1

2

∫ t

0

e−qs
∂2f

∂y2
(Ys−, Zs) d [Y, Y ]cs

+
∑

0<s≤t

e−qs
(
∆f(Ys, Zs)−

∂f

∂y
(Ys−, Zs)∆Ys

)
, (4.3)

where ∆Ys = Ys − Ys−, ∆f(Ys, Zs) = f(Ys, Zs) − f(Ys− , Zs) and
∂f

∂y
,
∂f

∂z
,
∂2f

∂y2
exist

as Radon-Nikodým derivatives.

Proof Since f ∈ SR×R, we can assume that f is of the form f(y, z) = g(y)h(z),

otherwise the proof follows by linearity. Suppose first that Y is of unbounded variation,

by the assumptions on g, we can use the extant second derivative Meyer-Itô formula

[52, Theorem 71] to have the expansion,

g(Yt)− g(Y0) =

∫ t

0+

g′(Ys−) dYs +
1

2

∫ t

0

g′′(Ys−) d [Y, Y ]cs

+
∑

0<s≤t

[g(Ys)− g(Ys−)− g′(Ys−)∆Ys] . (4.4)

Also, since Z is a continuous semi-martingale, then by the assumptions on h, we can

use [24, (2.5)] to have the expansion

h(Zt) = h(Z0) +

∫ t

0+

h′(Zs) dZs, (4.5)

where the local time term in the expansion, as in [24, (2.5)], vanishes because Z is

of bounded variation (see Corollary [52, p.230]). Now, as g(Y ) and h(Z) are semi-

martingales, we can apply the integration by parts formula [52, p. 68] twice, and get
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for t ≥ 0,

e−qtf(Yt, Zt)− f(Y0, Z0) = e−qtg(Yt)h(Zt)− f(Y0, Z0)

=

∫ t

0+

e−qsg(Ys−) dh(Zs) +

∫ t

0+

h(Zs) d[e−qsg(Ys)]s

+ [e−qtg(Yt), h(Zt)]t.

=

∫ t

0+

e−qsg(Ys−) dh(Zs) +

∫ t

0+

−qe−qsg(Ys−)h(Zs) ds

+

∫ t

0+

e−qsh(Zs) dg(Ys), (4.6)

where we used that [e−qtg(Yt), h(Zt)]t = 0 as h(Z) is a continuous process of bounded

variation. Substitute (4.5) and (4.4) in (4.6) to get expansion (4.3).

Now, suppose that Y is of bounded variation process, then by the assumptions on

g, we can use [52, Theorem 78] to get the expansion,

g(Yt)− g(Y0) =

∫ t

0+

g′(Ys−) dYs +
∑

0<s≤t

[g(Ys)− g(Ys−)− g′(Ys−)∆Ys] . (4.7)

Similarly, substitute (4.5) and (4.7) in (4.6), to have expansion (4.3).�

Remark 6 (i) Condition II in Definition 4.1.1 is not required for Theorem 4.1.2,

but it is needed to define the operator A, which will be defined next and used

during this thesis.

(ii) Although in the bounded variation case, the second derivative is not well defined,

the expansion (4.3) does not change. This is because in that case, we will have

σ from the quadratic variation part [Y, Y ], and σ = 0 in that case. Hence, the

term which involves the second derivative vanishes.

For f ∈ S[b,a]×[c,d], y ∈ [b, a] and z ∈ [c, d], and with the triple (µ, σ2, ν) that we

introduced in Section 2.1, we define the operators A and Γδ by,

Af(y, z) = µ
∂f

∂y
(y, z) +

σ2

2

∂2f

∂y2
(y, z)

+

∫ ∞
0+

[
f(y − θ, z)− f(y, z) + θ

∂f

∂y
(y, z)1{0<θ≤1}

]
ν(dθ), (4.8)

and

Γδf(y, z) =
∂

∂y
f(y, z) δ(z)− ∂

∂z
f(y, z)(1− δ(z)). (4.9)
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Note that, we will also use the operator A for a one variable function f ∈ S[b,a],

where S[b,a] is a one dimensional functional space defined as in Definition 4.1.1 with

f = g,

Af(y) = µf ′(y) +
σ2

2
f ′′(y)

+

∫ ∞
0+

[
f(y − θ)− f(y) + θf ′(y)1{0<θ≤1}

]
ν(dθ). (4.10)

Remark 7 Note that, since f ∈ S[b,a]×[c,d], then by [41, Lemma 4], the integral term

in Af(y, z) is well-defined.

The next corollary finds a two dimensional Itô expansion for f ∈ S[b,a]×[c,d].

Corollary 4.1.3 Suppose that Y and Z are semi-martingales, where Z is a continuous

process of bounded variation. Let Y0 ∈ [b, a] and Z0 ∈ [c, d]. Define the following first

passage times:

τ−b := inf {t ≥ 0 : Yt < b}, τ+
a := inf {t ≥ 0 : Yt > a}, κ−c := inf {t ≥ 0 : Zt < c}, and

κ+
d := inf {t ≥ 0 : Zt > d}.

Suppose that f ∈ S[b,a]×[c,d] and let T = τ−b ∧ τ+
a ∧ κ−c ∧ κ+

d . Then,

e−q(t∧T )f(Yt∧T , Zt∧T )− f(Y0, Z0)

=

∫ t∧T

0+

−qe−qsf(Ys−, Zs) ds+

∫ t∧T

0+

e−qs
∂f

∂y
(Ys−, Zs) dYs

+

∫ t∧T

0+

e−qs
∂f

∂z
(Ys−, Zs) dZs +

1

2

∫ t∧T

0

e−qs
∂2f

∂y2
(Ys−, Zs) d [Y, Y ]cs

+
∑

0<s≤t∧T

e−qs
[
∆f(Ys, Zs)−

∂f

∂y
(Ys−, Zs)∆Ys

]
, (4.11)

Proof Since f ∈ S[b,a]×[c,d], then f =
∑

k gk hk, where gk and hk for each k are

satisfying the regularity conditions on closed bounded intervals as given in Definition

4.1.1. Therefore, each gk and hk can be extended to functions g̃k and h̃k, respectively,

for each k, that satisfy their regularity conditions on the whole real line. For example,

if we define the following extensions, for each k ≥ 1,

g̃k(y) =


gk(y) if b ≤ y ≤ a,

gk(a) + g′k(a)(y − a) if y > a,

gk(b) + g′k(b)(y − b) if y < b,
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and

h̃k(z) =


hk(z) if c ≤ z ≤ d,

hk(d) if z > d,

hk(c) or z < c.

Then, we get a function f̃ : R× R→ R of the form f̃ =
∑

k f̃k =
∑

k g̃k h̃k such that

each f̃k satisfies the assumptions in Theorem 4.1.2 and we have that f̃ |[b,a]×[c,d] = f . So,

by applying Theorem 4.1.2 on each f̃k at t ∧ T , then by linearity we get the following

expansion of f̃ at t ∧ T ,

e−q(t∧T )f̃(Yt∧T , Zt∧T )− f̃(Y0, Z0)

=

∫ t∧T

0+

−qe−qsf̃(Ys−, Zs) ds+

∫ t∧T

0+

e−qs
∂f̃

∂y
(Ys−, Zs) dYs

+

∫ t∧T

0+

e−qs
∂f̃

∂z
(Ys−, Zs) dZs +

1

2

∫ t∧T

0

e−qs
∂2f̃

∂y2
(Ys−, Zs) d [Y, Y ]cs

+
∑

0<s≤t∧T

e−qs
[
∆f̃(Ys, Zs)−

∂f̃

∂y
(Ys−, Zs)∆Ys

]
.

As Y0 ∈ [b, a] and Z0 ∈ [c, d], f̃(Y0, Z0) = f(Y0, Z0), and since f̃ |[b,a]×[c,a] = f , we get

that,

e−q(t∧T )f̃(Yt∧T , Zt∧T )− f(Y0, Z0)

=

∫ t∧T

0+

−qe−qsf(Ys−, Zs) ds+

∫ t∧T

0+

e−qs
∂f

∂y
(Ys−, Zs) dYs

+

∫ t∧T

0+

e−qs
∂f

∂z
(Ys−, Zs) dZs +

1

2

∫ t∧T

0

e−qs
∂2f

∂y2
(Ys−, Zs) d [Y, Y ]cs

+
∑

0<s<t∧T

e−qs [f(Ys, Zs)− f(Ys−, Zs)] + e−q(t∧T )
[
f̃(Yt∧T , Zt∧T )− f̃(Y(t∧T )−, Zt∧T )

]
+

∑
0<s≤t∧T

e−qs
[
− ∂f

∂y
(Ys−, Zs)∆Ys

]
,

Now e−q(t∧T )f̃(Yt∧T , Zt∧T ) is in both sides, so we can delete it. Use that

f̃(Y(t∧T )−, Zt∧T ) = f(Y(t∧T )−, Zt∧T ),

and add e−q(t∧T )f(Yt∧T , Zt∧T ) to both sides, then we have expansion (4.11).�

We are now ready to state and prove the main result in this chapter, which gives

the expression for (4.2).
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Theorem 4.1.4 For a > 0, let −∞ < c < a < ∞ and x, x̄ ∈ (c, a] × (c, a] such

that x ≤ x̄. Let δ : [x̄,∞) → [0, 1) be a measurable function such that there exists a

unique solution yδx̄ to (3.4). Let q > 0 and V δ be the tax process with natural rate δ

associated with the spectrally negative Lévy process X. Let f : (−∞, c]× [c, a]→ R be

a measurable, locally bounded function, and of the form f(y, z) = g(y)h(z). Suppose

that there exists λ > a−c such that s 7→
∫∞
λ
g(s−θ) ν(dθ) is bounded on (c, a), and h is

an absolutely continuous with a bounded density on [c, a]. Let f̃ : (−∞, a]× [c, a]→ R

be an extension of f that lies in S[c,a]×[c,a] and of the form f̃(y, z) = g̃(y)h(z), where

g̃ is bounded on (−∞, a]. Then,

Ex,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= f̃(x, x̄) +

∫ x̄

c

(A− q)f̃(y, x̄)
[W (q)(x− c)
W (q)(x̄− c)

W (q)(x̄− y)−W (q)(x− y)
]
dy

+
σ2

2

[
f(c, x̄)− f̃(c+, x̄)

][
W (q)′(x− c)− W (q)(x− c)

W (q)(x̄− c)
W (q)′(x̄− c)

]
+
W (q)(x− c)
W (q)(x̄− c)

×

{
Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

]

− Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qsΓδf̃(V
δ

s, V
δ

s) dXs

]
− f̃(a, a)Ex̄,x̄

[
e−qτ

+
a 1{τ+

a <τ
−
c }
]

+ Ex̄,x̄
[
e−qτ

−
c
[
f(c, V

δ

τ−c
)− f̃(c+, V

δ

τ−c
)
]
1{V δ

τ−c
=c, τ−c <τ

+
a }

]}
.

Further, for the case x = c, if the paths of X are of bounded variation, then

Ec,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= f̃(c+, x̄) +
W (q)(0)

W (q)(x̄− c)

∫ x̄

c

(A− q)f̃(y, x̄)W (q)(x̄− y) dy

+
W (q)(0)

W (q)(x̄− c)
×

{
Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

]

− Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qsΓδf̃(V
δ

s, V
δ

s) dXs

]
− f̃(a, a)Ex̄,x̄

[
e−qτ

+
a 1{τ+

a <τ
−
c }
]}

,

whereas if the paths of X are of unbounded variation,

Ec,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= f(c, x̄). (4.12)

Proof Let T = τ−c ∧ τ+
a . Note that, T equals the stopping time defined in Corollary

4.1.3. This is because, according to the definition of V
δ
, we have τ−c ∧ κ−c = τ−c and
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τ+
a = κ+

a . Since V
δ

is a continuous process of bounded variation, and f̃ ∈ S[c,a]×[c,a],

then by Corollary 4.1.3, we have

e−q(t∧T )f̃(V δ
t∧T , V

δ

t∧T )− f̃(x, x̄)

=

∫ t∧T

0+

−qe−qsf̃(V δ
s−, V

δ

s) ds+

∫ t∧T

0+

e−qs
∂f̃

∂y
(V δ

s−, V
δ

s) dV δ
s

+

∫ t∧T

0+

e−qs
∂f̃

∂z
(V δ

s−, V
δ

s) dV
δ

s +
1

2

∫ t∧T

0

e−qs
∂2f̃

∂y2
(V δ

s−, V
δ

s) d
[
V δ, V δ

]c
s

+
∑

0<s≤t

e−qs
[
∆f̃(V δ

s , V
δ

s)−
∂f̃

∂y
(V δ

s−, V
δ

s)∆V
δ
s

]
, (4.13)

where we use the notations: ∆V δ
s = V δ

s − V δ
s− and for a stochastic process Z, (Zs)

c =

Zs −
∑

0<u≤s ∆Zu. From the definition of the natural tax process V δ, we have that

∆f̃(V δ
s− + ∆Xs, V

δ

s) = ∆f̃(V δ
s , V

δ

s),

and also by the decomposition of X in (2.3), for any s > 0

[
V δ, V δ

]c
s

= [X,X]cs = σ2 s.

Rearranging the terms in (4.13),

e−q(t∧T )f̃(V δ
t∧T , V

δ

t∧T )

= Mt + f̃(x, x̄) +

∫ t∧T

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

+

∫ t∧T

0+

e−qs
[∂f̃
∂z

(V δ
s−, V

δ

s)(1− δ(V
δ

s))−
∂f̃

∂y
(V δ

s−, V
δ

s)δ(V
δ

s)
]
dXs,

where

Mt =

∫ t∧T

0+

e−qs
∂f̃

∂y
(V δ

s−, V
δ

s) d
[
Xs − µs−

∑
0<u≤s

∆Xu1{|∆Xu|>1}
]

+

{ ∑
0<s≤t∧T

e−qs
[
∆f̃(V δ

s− + ∆Xs, V
δ

s)−
∂f̃

∂y
(V δ

s−, V
δ

s)∆Xs1{|∆Xs|≤1}
]

−
∫ t∧T

0+

∫ ∞
0+

e−qs
[
f̃(V δ

s− − θ, V
δ

s)− f̃(V δ
s−, V

δ

s) + θ
∂f̃

∂y
(V δ

s−, V
δ

s)1{0<θ≤1}
]
ν(dθ) ds

}

is a zero mean martingale.
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Take expectation, let t ↑ ∞, and since g̃ is bounded on (−∞, a], we can use the

dominated convergence theorem to get that

Ex,x̄
[
e−q(τ

−
c ∧τ+

a )f̃(V δ
τ−c ∧τ+

a
, V

δ

τ−c ∧τ+
a

)
]

= f̃(x, x̄) + Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

]

+ Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qs
[∂f̃
∂z

(V δ
s−, V

δ

s)(1− δ(V
δ

s))−
∂f̃

∂y
(V δ

s−, V
δ

s)δ(V
δ

s)
]
dXs

]
.

(4.14)

On the other hand, by the lack of upward jumps, we have

Ex,x̄
[
e−q(τ

−
c ∧τ+

a )f̃(V δ
τ−c ∧τ+

a
, V

δ

τ−c ∧τ+
a

)
]

= Ex,x̄
[
e−qτ

−
c f̃(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

+ f̃(a, a)Ex,x̄
[
e−qτ

+
a 1{τ−c >τ+

a }
]
. (4.15)

Put (4.15) in the left hand side of (4.14) to have that

Ex,x̄
[
e−qτ

−
c f̃(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= f̃(x, x̄) + Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

]

+ Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qs
[∂f̃
∂z

(V δ
s−, V

δ

s)(1− δ(V
δ

s))−
∂f̃

∂y
(V δ

s−, V
δ

s)δ(V
δ

s)
]
dXs

]
− f̃(a, a)Ex,x̄

[
e−qτ

+
a 1{τ−c >τ+

a }
]
. (4.16)

Also,

Ex,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= Ex,x̄
[
e−qρ

−
c f(Xρ−c

, x̄)1{ρ−c <ρ+
x̄ }
]

+ Ex,x̄
[
e−qρ

+
x̄ 1{ρ+

x̄<ρ
−
c }
]
Ex̄,x̄

[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]
, (4.17)

where

Ex,x̄
[
e−qρ

+
x̄ 1{ρ+

x̄<ρ
−
c }
]

=
W (q)(x− c)
W (q)(x̄− c)

.
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From [41, Equation 7], we know that the first term in (4.17) is given by

Ex,x̄
[
e−qρ

−
c f(Xρ−c

, x̄)1{ρ−c <ρ+
x̄ }
]

= f̃(x, x̄)− W (q)(x− c)
W (q)(x̄− c)

f̃(x̄, x̄)

+

∫ x̄

c

(A− q)f̃(y, x̄)
[W (q)(x− c)
W (q)(x̄− c)

W (q)(x̄− y)−W (q)(x− y)
]
dy

+
σ2

2

[
f(c, x̄)− f̃(c+, x̄)

][
W (q)′(x− c)− W (q)(x− c)

W (q)(x̄− c)
W (q)′(x̄− c)

]
.

Now, we find the last expectation in (4.17),

Ex̄,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= Ex̄,x̄

[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{

V δ
τ−c
<c, τ−c <τ

+
a

}
]

+ Ex̄,x̄

[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{

V δ
τ−c

=c, τ−c <τ
+
a

}
]

= Ex̄,x̄

[
e−qτ

−
c f̃(V δ

τ−c
, V

δ

τ−c
)1{

V δ
τ−c
<c, τ−c <τ

+
a

}
]

+ Ex̄,x̄

[
e−qτ

−
c f(c, V

δ

τ−c
)1{

V δ
τ−c

=c, τ−c <τ
+
a

}
]

= Ex̄,x̄
[
e−qτ

−
c f̃(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

+ Ex̄,x̄

[
e−qτ

−
c f(c, V

δ

τ−c
)1{

V δ
τ−c

=c, τ−c <τ
+
a

}
]

− Ex̄,x̄

[
e−qτ

−
c f̃(c+, V

δ

τ−c
)1{

V δ
τ−c

=c, τ−c <τ
+
a

}
]
. (4.18)

Then, substitute (4.16), with x = x̄, in (4.18), and get the second term in (4.17).

Therefore, we get that

Ex,x̄
[
e−qτ

−
c f(V δ

τ−c
, V

δ

τ−c
)1{τ−c <τ+

a }
]

= f̃(x, x̄)− W (q)(x− c)
W (q)(x̄− c)

f̃(x̄, x̄)

+

∫ x̄

c

(A− q)f̃(y, x̄)
[W (q)(x− c)
W (q)(x̄− c)

W (q)(x̄− y)−W (q)(x− y)
]
dy

+
σ2

2

[
f(c, x̄)− f̃(c+, x̄)

][
W (q)′(x− c)− W (q)(x− c)

W (q)(x̄− c)
W (q)′(x̄− c)

]
+
W (q)(x− c)
W (q)(x̄− c)

×

{
f̃(x̄, x̄) + Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qs(A− q)f̃(V δ
s−, V

δ

s) ds

]

− Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qsΓδf̃(V
δ

s, V
δ

s) dXs

]
− f̃(a, a)Ex̄,x̄

[
e−qτ

+
a 1{τ−c >τ+

a }
]

+ Ex̄,x̄

[
e−qτ

−
c
[
f(c, V

δ

τ−c
)− f̃(c+, V

δ

τ−c
)
]
1{

V δ
τ−c

=c, τ−c <τ
+
a

}
]}

,

which gives the required statement.�
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By the next lemma, we can get an explicit analytic expression for (4.2) when c = 0.

Lemma 4.1.5 Given the assumptions in Theorem 4.1.4, if we let c = 0 and x = x̄,

then

(I)

Ex,x

[∫ τ−0 ∧τ
+
a

0+

e−qs(A− q)f̃(V δ
s , V

δ

s)ds

]

=

∫ a

x

∫ a

0

(A− q)f̃(y, z)

{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+)δz(dy)

}
lx(z) dz,

where δz is the Dirac measure which assigns unit mass to the point z and lx(z)

is given by

lx(z) =
1

1− δ(z)
exp

{
−
∫ z

x

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
. (4.19)

(II)

Ex,x

[∫ τ−0 ∧τ
+
a

0+

e−qsΓδf̃(V
δ

s, V
δ

s) dXs

]
=

∫ a

x

lx(z) Γδf̃(z, z) dz.

Proof (I) Let

V0,a(x, dy, dz) =

∫ ∞
0

e−qsPx,x(V δ
s ∈ dy, V

δ

s ∈ dz, s < τ−0 ∧ τ+
a ) ds (4.20)

be the q-potential measure of (V δ, V
δ
) killed on exiting [0, a]. Then,

Ex,x

[∫ τ−0 ∧τ
+
a

0+

e−qs(A− q)f̃(V δ
s , V

δ

s) ds

]
=

∫ a

x

∫ a

0

(A− q)f̃(y, z)V0,a(x, dy, dz).

By Theorem 3.2.3, we can use [33, Theorem 1.3] to extract the following result



CHAPTER 4. IDENTITIES FOR NATURAL TAX PROCESSES 57

for the natural tax process V δ,

Ex,x
[
e−qτ

−
0 ; −V δ

τ−0
∈ dQ, V

δ

τ−0
∈ dz

]
=

{∫ z

0

[
W (q)′(z −m)− W (q)′(z)

W (q)(z)
W (q)(z −m)

]
ν(m+ dQ) dm

+W (q)(0+) ν(z + dQ)

}
lx(z) dz

=

∫ z

0

[
W (q)′(z −m)− W (q)′(z)

W (q)(z)
W (q)(z −m)

]
ν(m+ dQ) dmlx(z) dz

+W (q)(0+) ν(z + dQ) lx(z) dz

=

∫ z

0

[
W (q)′(z −m)− W (q)′(z)

W (q)(z)
W (q)(z −m)

]
ν(m+ dQ) dmlx(z) dz

+W (q)(0+)

[∫ z

0

δz(dm)ν(m+ dQ)

]
lx(z) dz

=

∫ ∞
0

ν(m+ dQ)
{[
W (q)′(z −m)− W (q)′(z)

W (q)(z)
W (q)(z −m)

]
dm

+W (q)(0+)δz(dm)
}
lx(z) dz. (4.21)

On the one hand, we can use similar method to the proof of [33, Lemma 2.2]
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and get that

Ex,x
[
e−qτ

−
0 f(−V δ

τ−0
, V

δ

τ−0
)1{τ−0 <τ+

a }
]

= Ex,x

[ ∑
0≤t<∞

e−qtf(−(V δ
t− + ∆V δ

t ), V
δ

t )1
{
V δ
t−≥0,x≤V δt≤a,V δt−+∆V δt <0

}
]

= Ex,x
[∫ 0

−∞

∫ ∞
0

e−qt1{t<τ−0 }1
{
x≤V δt≤a

}f(−(V δ
t− + θ), V

δ

t )1{V δ
t−

+θ<0}N(dt, dθ)

]
= Ex,x

[∫ ∞
0

∫ ∞
0

e−qt1{t<τ−0 }f(θ − V δ
t− , V

δ

t )1
{
x≤V δt≤a

}1{V δ
t−
−θ<0}N(dt,−dθ)

]
= Ex,x

[∫ ∞
0

∫ ∞
0

e−qt1{t<τ−0 }f(θ − V δ
t− , V

δ

t )1
{
x≤V δt≤a

}1{θ>V δ
t−}ν(dθ) dt

]
=

∫ ∞
0

e−qtdt

∫ ∞
0

Ex,x
[
f(θ − V δ

t− , V
δ

t )1{t<τ−0 }
]

1{θ>V δ
t−}1

{
x≤V δt≤a

}ν(dθ)

=

∫ ∞
0

e−qtdt

∫ ∞
0

∫ a

x

∫ a

0

f(θ − y, z)Px,x(V δ
t ∈ dy, V

δ

t ∈ dz, t < τ−0 ∧ τ+
a )1{θ>y}ν(dθ)

=

∫ ∞
0

∫ a

x

∫ a

0

f(θ − y, z)V0,a(x, dy, dz) 1{θ>y} ν(dθ)

=

∫ ∞
y

∫ a

x

∫ a

0

f(θ − y, z)V0,a(x, dy, dz) ν(dθ)

=

∫ ∞
0

∫ a

x

∫ a

0

f(Y, z)V0,a(x, dy, dz) ν(dY + y)

=

∫ a

x

∫ a

0

f(Y, z)

∫ ∞
0

ν(dY + y)V0,a(x, dy, dz), (4.22)

where in the fourth equality we use (2.1), in the seventh equality we use (4.20),

and in the last two equalities we use the change of variable θ − y = Y, so that

dθ = dY + y.

On the other hand, we can use (4.21) and get that

Ex,x
[
e−qτ

−
0 f(−V δ

τ−0
, V

δ

τ−0
)1{τ−0 <τ+

a }
]

=

∫ a

x

∫ a

0

f(Q, z)Ex,x
[
e−qτ

−
0 ;−V δ

τ−0
∈ dQ, V

δ

τ−0
∈ dz, τ−0 < τ+

a

]
=

∫ a

x

∫ a

0

f(Q, z)×∫ ∞
0

ν(m+ dQ)
{[
W (q)′(z −m)− W (q)′(z)

W (q)(z)
W (q)(z −m)

]
dm

+W (q)(0+)δz(dm)
}
lx(z) dz. (4.23)
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It is clear, by comparing (4.22) and (4.23), that

V0,a(x, dy, dz)

=

[{
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

}
dy +W (q)(0+)δz(dy)

]
lx(z) dz.

and hence the statement is proved.

(II) We can prove this result with a similar argument to the proof of Theorem 3.2.9.

�

Corollary 4.1.6 Given the assumptions in Theorem 4.1.4 with c = 0,

Ex,x̄
[
e−qτ

−
0 f(V δ

τ−0
, V

δ

τ−0
) 1{τ−0 <τ+

a }
]

= f̃(x, x̄) +

∫ x̄

0

(A− q)f̃(y, x̄)
[W (q)(x)

W (q)(x̄)
W (q)(x̄− y)−W (q)(x− y)

]
dy

+
σ2

2

[
f(0, x̄)− f̃(0+, x̄)

][
W (q)′(x)− W (q)(x)

W (q)(x̄)
W (q)′(x̄)

]
+
W (q)(x)

W (q)(x̄)

{∫ a

x̄

∫ a

0

(A− q)f̃(y, z)
{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)
}
lx̄(z) dz

−
∫ a

x̄

lx̄(z) Γδf̃(z, z) dz − f̃(a, a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+ Ex̄,x̄

[
e−qτ

−
0
[
f(0, V

δ

τ−0
)− f̃(0+, V

δ

τ−0
)
]
1{

V δ
τ−0

=0, τ−0 <τ
+
a

}
]}

, (4.24)

where lx̄(z) is given by (4.19).

Proof The proof follows by Theorem 4.1.4 and Lemma 4.1.5.�

4.2 Applications

In this section, we give some applications of (4.24). The first example gives a new

identity in the literature for the process V δ, the two-sided exit problem. The second

and last examples give analytic expressions of the expected discounted function of the

maximum surplus prior to ruin and the expected discounted amount of ruin, respec-

tively, for the natural tax process V δ, when ruin occurs before reaching some level

a > 0. By looking at a recent article, [64], we realized that expressions (4.48) and
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(4.31) below, have been derived for a latent tax process Uγ with γ constant. Their

work depends on some recent results in the draw-down literature, [60, Equations 7, 9].

We will see that our expressions in both examples are more general compared to the

ones given in [64], since we derive them for a general natural tax function δ. These

examples are useful in many situations and we present them in the following Lemmas.

Recall that

W
(q)

(y) =

∫ y

0

W (q)(r) dr, (4.25)

and

Z
(q)

(y) =

∫ y

0

Z(q)(r) dr = y + q

∫ y

0

∫ z

0

W (q)(r) dr dz. (4.26)

Lemma 4.2.1 For x, x̄ ∈ [0, a], the solution of the below two-sided exit problem for a

natural tax process V δ has the following expression

Ex,x̄
[
e−qτ

−
0 1{τ−0 <τ+

a }
]

= Z(q)(x)− Z(q)(a)
W (q)(x)

W (q)(x̄)
exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
− q W

(q)(x)

W (q)(x̄)

∫ a

x̄

δ(z)

(1− δ(z))
W (q)(z) exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
dz.

(4.27)

Proof The function f̃(y, z) = f(y, z) = 1 is in S[0,a]×[0,a]. So, we can substitute it in

(4.24) and get

Ex,x̄
[
e−qτ

−
0 1{τ−0 <τ+

a }
]

= 1− q W
(q)(x)

W (q)(x̄)

∫ x̄

0

W (q)(x̄− y) dy + q

∫ x

0

W (q)(x− y) dy

− W (q)(x)

W (q)(x̄)
exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+
W (q)(x)

W (q)(x̄)

∫ a

x̄

∫ a

0

−q
{[

W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+)δz(dy)

}
lx̄(z) dz. (4.28)

By using ∫ z

0

−W (q)′(z − y) dy = W (q)(0+)−W (q)(z),
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and the change of variable z − y = s, we have that

W (q)(x)

W (q)(x̄)

∫ a

x̄

∫ a

0

−q
{[

W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)

}
lx̄(z) dz

= q
W (q)(x)

W (q)(x̄)

{∫ a

x̄

W (q)′(z)

W (q)(z)

(∫ z

0

W (q)(s)ds
)
lx̄(z) dz

−
∫ a

x̄

lx̄(z)W (q)(z) dz

}
. (4.29)

Then, in the first integral of the right-hand side of (4.29), we use integration by parts

with u =

∫ z

0

W (q)(s) ds and dv = lx̄(z)
W (q)′(z)

W (q)(z)
dz, which implies that

W (q)(x)

W (q)(x̄)

∫ a

x̄

∫ a

0

−q
{[

W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+)δz(dy)

}
lx̄(z) dz

= − exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

} ∫ a

0

W (q)(r) dr

+

∫ x̄

0

W (q)(r) dr +

∫ a

x̄

W (q)(z) exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
dz

−
∫ a

x̄

lx̄(z)W (q)(z) dz. (4.30)

After that, substitute (4.30) in (4.28) and with some calculations, we get (4.27).�

Lemma 4.2.2 Suppose that h is an absolutely continuous function with a locally

bounded density on [x̄, a]. Then, for x, x̄ ∈ [0, a], the following expression holds for a

natural tax process V δ:

Ex,x̄
[
e−qτ

−
0 h(V

δ

τ−0
) 1{τ−0 <τ+

a }
]

= h(x̄)Z(q)(x) +
W (q)(x)

W (q)(x̄)

{
−h(a)Z(q)(a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+

∫ a

x̄

h′(s) exp

{
−
∫ s

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
Z(q)(s) ds

−
∫ a

x̄

δ(s)

1− δ(s)
h(s) qW (q)(s) exp

{
−
∫ s

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
ds

}
. (4.31)

Proof Since f̃(y, z) = f(y, z) = h(z) is in S[0,a]×[0,a], we can substitute it in (4.24).

Then, we use (4.8) to get Af(y, z) = 0 and (4.9) to get Γδh(z) = −h′(z)(1− δ(z)) and
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have

Ex,x̄
[
e−qτ

−
0 h(V

δ

τ−0
) 1{τ−0 <τ+

a }
]

= h(x̄)− q h(x̄)
W (q)(x)

W (q)(x̄)

∫ x̄

0

W (q)(r) dr + q h(x̄)

∫ x

0

W (q)(r) dr

+
W (q)(x)

W (q)(x̄)

{∫ a

x̄

∫ a

0

−q h(z)
{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)
}
lx̄(z) dz

+

∫ a

x̄

lx̄(z)h′(z)(1− δ(z)) dz − h(a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}}
, (4.32)

where lx̄(z) is given by (4.19). We can rewrite (4.32) as

Ex,x̄
[
e−qτ

−
0 h(V

δ

τ−0
) 1{τ−0 <τ+

a }
]

= h(x̄)Z(q)(x)− q h(x̄)
W (q)(x)

W (q)(x̄)

∫ x̄

0

W (q)(r) dr

+
W (q)(x)

W (q)(x̄)

∫ a

x̄

h′(z) exp

{
−
∫ z

x̄

W (q)(r)

W (q)(r)(1− δ(r))
dr

}
dz

− W (q)(x)

W (q)(x̄)
h(a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+
W (q)(x)

W (q)(x̄)

∫ a

x̄

∫ a

0

−q h(z)
{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)
}
lx̄(z) dz. (4.33)

The last integral on the RHS of (4.33) becomes∫ a

x̄

−h(z) qW (q)(z)
1

1− δ(z)
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
dz

+

∫ a

x̄

1

1− δ(z)

W (q)′(z)

W (q)(z)
h(z) q

(∫ z

0

W (q)(r) dr
)

exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
dz.

(4.34)

Use integration by parts in the second term of (4.34), then we can rewrite (4.34) as∫ a

x̄

−h(z) qW (q)(z)
1

1− δ(z)
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
dz

− h(a) q
(∫ a

0

W (q)(r) dr
)

exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+ h(x̄) q

∫ x̄

0

W (q)(r) dr

+

∫ a

x̄

exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
h′(z) q

(∫ z

0

W (q)(r) dr
)

dz

+

∫ a

x̄

exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
h(z) qW (q)(z) dz. (4.35)
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Then substitute (4.35) in (4.33) and with easy computations, we get the required

expression in (4.31).�

Remark 8 Expression (4.31) can be derived in another way using [60, Equations 7].

This has been done in [64] for a constant tax, and here we extend it for a general tax

function. To show that, we are going to use the relation between the draw-down time

of the risk process X without tax and the latent tax process Uγ, which is explained in

[65, Section 4.1]. Then, by Theorem 3.2.3, it is a relation with the natural tax process

V δ. A general draw-down function ζ is a measurable function ζ : [0,∞) → (−∞,∞)

satisfying ζ(z) < z for all z ≥ 0. For x ∈ [0,∞) and z ∈ [x,∞), let ζ(z) :=
∫ z
x
γ(r) dr.

By the change of variable r = X t, the latent tax process Uγ
t can be written as

Uγ
t = Xt − ζ(X t).

Let ζ(z) := z − ζ(z), then by recalling (3.9), we have that

γ̄x(s) = x+

∫ s

x

(1− γ(y)) dy

= s−
∫ s

x

γ(y) dy

= ζ(s), (4.36)

and hence,

U
γ

t = γ̄x(X t) = ζ(X t).

For a latent tax process with a latent tax rate γ, recall the first passage times σ+
a =

inf{t > 0 : Uγ
t > a} and σ−0 = inf{t > 0 : Uγ

t < 0}. Also, recall that ρ+
a = inf{t ≥

0 : Xt > a} and ρ−0 = inf{t ≥ 0 : Xt < 0}. We are going to compute the following

expectation

Ex,x̄
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]
,

where h is an absolutely continuous function with a locally bounded density on [x̄, a].

Since before reaching x̄, the process Uγ is just the Lévy process X, then by the strong
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Markov property of (X,X), we have that

Ex,x̄
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= Ex,x̄
[
e−qρ

−
0 h(x̄) 1{ρ−0 <ρ+

x̄ }
]

+ Ex,x̄
[
e−qρ

+
x̄ 1{ρ+

x̄<ρ
−
0 }
]
Ex̄,x̄

[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= h(x̄)Ex,x̄
[
e−qρ

−
0 1{ρ−0 <ρ+

x̄ }
]

+ Ex,x̄
[
e−qρ

+
x̄ 1{ρ+

x̄<ρ
−
0 }
]
Ex̄,x̄

[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]
.

(4.37)

In order to find (4.37), we first find the following expression for any x = x̄,

Ex,x
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]
.

Since

σ−0 = inf{t ≥ 0 : Uγ
t < 0} = inf{t ≥ 0 : Xt < ζ(X t)} = ρ−ζ ,

and

σ+
a = inf{t ≥ 0 : Uγ

t > a} = inf{t ≥ 0 : U
γ

t > a}

= inf{t ≥ 0 : ζ(X t) > a}

= inf{t ≥ 0 : X t > ζ
−1

(a)} = ρ+

ζ
−1

(a)
,

then

Ex
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= Ex

[
e−qρ

−
ζ h(ζ(Xρ−ζ

)) 1{
ρ−ζ <ρ

+

ζ
−1

(a)

}
]
. (4.38)

Let φ = h ◦ ζ, then by the formula [60, Equation 7], (4.38) becomes

Ex
[
e−qτ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= Ex

[
e−qρ

−
ζ φ(Xρ−ζ

) 1{
ρ−ζ <ρ

+

ζ
−1

(a)

}
]

=

∫ ζ
−1

(a)

x

φ(s) exp

{
−
∫ s

x

W (q)′(ζ(z))

W (q)(ζ(z))
dz

}
×
[
W (q)′(ζ(s))

W (q)(ζ(s))
Z(q)(ζ(s))− qW (q)(ζ(s))

]
ds.

(4.39)

Now, use the change of variable r = ζ(z), the right hand side of (4.39) becomes∫ ζ
−1

(a)

x

φ(s) exp

{
−
∫ ζ(s)

x

W (q)′(r)

W (q)(r) (1− γ(ζ
−1

(r)))
dr

}

×
[
W (q)′(ζ(s))

W (q)(ζ(s))
Z(q)(ζ(s))− qW (q)(ζ(s))

]
ds.
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Then again, use the change of variables t = ζ(s) and get∫ a

x

φ(ζ
−1

(t)) exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(ζ
−1

(r)))
dr

}

× 1

1− γ(ζ
−1

(r))

[
W (q)′(t)

W (q)(t)
Z(q)(t)− qW (q)(t)

]
dt,

then by using that φ = h ◦ ζ we get the final expression

Ex,x
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

=

∫ a

x

h(t) exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(ζ
−1

(r)))
dr

}

× 1

1− γ(ζ
−1

(t))

[
W (q)′(t)

W (q)(t)
Z(q)(t)− qW (q)(t)

]
dt.

(4.40)

By (4.36), we can rewrite (4.40) as

Ex,x
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

=

∫ a

x

h(t) exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x (r)))

dr

}
× 1

1− γ(γ̄−1
x (t))

[
W (q)′(t)

W (q)(t)
Z(q)(t)− qW (q)(t)

]
dt.

(4.41)

Then, we can use integration by parts on (4.41) and with some easy computations,

we get

Ex,x
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= −h(a)Z(q)(a) exp

{
−
∫ a

x

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x (r)))

dr

}
+ h(x)Z(q)(x) +

∫ a

x

h′(t)Z(q)(t) exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x (r)))

dr

}
dt

−
∫ a

x

γ(γ̄−1
x (t))

1− γ(γ̄−1
x (t))

h(t) qW (q)(t) exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x (r)))

dr

}
dt.

(4.42)
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Next, we use (2.7), (2.8) and (4.42) in (4.37) to find that

Ex,x̄
[
e−qσ

−
0 h(U

γ

σ−0
) 1{σ−0 <σ+

a }
]

= h(x̄)

[
Z(q)(x)− Z(q)(x̄)

W (q)(x)

W (q)(x̄)

]
+
W (q)(x)

W (q)(x̄)

{
−h(a)Z(q)(a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
+ h(x̄)Z(q)(x̄) +

∫ a

x̄

h′(t)Z(q)(t) exp

{
−
∫ t

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
dt

−
∫ a

x̄

γ(γ̄−1
x̄ (t))

1− γ(γ̄−1
x̄ (t))

h(t) qW (q)(t) exp

{
−
∫ t

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
dt

}

= h(x̄)Z(q)(x) +
W (q)(x)

W (q)(x̄)

{
−h(a)Z(q)(a) exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
+

∫ a

x̄

h′(t)Z(q)(t) exp

{
−
∫ t

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
dt

−
∫ a

x̄

γ(γ̄−1
x̄ (t))

1− γ(γ̄−1
x̄ (t))

h(t) qW (q)(t) exp

{
−
∫ t

x̄

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x̄ (r)))

dr

}
dt

}
.

(4.43)

The final step is to use Theorem 3.2.3 part (ii) and (4.43) in order to recover expression

(4.31).

Before we move to the final example in this section, we recall that,

Af(y) = µf ′(y) +
σ2

2
f ′′(y)

+

∫ ∞
0+

[
f(y − θ)− f(y) + θf ′(y)1{0<θ≤1}

]
ν(dθ).

We introduce the function l : (0,∞)→ R by

l(x) = (A− q)f(x), where f(x) = x1{x≥0},

then we can prove that,

l′(x) = (A− q)g(x), where g(x) = 1{x≥0}. (4.44)
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Indeed,

l(x) = (A− q)f(x)

= µ1{x>0} +

∫ ∞
0+

[
(x− θ) 1{x−θ≥0} − x1{x≥0} + θ 1{x>0}1{0<θ≤1}

]
ν(dθ)

− q x1{x≥0}

= µ+

∫ ∞
0+

[
(x− θ) 1{x−θ≥0} − x+ θ 1{0<θ≤1}

]
ν(dθ)− q x, (4.45)

where the last equality is true since x > 0.

Then by (4.45),

l′(x) =

∫ ∞
0+

[
1{x>θ} − 1{x>0}

]
ν(dθ)− q 1{x>0}

= −
∫ ∞
x

ν(dθ)− q

= −ν(x,∞)− q, (4.46)

where we get the last equality because x > 0. Now, the right hand side of (4.44), for

x > 0 is,

(A− q)g(x) =

∫ ∞
0+

[
1{x≥θ} − 1{x≥0}

]
ν(dθ)− q 1{x≥0}

= −
∫ ∞
x

ν(dθ)− q

= −ν(x,∞)− q,

hence, (4.44) is satisfied. Also, for c < 0, let fc(z) = z 1{z≥c}, and gc(z) = 1{z≥c}, then

for z > c,

(A− q)fc(z) = (A− q)fc(z)− c (A− q) gc(z) + c (A− q) gc(z)

= (A− q) [fc − c gc] (z) + c (A− q) gc(z)

= l(z − c) + c l′(z − c),

where we use (4.45) and (4.46) such that the last line follows from spatial homogeneity

of A. That is, for x ∈ R, where fx(z) = f(x+ z), we have that Afx(z) = Af(x+ z).
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Remark 9 For z ∈ R such that z > c,

lim
−c↑∞

[l(z − c) + c l′(z − c)] = lim
−c↑∞

{
µ− (z − c)

∫ ∞
z−c

ν(dθ)−
∫ z−c

1

θν(dθ)− q(z − c)

− c
∫ ∞
z−c

θν(dθ)− q c
}

= lim
−c↑∞

{
µ− z

∫ ∞
z−c

ν(dθ)−
∫ z−c

1

θν(dθ)− q z
}

= µ−
∫ ∞

1

θν(dθ)− q z

= ψ′(0+)− q z. (4.47)

Lemma 4.2.3 Suppose that ψ′(0+) > −∞, then for x, x̄ ∈ [0, a], the following ex-

pression holds for a natural tax process V δ

Ex,x̄
[
e−qτ

−
0 (−V δ

τ−0
) 1{τ−0 <τ+

a }
]

= −Z(q)
(x) + ψ′(0+)W

(q)
(x)

+
W (q)(x)

W (q)(x̄)

{[
Z

(q)
(a)− ψ′(0+)W

(q)
(a)
]

exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+

∫ a

x̄

Z(q)(s) δ(s) lx̄(s) ds

− ψ′(0+)

∫ a

x̄

W (q)(s) δ(s) lx̄(s) ds

}
, (4.48)

where lx̄(s) is given by (4.19).

Proof Let f̃(y, z) = f(y, z) = −y 1{y≥−n}, for n ≥ 1. Let g(y) = y 1{y≥−n} and

h(z) = −1. Then, clearly g and h satisfy the first and third conditions of Definition

4.1.1 on [0, a]. For the second condition, since g is a bounded function, then for any

λ > 0 and all s ∈ (0, a) ∣∣∣ ∫ ∞
λ

g(s− θ) ν(dθ)
∣∣∣ ≤ a

∫ ∞
λ

ν(dθ),

where the last integral is bounded (see [9, p.29]). So, f̃ ∈ S[0,a]×[0,a], and therefore, we



CHAPTER 4. IDENTITIES FOR NATURAL TAX PROCESSES 69

can substitute f̃ in (4.24) and get that

Ex,x̄

[
e−qτ

−
0

(
−V δ

τ−0
1{

V δ
τ−0
≥−n

}
)

1{τ−0 <τ+
a }

]

= −x1{x≥−n} −
∫ x̄

0

(A− q)f−n(y)
[W (q)(x)

W (q)(x̄)
W (q)(x̄− y)−W (q)(x− y)

]
dy

+
W (q)(x)

W (q)(x̄)

{
−
∫ a

x̄

∫ a

0

(A− q)f−n(y)
{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)
}
lx̄(z) dz

+

∫ a

x̄

lx̄(z) δ(z) dz + a exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}}
, (4.49)

where

f−n(x) := x1{x≥−n},

g−n(x) := 1{x≥−n},

and so for x > −n,

(A− q)f−n(x) = l(x+ n)− n l′(x+ n).

By Remark 9, with c = −n and for x ∈ [0, a], n ≥ 1,

l(x+ n)− n l′(x+ n) = µ− x
∫ ∞
x+n

ν(dθ)−
∫ x+n

1

θν(dθ)− q x,

and hence∣∣∣∣µ− x ∫ ∞
x+n

ν(dθ)−
∫ x+n

1

θν(dθ)− q x
∣∣∣∣

≤ µ+ q x+ x

∫ ∞
x+n

ν(dθ) +

∫ x+n

1

θν(dθ) + x

∫ x+n

1

ν(dθ)− x
∫ x+n

1

ν(dθ)

= µ+ q x+ x

∫ ∞
1

ν(dθ)−
∫ x+n

1

(x− θ)ν(dθ)

≤ µ+ q x+ x

∫ ∞
1

ν(dθ)−
∫ x+1

1

(x− θ)ν(dθ), (4.50)

where g(x) := µ+ q x+x
∫∞

1
ν(dθ)−

∫ x+1

1
(x− θ)ν(dθ) is bounded on [0, a]. Take limit

as n ↑ ∞, and use (4.47) with c = −n, and (4.50), then by monotone convergence

theorem on the LHS of (4.49), and the dominated convergence theorem on RHS of
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(4.49), we get

Ex,x̄
[
e−qτ

−
0 (−V δ

τ−0
)1{τ−0 <τ+

a }
]

= −x−
∫ x̄

0

(ψ′(0+)− qy)
[W (q)(x)

W (q)(x̄)
W (q)(x̄− y)−W (q)(x− y)

]
dy

+
W (q)(x)

W (q)(x̄)

{
−
∫ a

x̄

∫ a

0

(ψ′(0+)− qy)
{[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+W (q)(0+) δz(dy)
}
lx̄(z) dz

+

∫ a

x̄

lx̄(z) δ(z) dz + a exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}}
. (4.51)

Use that ∫ x̄

0

yW (q)(x̄− y) dy =

∫ x̄

0

∫ Y

0

W (q)(s) ds dY. (4.52)

where this is true by making first the change of variable Y = x̄ − y and then use

integral by parts. So by (4.52), the first integral term in (4.51) becomes

−
∫ x̄

0

(ψ′(0+)− qy)
[W (q)(x)

W (q)(x̄)
W (q)(x̄− y)−W (q)(x− y)

]
dy

= −W
(q)(x)

W (q)(x̄)
ψ′(0+)

∫ x̄

0

W (q)(y) dy +
W (q)(x)

W (q)(x̄)
q

∫ x̄

0

∫ Y

0

W (q)(s) ds dY

+ ψ′(0+)

∫ x

0

W (q)(s) ds− q
∫ x

0

∫ Y

0

W (q)(s) ds dY, (4.53)

and ∫ a

0

(ψ′(0+)− qy)
[
W (q)′(z − y)− W (q)′(z)

W (q)(z)
W (q)(z − y)

]
dy

+

∫ a

0

W (q)(0+)(ψ′(0+)− qy) δz(dy)

= ψ′(0+)W (q)(z)− ψ′(0+)
W (q)′(z)

W (q)(z)

∫ z

0

W (q)(y)dy

− q
∫ z

0

W (q)(y) dy +
W (q)′(z)

W (q)(z)
q

∫ z

0

∫ y

0

W (q)(s) ds dy. (4.54)
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Then, we use (4.54) to find the second integral term in (4.51)

−
∫ a

x̄

lx̄(z)
{
ψ′(0+)W (q)(z)− ψ′(0+)

W (q)′(z)

W (q)(z)

∫ z

0

W (q)(y) dy

− q
∫ z

0

W (q)(y) dy +
W (q)′(z)

W (q)(z)
q

∫ z

0

∫ y

0

W (q)(s) ds dy
}

dz

= −
∫ a

x̄

1

(1− δ(z))
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

} {
ψ′(0+)W (q)(z)

− ψ′(0+)
W (q)′(z)

W (q)(z)

∫ z

0

W (q)(y) dy

− q
∫ z

0

W (q)(y) dy +
W (q)′(z)

W (q)(z)
q

∫ z

0

∫ y

0

W (q)(s) ds dy

}
dz. (4.55)

Use integration by parts twice in (4.55), the first time with u = q
∫ z

0

∫ y
0
W (q)(s) ds dy

and dv = − 1

(1− δ(z))

W (q)′(z)

W (q)(z)
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
in the integral

−
∫ a

x̄

1

(1− δ(z))
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
W (q)′(z)

W (q)(z)
q
(∫ z

0

∫ y

0

W (q)(s) ds dy
)

dz,

and the second time with u =
∫ z

0
W (q)(s) ds and

dv =
1

(1− δ(z))

W (q)′(z)

W (q)(z)
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
in the integral∫ a

x̄

1

(1− δ(z))
exp

{
−
∫ z

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
W (q)′(z)

W (q)(z)

(∫ z

0

W (q)(s) ds
)

dz.

With some calculations, (4.55) equals∫ a

x̄

δ(z) lx̄(z)
(
q

∫ z

0

W (q)(y) dy
)

dz

+ q
(∫ a

0

∫ y

0

W (q)(s) ds dy
)

exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
− q

∫ x̄

0

∫ y

0

W (q)(s) ds dy

− ψ′(0+)

∫ a

x̄

W (q)(z) δ(z) lx̄(z) dz

− ψ′(0+)
(∫ a

0

W (q)(y) dy
)

exp

{
−
∫ a

x̄

W (q)′(r)

W (q)(r)(1− δ(r))
dr

}
+ ψ′(0+)

∫ x̄

0

W (q)(y) dy. (4.56)

Now, substitute (4.53) and (4.56) in (4.51), do some easy computations, then by (4.25)

and (4.26) we find the required representation (4.48).�
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Remark 10 Note that, similar to Example 4.2.2, we can derive (4.48) in a different

way, by using [60, Equation 9] and find that

Ex
[
e−qτ

−
0 (−Uγ

τ−0
) 1{τ−0 <τ+

a }
]

=

∫ a

x

exp

{
−
∫ t

x

W (q)′(r)

W (q)(r) (1− γ(γ̄−1
x (r)))

dr

}
× 1

1− γ(γ̄x(t))

[
Z(q)(t)− ψ′(0+)W (q)(t)− Z

(q)
(t)− ψ′(0+)W

(q)
(t)

W (q)(t)
W (q)′(t)

]
dt.

(4.57)

Again, if we use integration by parts in (4.57) and Theorem (3.2.3) part (ii), then we

can recover expression (4.48).

4.3 The approach

In the tax processes literature, different arguments have been used to obtain the fluc-

tuation identities of interest. Mainly, there were two approaches. The first one is

deriving an ODE in x for the required quantity. This has been studied in some articles

using different methods. For example, in [6] and [53], authors looked at the effect

of a small increment above the initial point and derived the desired ODE through

a discrete approximation. In [2], an integro-differential equation was derived, while

[3] used a probability argument. The other way is using excursion theory, as in de-

riving the solution of the two sided exit problem in [6] and as in proving all of the

main results in [33] and [32]. In this section, we explain our approach to obtain the

expression of some required identity in the model, by deducing an ODE from some

available PDE, which will be explained below through an example. This approach was

motivated by our work in Chapter 6, while we were trying to find the net present value

of taxation when there are capital injections in the model. At the beginning, we used

identity (4.24). Afterwards, we realised that we can not verify the required conditions

in Theorem 4.1.4 to use that identity before applying it. Therefore, we had to find

another approach. However, in a very recent article, [64], authors used the draw-down

literature for providing similar examples for applying (4.24) for constant tax rate, and

we extended their method for general tax function (see Remark 8). According to au-

thors work in [64], we recognised that it is possible to check explicitly the necessary
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conditions in order to apply their identities and provide an alternative way to derive

similar examples to ours.

We give now an example to illustrate the steps in our approach, which will be used

in Chapters 6 and 7. Suppose we need to obtain an expression for

f(x, x̄) = Ex,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]
.

First, by the strong Markov property of (V δ, V
δ
) we have that(

e−q(t∧τ
−
0 ∧τ

+
a ) f(V δ

t∧τ−0 ∧τ
+
a
, V

δ

t∧τ−0 ∧τ
+
a

)
)
t≥0

is a martingale and

f(x, x̄) =
W (q)(x)

W (q)(x̄)
f(x̄, x̄). (4.58)

Our aim now is to derive a first order linear ODE for f(x̄, x̄). The first step is by

assuming that f is smooth enough so that we can apply Itô’s formula or a generalisation

of it and have that:

e−q(t∧τ
−
0 ∧τ

+
a )f(V δ

t∧τ−0 ∧τ
+
a
, V

δ

t∧τ−0 ∧τ
+
a

)− f(x, x̄)

= Mt +

∫ t∧τ−0 ∧τ
+
a

0+

e−qs(A− q)f(V δ
s−, V

δ

s)ds

+

∫ t∧τ−0 ∧τ
+
a

0+

e−qs
[
∂f

∂x̄
(V δ

s−, V
δ

s)(1− δ(V
δ

s))−
∂f

∂x
(V δ

s−, V
δ

s)δ(V
δ

s)

]
dXs,

where Mt represents some martingale. This suggests that

(A− q)f(x, x̄) = 0 , 0 ≤ x ≤ x̄,

and
∂f

∂x̄
(x, x̄)(1− δ(x̄))− ∂f

∂x
(x, x̄)δ(x̄) = 0 when x = x̄. (4.59)

By (4.58), we get to the second step in the approach, where the PDE (4.59) leads to

a first order linear ODE in f(x̄, x̄)

∂f

∂x̄
(x̄, x̄)− 1

1− δ(x̄)

W (q)′(x̄)

W (q)(x̄)
f(x̄, x̄) = 0, (4.60)

with the boundary condition

f(a, a) = 1.

Then by solving this ODE, we get the solution

f(x̄, x̄) = exp

{
−
∫ a

x̄

W (q)′(y)

W (q)(y)(1− δ(y))
dy

}
. (4.61)
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The third step is to prove that (4.61) is the correct solution of the ODE (4.60). In

order to do so, let f̂(x̄, x̄) be the solution of the ODE (4.60), and for 0 ≤ x ≤ x̄ form

f̂(x, x̄) =
W (q)(x)

W (q)(x̄)
f̂(x̄, x̄) =

W (q)(x)

W (q)(x̄)
exp

{
−
∫ a

x̄

W (q)′(y)

W (q)(y)(1− δ(y))
dy

}
.

Then one can verify that f̂(x, x̄) is smooth, (A − q)f̂(x, x̄) = 0 for 0 ≤ x ≤ x̄, and

f̂(x, x̄) satisfies the PDE (4.59). Then by an application of Itô’s formula, we can prove

that:

f̂(x, x̄) = Ex,x̄
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= f(x, x̄).

We can notice from the previous example that our approach gives a direct way of

deriving the relevant ODE of the required identity. Moreover, as you will see in the

next chapters, the proof involves similar steps to solving optimal taxation problems.



Chapter 5

Optimal taxation for natural tax

processes

5.1 Introduction

From a tax authority point of view, it is natural to ask what is the maximum expected

tax revenue they can have, and what tax policy that achieves this. Authors in [2]

addressed this problem in the context of loss-carry-forward taxation in the setting of

a classical Cramér-Lundberg process with a constant tax rate. In their work, opti-

mal implementation delay of taxation was studied, which is the problem of finding

the optimal threshold surplus level for starting taxation to maximise the expected

accumulated (discounted) tax payments. After that, in [6], the same problem is gen-

eralised into the setting of a spectrally negative Lévy process. In [57], authors studied

an optimal control problem for the latent tax process Uγ, given by

sup
γ∈Π

Ex
[∫ σ−0

0

e−qtγ(X t) dX t

]
, (5.1)

where σ−0 = inf{t ≥ 0 : Uγ
t < 0}, q > 0 is a discount factor and Π is the set

of measurable functions γ : [0,∞) → [α, β], where 0 ≤ α ≤ β < 1 are fixed. It

is noticeable that the optimal control problem addressed in both of [2] and [6] are

contained in the one considered in [57]. The motivation for this chapter was to give

another proof for the solution of the optimal control problem considered in [57], using

the natural tax process definition and results that we introduced in Chapter 3. In

fact, in this chapter, we generalise the work in [57] by defining an optimal control

75
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problem with a larger class of admissible strategies than the one considered in (5.1).

We solve a general optimal tax control problem such that it contains (5.1). To find

the solution of our optimal control problem, we adapted the method used for solving

optimal dividends problems such as [44], [35] and [45]. This method is described simply

as, calculating the tax value function of a barrier tax strategy for an arbitrary barrier,

then trying to maximise this value and choosing the optimal (maximiser) barrier, and

at the end putting this specific choice through a verification lemma in order to prove

its optimality in the general class of predictable tax rates.

We define our optimal control problem in this chapter as the following. For a spec-

trally negative Lévy process X, consider the aggregate surplus process of an insurance

company to be given by

V H
t = Xt −

∫ t

0+

Hs dXs, (5.2)

where H is a left continuous tax rate process, which is adapted to the filtration (Ft)t≥0,

and with values in [0, 1). Let X0 = x and X0 = x̄, then we define the value function

starting at any x, x̄ such that 0 ≤ x ≤ x̄ as

vH(x, x̄) := Ex,x̄

[∫ τ−0

0+

e−qsHs dXs

]
, (5.3)

where τ−0 = inf{t ≥ 0 : V H
t < 0}. Let Π be the set of all admissible policies, that is,

the set of all left continuous and adapted to the filtration (Ft)t≥0 processes, (Ht)t≥0,

such that 0 ≤ α ≤ Ht ≤ β < 1 for any t ≥ 0, then we introduce the optimal control

problem

v∗(x, x̄) = sup
H∈Π

vH(x, x̄), (5.4)

where an optimal tax rate policy H∗ ∈ Π is such that v∗(x, x̄) = vH
∗
(x, x̄), for all

0 ≤ x ≤ x̄.

It is clear that, the admissible set of strategies Π in (5.4) is much larger than the

one considered in (5.1). Furthermore, we point out here to the relation between the

work in [57], and our work, which is taken from our published paper [1], as follows.

Denote by γ∗ the function γ ∈ Π which maximises (5.1), if it exists. In [57, Theorem

3.1], Wang and Hu state that γ∗ should satisfy the equation

γ∗(X t) = η

(
x+

∫ Xt

x

(1− γ∗(y)) dy

)
= η(U

γ∗

t ),
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for some function η which they call the optimal decision rule. On the other hand, let

δ be a function satisfying the assumptions of Theorem 3.2.3ii with x = x̄, and define

γδx as in that result. If we write ξ = γδx, then, by the definition of γδx together with

(3.10) and (3.11), we have the relation

ξ(X t) = δ

(
x+

∫ Xt

x

(1− ξ(y)) dy

)
= δ(U

ξ

t ).

It follows from Theorem 3.2.3, that the relationship between Wang and Hu’s optimal

decision rule η and optimal tax rate γ∗, is nothing other than the relationship between

a particular natural tax rate δ and the equivalent latent tax rate γδx. Our results clarify

that this connection is a sensible one even outside of the optimal control context, and

make clear under exactly which conditions this connection is valid. Wang and Hu go

on to show that η must be piecewise constant, and in particular η = f b, as defined

in (3.13), where b is specified in terms of scale functions of the Lévy process but is

independent of x; see section 4 and equation (5.15) in their work (in which b is denoted

u0). Combining this with our result, we see that Wang and Hu’s solution of the optimal

control problem (5.1) is actually a tax process with the piecewise constant natural tax

rate f b, or equivalently the piecewise constant latent tax rate f b̃(x), where b̃(x) depends

on x as in (3.2.4). Moreover, our work shows this optimality directly without going

through the latent tax process.

Before we give an overview for the current chapter, we recall some definitions as

given in [45, p. 4]. The tail of the Lévy measure is the function x 7→ ν(x,∞), where

x ∈ (0,∞), and we say that a function f : (0,∞) → (0,∞) is log-convex if log ◦f is

convex on (0,∞).

Our main result is Theorem 5.2.7, which states that, under the assumption that

the tail of the Lévy measure is log-convex, the solution of the optimal control problem

(5.4) is piecewise constant, and characterises the switching point.

The structure of this chapter is presented as follows. In Section 5.2, we find the

tax value function for a piecewise constant natural tax rate. We state and prove

the verification lemma that we need to verify, at the end of the section, optimality

for the solution of (5.4). Comparing our method in the proof with the one given in

[57, Proposition 2.1], the latter proof depends on deriving a Hamilton-Jacobi-Bellman

equation, which is a first order ODE, that is satisfied by the optimal tax value function,
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while our proof starts with an Itô expansion for a tax value function that satisfies some

conditions, and continue by using these assumptions to prove that this value function

agrees with (5.4). Moreover, to reach the final stage of the proof of optimality, we need

to prove some lemmas under the condition that the tail of the Lévy measure is log-

convex. Note that, the assumption in [57] was that each scale function is three times

differentiable and its first derivative is a strictly convex function, which is fulfilled if

the tail of the Lévy measure is log-convex. In Section 5.3, we explain the relation

between our solution for (5.4) in the case x = x̄ and the one for (5.1) in [57].

5.2 Optimal control problem

We start this section by defining a piecewise constant natural tax rate function δb,

which we can call in other words an (α 7−→ β)-tax strategy at level b:

δb(z) =

α, z ≤ b,

β, z > b,

(5.5)

where b ≥ x = X0 and 0 ≤ α ≤ β < 1. In the next result, we find the corresponding

tax value function vδ
b
.

Proposition 5.2.1 Suppose we have the natural tax process

V δb

t = Xt −
∫ t

0+

δb(V
δb

r )dX̄r, V δb

0 = x, V
δb

0 = x̄.

Then, for any 0 ≤ x ≤ x̄ and q ≥ 0, we have

vδ
b

(x, x̄)

= Ex,x̄

[∫ τ−0

0+

e−qrδb(V
δb

r )dX̄r

]

=
W (q)(x)

W (q)(x̄)


vα,q(x̄)−

[
W (q)(x̄)

W (q)(b)

]1/(1−α)

[vα,q(b)− vβ,q(b)] if 0 ≤ x̄ ≤ b

vβ,q(x̄) if x̄ > b,

(5.6)

where for any 0 ≤ γ < 1 and x ≥ 0,

vγ,q(x) :=
γ

1− γ

∫ ∞
x

(
W (q)(x)

W (q)(s)

)1/(1−γ)

ds. (5.7)
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Proof Since δb is an increasing measurable function, then by Example 3.3.1 we know

that ODE (3.4) with respect to this given function δb has a unique solution. Moreover,

it is clear from (3.4) and as δb ∈ [α, β] that yδ
b

x̄ (∞) = ∞. Thus, we can use now

Corollary 3.2.7 to get

Ex,x̄

[∫ τ−0

0+

e−qrδ(V
δb

r )dXr

]

=
W (q)(x)

W (q)(x̄)

∫ ∞
x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δb(r))
dr

}
δb(y)

1− δb(y)
dy.

For the case, 0 ≤ x̄ ≤ b, we have∫ ∞
x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δb(r))
dr

}
δb(y)

1− δb(y)
dy

=
α

1− α

∫ b

x̄

exp

{
− 1

1− α

∫ y

x̄

W (q)′(r)

W (q)(r)
dr

}
dr

+
β

1− β

∫ ∞
b

exp

{
−
[

1

1− α

∫ b

x̄

W (q)′(r)

W (q)(r)
dr +

1

1− β

∫ y

b

W (q)′(r)

W (q)(r)
dr

]}
dy

=
α

1− α

∫ b

x̄

[
W (q)(x̄)

W (q)(y)

]1/(1−α)

dy +
β

1− β

[
W (q)(x̄)

W (q)(b)

]1/(1−α) ∫ ∞
b

[
W (q)(b)

W (q)(y)

]1/(1−β)

dy

= vα,q(x̄)−
[
W (q)(x̄)

W (q)(b)

]1/(1−α)

[vα,q(b)− vβ,q(b)] ,

where to get the last equality, we add and subtract

α

1− α

∫ ∞
b

[
W (q)(x̄)

W (q)(y)

]1/(1−α)

dy,

and use (5.7).
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For the case, x̄ > b,∫ ∞
x̄

exp

{
−
∫ y

x̄

W (q)′(r)

W (q)(r)(1− δb(r))
dr

}
δb(y)

1− δb(y)
dy

=
β

1− β

∫ ∞
x̄

exp

{
− 1

1− β

∫ y

x̄

W (q)′(r)

W (q)(r)
dr

}
dy

=
β

1− β

∫ ∞
x̄

exp

{
log

[
W (q)(y)

W (q)(x̄)

]−1/(1−β)
}

dy

=
β

1− β

∫ ∞
x̄

[
W (q)(x̄)

W (q)(y)

]1/(1−β)

dy

= vβ,q(x̄).

Hence, the statement is proved.�

We can rewrite (5.6) in the following way

vδ
b

(x, x̄) = W (q)(x)[W (q)(x̄)]α/(1−α)

[
α

1− α

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds+ C(b ∨ x̄)

]
,

(5.8)

where

C(b) =
β

1− β
[W (q)(b)]1/(1−β)−1/(1−α)

∫ ∞
b

[W (q)(s)]−1/(1−β)ds

− α

1− α

∫ ∞
b

[W (q)(s)]−1/(1−α)ds. (5.9)

The next lemma gives the conditions we need for having the solution of the optimal

control problem (5.4).

Lemma 5.2.2 (The verification lemma) Let V H be the tax process given in (5.2)

for any H. Let w(x, x̄) := vĤ(x, x̄) be the value function defined in (5.3), where Ĥ is

an admissible policy. Suppose that w(x, x̄) ∈ S[1/n,n]×[1/n,n] for each n ∈ N, x 7→ w(x, x̄)

is right-continuous at x = 0 for every x̄ > 0, x 7→ w(x, x) is right-continuous at x = 0,

and w satisfies the following conditions for all 0 < x ≤ x̄:

(I) (A− q)w(x, x̄) = 0,
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(II) There exist Radon-Nikodým densities
∂w

∂x
and

∂w

∂x̄
such that

H
∂w

∂x
(x̄, x̄) + (H − 1)

∂w

∂x̄
(x̄, x̄)−H ≥ 0, for all H ∈ [α, β],

then w(x, x̄) = v∗(x, x̄) for all x ≤ x̄.

Proof We start the proof with the case, 0 < x ≤ x̄. By Lemma 3.2.1, we have

V
H

t = X t −
∫ t

0+

Hs dXs.

We recall the notations: ∆Xs = Xs−Xs− and ∆w(V H
s , V

H

s ) = w(V H
s , V

H

s )−w(V H
s−, V

H

s ).

Thus, clearly we find that

∑
0<s≤t

e−qs
[
∆w(V H

s , V
H

s )− ∂w

∂x
(V H

s−, V
H

s )∆Xs

]
=
∑

0<s≤t

e−qs
[
∆w(V H

s− + ∆Xs, V
H

s )− ∂w

∂x
(V H

s−, V
H

s )∆Xs

]
. (5.10)

Let τ−1/n = inf{t > 0 : V H
t < 1/n}, τ+

n = inf{t > 0 : V H
t > n}, κ−1/n = inf{t > 0 : V

H

t <

1/n}, and κ+
n = inf{t > 0 : V

H

t > n}. This implies that, κ−1/n =∞ as V
H

is increasing

and we assumed starting with case where 0 < x ≤ x̄. Also, clearly κ+
n = τ+

n . Let

Tn = τ−1/n∧ τ+
n . Since V H and V

H
are semi-martingales, V

H
is a continuous process of

bounded variation and w ∈ S[1/n,n]×[1/n,n], then we can use Corollary 4.1.3 to get the

expansion

e−q(t∧Tn)w(V H
t∧Tn , V

H

t∧T )− w(x, x̄)

=

∫ t∧Tn

0+

−qe−qsw(V H
s−, V

H

s ) ds+

∫ t∧Tn

0+

e−qs
∂w

∂x
(V H

s−, V
H

s ) dV H
s

+

∫ t∧Tn

0+

e−qs
∂w

∂x̄
(V H

s−, V
H

s ) dV
H

s +
1

2

∫ t∧Tn

0+

e−qs
∂2w

∂x2
(V H

s−, V
H

s ) d
[
V H , V H

]c
s

+
∑

0<s≤t∧Tn

e−qs
[
∆w(V H

s , V
H

s )− ∂w

∂x
(V H

s−, V
H

s ) ∆V H
s

]
. (5.11)
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Use that
[
V H , V H

]c
s

= σ2s, ∆V H
s = ∆Xs, and by (5.10), with some calculations, we

can rewrite (5.11) as,

w(x, x̄)

= e−q(t∧Tn)w(V H
t∧T , V

H

t∧Tn)−
∫ t∧Tn

0+

e−qs (A− q)w(V H
s−, V

H

s ) ds

−
∫ t∧Tn

0+

e−qs
∂w

∂x
(V H

s−, V
H

s ) d

[
Xs − µs−

∑
0<u≤s

∆Xu1{|∆Xu|>1}

]

−

{ ∑
0<s≤t∧Tn

e−qs
[
w(V H

s− + ∆Xs, V
H

s )− w(V H
s− , V

H

s )− ∂w

∂x
(V H

s−, V
H

s ) ∆Xs 1{|∆Xs|≤1}

]

−
∫ t∧Tn

0+

∫ ∞
0+

e−qs
[
w(V H

s− − θ, V
H

s )− w(V H
s−, V

H

s ) + θ
∂w

∂x
(V H

s−, V
H

s ) 1{0<θ≤1}

]
ν(dθ) ds

}

+

∫ t∧Tn

0+

e−qs
[
∂w

∂x
(V H

s−, V
H

s )H − ∂w

∂x̄
(V H

s−, V
H

s ) (1−H)

]
dXs. (5.12)

On the right hand side of (5.12), by the Lévy-Itô decomposition (2.3), the second

integral is a zero-mean martingale, and by Theorem 2.1.5, the expression between the

curly-brackets is also a zero-mean martingale. Let Mt∧Tn represents the sum of the

two martingales, which is also a zero-mean martingale. In the last integral, since the

integrand is only counted when X = X, and by Lemma 3.2.1, this happens at the same

times as V H and V
H

are equal, then we can use condition (II). Since w(x, x̄) ≥ 0 for

any (x, x̄) and by conditions (I) and (II), we get

w(x, x̄) ≥
∫ t∧Tn

0+

e−qsHs dXs +Mt∧Tn .

Take expectation, let t and n go to infinity, and since the tax revenue is monotone in

t, then we can use the monotone convergence theorem to find that

w(x, x̄) ≥ Ex,x̄

[∫ τ−0

0+

e−qsHs dXs

]
,

for any admissible strategy H. Hence w(x, x̄) ≥ v∗(x, x̄), for all 0 < x ≤ x̄. Since from

the definition of v∗, w(x, x̄) ≤ v∗(x, x̄), therefore, we get that w(x, x̄) = v∗(x, x̄) for all

0 < x ≤ x̄.

For the case x = 0 and x̄ > 0, since v∗ is an increasing function in the initial

capital, we have the following:

v∗(0, x̄) ≤ v∗(x, x̄) ≤ w(x, x̄),
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then by taking limx↓0 and as w is right-continuous by the assumptions we have that

v∗(0, x̄) ≤ w(0, x̄).

For the case (0, 0), in the unbounded variation case the process get ruined imme-

diately and thus v∗(0, 0) = 0 ≤ w(0, 0) as w ≥ 0. In the bounded variation case, for

some ε > 0 and any admissible strategy H at (0, 0), that is under P0,0, there is an

admissible strategy H̃ at (ε, ε), that is under Pε,ε, such that V H under P0,0 has the

same law as V H̃ − ε under Pε,ε. In other words, with H at (0, 0) and H̃ at (ε, ε), taxes

are collected at the same rate and at the same times. Since, ε > 0, when starting at

(ε, ε), ruin happens later and therefore we get the inequality

sup
H∈Π

vH(0, 0) ≤ sup
H̃∈Π

vH̃(ε, ε),

that is,

v∗(0, 0) ≤ v∗(ε, ε),

which justifies the first inequality in the following

v∗(0, 0) ≤ lim
ε↓0

v∗(ε, ε) ≤ lim
ε↓0

w(ε, ε) = w(0, 0),

where the second inequality follows from the first part of the proof and the last equality

from the right-continuity of w. Hence, the proof is complete.�

We recall Theorem 1.2 in [45], which we will use to find the solution of the optimal

control problem (5.4).

Theorem 5.2.3 Suppose the tail of the Lévy measure is log-convex. Then, for all

q ≥ 0, W (q) has a log-convex first derivative.

In order to prove the optimality for our solution of (5.4), we need the following results.

Lemma 5.2.4 Let

a∗ = sup
{
a ≥ 0 : W (q)′(a) ≤ W (q)′(x) for all x ≥ 0

}
,

and for any x > 0

Q(x) = [W (q)(x)]−1/(1−α) W
(q)(x)

W (q)′(x)
− α

1− α

∫ ∞
x

[W (q)(s)]−1/(1−α)ds. (5.13)

Suppose the tail of the Lévy measure is log-convex. Then Q is strictly increasing on

(0, a∗) and strictly decreasing on (a∗,∞).
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Proof By (2.9), limx→∞W
(q)′(x) = ∞, which implies that a∗ < ∞ and it is the

unique point that W (q)′ attains its minimum. Also, by the assumption and Theorem

5.2.3, for all q ≥ 0, W (q)′ is log-convex. That is, the second derivative exists and W (q)′

is convex. Therefore, W (q)′ is strictly decreasing on (0, a∗) and strictly increasing on

(a∗,∞). Consequently, W (q)′′ is strictly negative on (0, a∗) and strictly positive on

(a∗,∞). Since for any x > 0,

Q′(x) = − [W (q)(x)]−α/(1−α)

[W (q)′(x)]2
W (q)′′(x),

then Q is strictly increasing on (0, a∗) and strictly decreasing on (a∗,∞).�

Lemma 5.2.5 Let C be defined as in (5.9) and b∗ = sup{b ≥ 0 : C(b) ≥ C(x) for all x ≥

0}. Suppose the tail of the Lévy measure is log-convex. Then, b∗ < ∞, C is strictly

increasing on (0, b∗) and strictly decreasing on (b∗,∞), and therefore, it follows that

b∗ is the only point where C has a local/global maximum.

Proof To show that b∗ <∞, it is enough to prove that limb→∞C(b) = 0. Given that

lim
b→∞

[W (q)(b)]−1/(1−α) = 0, (5.14)

and

lim
b→∞

∫ ∞
b

[W (q)(s)]−1/(1−α)ds = 0, (5.15)

we can find the next limit by using L’Hôpital’s rule

lim
b→∞

∫ ∞
b

[
W (q)(b)

W (q)(s)

]1/(1−β)

ds = lim
b→∞

∫∞
b

[W (q)(s)]−1/(1−β)ds

[W (q)(b)]−1/(1−β)

= lim
b→∞

(1− β)
W (q)(b)

W (q)′(b)

=
1− β
Φ(q)

, (5.16)

where Φ(q) is finite as defined in (2.4). Since

C(b) =
β

1− β
[W (q)(b)]1/(1−β)−1/(1−α)

∫ ∞
b

[W (q)(s)]−1/(1−β)ds

− α

1− α

∫ ∞
b

[W (q)(s)]−1/(1−α)ds,

then by (5.16), (5.14) and (5.15), it is clearly that limb→∞C(b) = 0. The derivative of

C can be calculated easily and get that

C ′(b) = f(b)[C(b)−Q(b)],
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where Q is the function given by (5.13) and f is given by

f(b) =

(
1

1− β
− 1

1− α

)
W (q)′(b)

W (q)(b)
.

This implies that

C ′(b) > 0(< 0,= 0) iff C(b) > Q(b) (< Q(b),= Q(b)) , (5.17)

and we have the following cases:

Case I Suppose that C(0) < Q(0), then by (5.17), C ′(0) < 0, that is, C is strictly

decreasing after the starting point until it crosses Q. On the other hand, by Lemma

5.2.4, Q is strictly decreasing on (a∗,∞). Suppose on the contrary that C and Q

intersect, say at b̂, then, C(b̂) = Q(b̂), but C ′(b̂) = 0 while Q′(b̂) < 0. Thus, there

exists sufficiently small ε > 0 such that C(b) > Q(b) for b ∈ (b̂, b̂ + ε). By (5.17), this

means that C strictly increases until it crosses Q again. Since Q is strictly decreasing

on (a∗,∞), C and Q will not intersect again. This implies that C increases ultimately,

which is a contradiction to that limb→∞C(b) = 0. Therefore, C and Q can not intersect

in this case. Hence, C is strictly decreasing on (0,∞), and in this case b∗ = 0.

Case II Suppose that C(0) > Q(0), then by (5.17), C ′(0) > 0, that is, C strictly

increases after the starting point until it crosses Q and so b∗ > 0. Note that, in

this case, a∗ > 0, as if a∗ = 0, C will increase ultimately, which contradicts that

limb→∞C(b) = 0. Thus, C can not increase ultimately and should intersects Q at

some point. At the point of intersection, say b̂, C(b̂) = Q(b̂), we will have two cases:

(i)If b̂ < a∗, then C ′(b̂) = 0 while Q′(b̂) > 0, which implies that there exists sufficiently

small ε > 0 such that C(b) < Q(b) for b ∈ (b̂, b̂ + ε). By (5.17), this means that C

is strictly decreasing in this interval until it crosses Q again. In a similar argument

to case I, we can see that b̂ is the only intersection point. That is, b̂ = b∗, where

C(b) > Q(b) for b < b∗, and C(b) < Q(b) for b > b∗.

(ii) If b̂ = a∗, then C ′(b̂) = 0 and Q′(b̂) = 0, and also in a similar argument to case I,

C can not increase after the intersection point b̂. So, C strictly decreases after b̂, and

hence, there is only one intersection point b̂ = b∗ = a∗, where C(b) > Q(b) for b < b∗

and C(b) < Q(b) for b > b∗.

Case III Suppose that C(0) = Q(0). If a∗ > 0, then either C decreases after the

starting point and hence we have a similar argument to case I, or C increases after
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the starting point and hence we have a similar argument to case II. If a∗ = 0, then C

decreases after the starting point and the case is similar to case I, hence, b∗ = 0.

So, we conclude that either C intersects Q at exactly one point b∗ ≤ a∗, or C

decreases strictly on (0,∞), and hence, the statement is proved.�

Now, we are ready to give the solution of (5.4) and prove its optimality. Before we

do that, we recall some results in order to use them in the proof. The next result

combines Theorems A and B in [55, pp.9-11].

Theorem 5.2.6 A function f : (a, b) 7→ R is convex if and only if it is absolutely

continuous with an increasing density.

Recall the operator A defined in (4.8),

Af(y, z) = µ
∂f

∂y
(y, z) +

σ2

2

∂2f

∂y2
(y, z)

+

∫ ∞
0+

[
f(y − θ, z)− f(y, z) + θ

∂f

∂y
(y, z)1{0<θ≤1}

]
ν(dθ).

Also, we will need computations in the following remark to complete the proof of

optimality.

Remark 11 We compute the partial derivatives of the value function given by (5.8)

for any b ≥ 0.

∂vδ
b
(x, x̄)

∂x
= W (q)′(x)[W (q)(x̄)]α/(1−α)

[
α

1− α

∫ ∞
x̄

[W (q)(s)]−(1/(1−α))ds+ C(b ∨ x̄)

]
(5.18)

and

∂vδ
b
(x, x̄)

∂x̄
=


K1(x, x̄) if 0 ≤ x̄ ≤ b

K2(x, x̄) if x̄ > b,

(5.19)

where

K1(x, x̄) =

(
α

1− α

)2
W (q)(x)

W (q)(x̄)
W (q)′(x̄)[W (q)(x̄)]α/(1−α)

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds

+
α

1− α
W (q)(x)

W (q)(x̄)

[
W (q)′(x̄)(W (q)(x̄))α/(1−α)C(b)− 1

]
,
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and

K2(x, x̄) =
β

1− β
W (q)(x)

W (q)(x̄)

{ β

1− β
W (q)′(x̄)[W (q)(x̄)]β/(1−β)

∫ ∞
x̄

[W (q)(s)]−1/(1−β)ds

− 1
}
.

Theorem 5.2.7 Suppose the tail of the Lévy measure is log-convex, then an (α 7−→

β)-tax strategy at level b∗ is an optimal tax rate policy.

Proof We need to prove that vδ
b∗

satisfies the conditions of the verification lemma

(5.2.2) in order for δb
∗

to be an optimal strategy. First, we have to prove that the

value function vδ
b∗

(x, x̄) ∈ S[1/n,n]×[1/n,n] for each n ∈ N. Recall from (5.8) that,

vδ
b∗

(x, x̄) = W (q)(x)[W (q)(x̄)]α/(1−α)

[
α

1− α

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds+ C(b∗ ∨ x̄)

]
,

(5.20)

where

C(b) =
β

1− β
[W (q)(b)]1/(1−β)−1/(1−α)

∫ ∞
b

[W (q)(s)]−1/(1−β)ds

− α

1− α

∫ ∞
b

[W (q)(s)]−1/(1−α)ds.

Let g(x) = W (q)(x) and

h(x̄) = [W (q)(x̄)]α/(1−α)

[
α

1− α

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds+ C(b∗ ∨ x̄)

]
,

then by (5.20),

vδ
b∗

(x, x̄) = g(x)h(x̄). (5.21)

By the assumption that the tail of the Lévy measure is log-convex and Theorem 5.2.3,

W (q)′ is convex. Thus, by Theorem 5.2.6, we see clearly that g satisfies condition

I of Definition 4.1.1 of S[1/n,n]×[1/n,n] for each n ∈ N. For condition II of Definition

4.1.1, choose λ = n so that θ ≥ λ = n ≥ s and thus s − θ ≤ 0. This implies that

W (q)(s − θ) = 0, and hence the condition is satisfied for all s ∈ (1/n, n). For the

function h, it has a density and we denote it by h′, which is bounded and integrable

on [1/n, n] for each n ∈ N, and such that for any x̄ ∈ [1/n, n] and for each n ∈ N,

h(x̄)− h(1/n) =

∫ x̄

1/n

h′(t)dt,
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where h′, when x̄ ≤ b∗, is given by

h′(x̄) =
α

1− α
W (q)′(x̄)

W (q)(x̄)
[W (q)(x̄)]α/(1−α)

[
α

1− α

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds+ C(b∗)

]
− α

1− α
1

W (q)(x̄)
,

and similarly for the case x̄ > b∗. This implies that h satisfies condition III of Definition

4.1.1 of S[1/n,n]×[1/n,n] for each n ∈ N. Therefore, vδ
b∗

(x, x̄) belongs to S[1/n,n]×[1/n,n] for

each n ∈ N.

For any 0 < x ≤ x̄, we use (5.21), then by the martingale property (2.13) and from

[19, p. 136], we get that

(A− q)vδb
∗

(x, x̄) = h(x̄)(A− q)W (q)(x) = 0.

Hence, condition I is verified.

For condition II, we have two cases:

Case I For 0 < x̄ ≤ b∗, the condition is satisfied for vδ
b∗

(x, x̄) if for any H ∈ [α, β],

H
∂vδ

b∗

∂x
(x̄, x̄) + (H − 1)

∂vδ
b∗

∂x̄
(x̄, x̄)−H ≥ 0,

but this happens if and only if[
∂vδ

b∗
(x, x̄)

∂x
|x=x̄ − 1

] [
H − α
1− α

]
≥ 0.

Since H ∈ [α, β], it is always true that[
H − α
1− α

]
≥ 0,

therefore, in order to satisfy the condition, we should have that

∂vδ
b∗

(x, x̄)

∂x
|x=x̄ ≥ 1.

Since 0 < x̄ ≤ b∗, and by Lemma 5.2.5, C ′ ≥ 0 on (0, b∗]. By (5.17), C ′(x̄) ≥ 0 is

satisfied if and only if C(x̄) ≥ Q(x̄), but as C(b∗) ≥ C(x̄), then we get that C(b∗) ≥

Q(x̄). By (5.13), we have

C(b∗) ≥ Q(x̄)

⇐⇒ C(b∗) ≥ [W (q)(x̄)]−1/(1−α) W
(q)(x̄)

W (q)′(x̄)
− α

1− α

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds,
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but this happens if and only if

α

1− α
W (q)′(x̄)[W (q)(x̄)]α/(1−α)

∫ ∞
x̄

[W (q)(s)]−1/(1−α)ds

+W (q)′(x̄)[W (q)(x̄)]α/(1−α)C(b∗) ≥ 1.

By (5.18), we can write the last inequality as

∂vδ
b∗

(x, x̄)

∂x
|x=x̄ ≥ 1.

That is, vδ
b∗

(x, x̄) satisfies II in the first case.

Case II For x̄ > b∗, condition II in the verification lemma is satisfied for vδ
b∗

(x, x̄) if

for any H ∈ [α, β],

H
∂vδ

b∗

∂x
(x̄, x̄) + (H − 1)

∂vδ
b∗

∂x̄
(x̄, x̄)−H ≥ 0,

but in this case, it happens if and only if[
∂vδ

b∗
(x, x̄)

∂x
|x=x̄ − 1

] [
H − β
1− β

]
≥ 0.

Since H ≤ β, the last inequality is satisfied if and only if

∂vδ
b∗

(x, x̄)

∂x
|x=x̄ < 1.

By Lemma 5.2.5 and as x̄ > b∗, we have that C ′(x̄) < 0. By (5.17), this is equivalent

to C(x̄) < Q(x̄). By a similar argument to case I, we can have that

C(x̄) < Q(x̄) ⇐⇒ ∂vδ
b∗

(x, x̄)

∂x
|x=x̄ < 1,

that is, vδ
b∗

(x, x̄) satisfies II in the second case. Hence, δb
∗

is an optimal strategy.�

5.3 Relation with Wang and Hu’s work

As the title of this section indicates, we explain the relation between our results and

the one given by authors in [57].

Proposition 5.3.1 The two cases considered in Sections 4 and 5 in [57] for the op-

timal strategy, and the corresponding optimal value function, agrees with our solution

of (5.4) in the case x = x̄.
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Proof We recall first [57, Equation (4.5)], which is

β

1− β
[W (q)(y)]−1/(1−β) = −

(
[W (q)(y)]1−(1/(1−β))

W (q)′(y)

)′
− [W (q)(y)]1−(1/(1−β))W (q)′′(y)

[W (q)′(y)]2
.

(5.22)

To find b∗, by Lemma 5.2.5, we know that either b∗ = 0 or b∗ > 0 is such that

C(b∗) = Q(b∗), which implies by (5.9) and (5.13) that

β

1− β

∫ ∞
b∗

[
W (q)(s)

]−1/(1−β)
ds =

[W (q)(b∗)]1−(1/(1−β))

W (q)′(b∗)
. (5.23)

By (5.22), we have that

β

1− β

∫ ∞
b∗

[
W (q)(s)

]−1/(1−β)
ds =

[W (q)(b∗)]1−(1/(1−β))

W (q)′(b∗)

−
∫ ∞
b∗

[W (q)(s)]1−(1/(1−β))W (q)′′(s)

[W (q)′(s)]2
ds.

Therefore, by (5.23), we find that b∗ is the solution to∫ ∞
b∗

[W (q)(s)]1−(1/(1−β))W (q)′′(s)

[W (q)′(s)]2
ds = 0, (5.24)

which agrees with [57, (5.15)]. Note that, from the proof of Lemma 5.2.4, we know that

W (q)′′ changes its sign from negative to positive only once. Therefore, the existence of

a unique solution b∗ > 0 of (5.24) is guaranteed by the condition∫ ∞
0

[W (q)(s)]1−(1/(1−β))W (q)′′(s)

[W (q)′(s)]2
ds < 0.

This implies that in the case∫ ∞
0

[W (q)(s)]1−(1/(1−β))W (q)′′(s)

[W (q)′(s)]2
ds ≥ 0,

then b∗ = 0 and the optimal strategy is to pay tax at the maximum rate β. These

conditions agrees with [57].

In order to show that our optimal value function vδ
b∗

(x, x) for any x ≥ 0 equals

the corresponding one in [57, (5.7)], we use the tax value function given by (5.8), (5.9)

and (5.13). Also, recall that when b∗ > 0, as C ′(b∗) = 0, and by (5.17), C(b∗) = Q(b∗),

then we can use Q instead of C at b∗. That is, for x ≤ b∗, we have that

vδ
b∗

(x, x) =
α

1− α

∫ ∞
x

[
W (q)(x)

W (q)(s)

]1/(1−α)

ds+ [W (q)(x)]1/(1−α)C(b∗)

=
α

1− α

∫ b∗

x

[
W (q)(x)

W (q)(s)

]1/(1−α)

ds+
[W (q)(b∗)]1−(1/(1−α))

W (q)′(b∗)
[W (q)(x)]1/(1−α),
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which agrees with the optimal value function for the first case, as given in [57, Equation

5.7].

For x > b∗, we have that

vδ
b∗

(x, x) =
α

1− α

∫ ∞
x

[
W (q)(x)

W (q)(s)

]1/(1−α)

ds+ [W (q)(x)]1/(1−α)C(x)

=
β

1− β

∫ ∞
x

[
W (q)(x)

W (q)(s)

]1/(1−β)

ds

=
β

1− β

∫ ∞
b∗

[
W (q)(x)

W (q)(s)

]1/(1−β)

ds− β

1− β

∫ x

b∗

[
W (q)(x)

W (q)(s)

]1/(1−β)

ds. (5.25)

Then, we use (5.23) in (5.25), and see that the optimal tax value function in the case

x > b∗, is given by

vδ
b∗

(x, x) =
[W (q)(b∗)]1−(1/(1−β))

W (q)′(b∗)
[W (q)(x)]1/(1−β) − β

1− β

∫ x

b∗

[
W (q)(x)

W (q)(s)

]1/(1−β)

ds,

which agrees with the corresponding optimal tax value for the second case in [57,

(5.7)].�



Chapter 6

Natural Taxation with forced

bail-out

6.1 Introduction

It is natural to consider the case when a tax authority supports an insurance company

by bail-out loans to continue its businesses. These are the capital injections made by

the government to keep the insurance company solvent. Then it would be important

for the government to know what is the net tax profit (tax value) and to look at

the maximum value and find the optimal strategy that can achieves this. We are

thinking about the case where bail-out is unlimited, so no ruin occurs. In the context

of dividends, many authors studied this problem. For example, [21] and [48] looked

at the problem in the setting of a Cramér-Lundberg process. Similarly, [40] studied

the problem but with a Brownian motion risk process model. In [10], the problem is

generalised into a spectrally negative Lévy risk process. In this chapter, we study tax

processes with the addition of a bail-out process K. This type of taxation has been

investigated recently in many articles, such as [3], [4] and [64]. We recall first the tax

process defined in Chapter 5. Given a spectrally negative Lévy process X, we define

a tax process by

V H
t = Xt −

∫ t

0+

Hs dXs, t ≥ 0,

where (Ht)t≥0 is a left-continuous adapted process such that 0 ≤ α ≤ Ht ≤ β < 1.

Since tax contributions are made whenever V H reaches a new maximum, this taxation

92
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structure is of loss-carry-forward type. In a similar way, with the addition of a bail-out

process K, we define the tax process as,

V π̄
t = (X +K)t −

∫ t

0+

Hs d(X +K)s, t ≥ 0. (6.1)

We say that π̄ := (H,K) is an admissible policy if both (Ht)t≥0 and (Kt)t≥0 are left-

continuous adapted processes such that for each t ≥ 0, 0 ≤ α ≤ Ht ≤ β < 1, and the

bail-out process K is an increasing process that represents the injection to the capital

such that (X +K) is continuous and V π̄
t+ ≥ 0. Similarly, the tax contributions in (6.1)

are made whenever the process (X +K) reaches a new maximum, which is whenever

V π̄ reaches a new maximum; see Lemma 6.2.2 below. As a result, the taxation in

(6.1) can be seen as of loss-carry-forward type. In this model, ruin is not allowed.

Therefore, we call K in this case, forced bail-out and the process V π̄ is the tax process

with forced bail-out.

For x ≤ x̄ such that x̄ > 0, the net profit (or the value function) of taxation in this

model is given by

vπ̄(x, x̄) = Ex,x̄
[∫ ∞

0

e−qsHs d(X +K)s − η
∫ ∞

0

e−qs dKs

]
,

where η ≥ 1 is a bail-out cost factor.

Our aim in this chapter, is to solve the optimal control problem

v∗(x, x̄) = sup
π̄∈Π

vπ̄(x, x̄), (6.2)

where Π is the set of all admissible policies. An optimal tax policy π̄∗ = (H∗, K∗) ∈ Π

is such that v∗(x, x̄) = vπ̄
∗
(x, x̄) for all x ≤ x̄ such that x̄ > 0. Note that, recently, [64]

studied an optimal control problem for a tax process with capital injections, but in the

case where there is a delay in tax. That is, they optimise over the class of (α 7−→ β)-tax

strategies, see (5.5), when α = 0 only. Also, they optimise over the bail-out process K

where the injection to the capital is only made whenever the surplus is below zero. In

contrast, here we solve (6.2) and prove optimality among a larger class of admissible

strategies. Note that, from an intuitive point of view, the optimal bail-out strategy

would be when capital injections are made only if necessary. This is when the surplus

of the insurance company becomes negative, and the government injects the capital

back to the level zero in order for the company to operate again. This bail-out strategy
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is intuitively optimal. This is because when the bail-out happens earlier than needed,

that is to say to a strictly positive level, the government can get more taxes. However,

the taxes will be paid-out later, so this tax income will be more highly discounted than

the capital injections that has been made earlier. Clearly, this would make a loss for

the government and hence is not an optimal strategy.

Remark 12 We exclude the case x̄ = 0 and leave it for further study, as it is not

clear how to construct the tax process with bail-out in the case x̄ = 0, when taxation

and injections happen simultaneously.

Our main results in this chapter are, Theorem 6.2.4, which gives an explicit ex-

pression for the net present value of taxation of the natural tax process with forced

bail-out, V δ,∞, which will be defined rigorously below. Also, Theorem 6.2.6 gives an

explicit expression for the net present value of capital injections of V δ,∞. Our results

agree with some results in literature for special cases, when δ is constant or zero.

Then, Theorem 6.3.4, states that the solution of the optimal control problem (6.2)

is piecewise constant tax together with the minimal capital injections, which is the

injections back to zero whenever the surplus becomes strictly negative. Note that,

in Theorem 6.3.4, a condition for the Lévy measure is not needed, compared to the

optimal control tax problem considered in Chapter 5.

This chapter is organised as follows. In Section 6.2, we define the process V δ,∞,

through an algorithm and show it is well-defined. Then, we derive the net profit of

taxation for V δ,∞. In Section 6.3, we solve our optimal control problem (6.2).

6.2 Value function

Let X0 = x,X0 = x̄ > 0, where x ≤ x̄ and δ : [x̄,∞)→ [0, 1) be a measurable function

such that there exists a unique solution yδx̄ to (3.4). In this section, we study a natural

tax process with a forced bail-out and we call it V δ,∞. The process V δ,∞ is a process

refracted from above with rate δ and reflected from below at zero. Such a process can

be defined by using a one-sided refraction from above and a one-sided reflection from

below locally, and then gluing segments of paths together. The corresponding bail-out

process, Kδ, is the injection to the capital whenever the process becomes negative.
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We define the process V δ,∞ rigorously through the following algorithm and Proposi-

tion 6.2.1.

Algorithm

Initialization, (n = 0):

• For t ≥ 0, let V
(0)
t = Xt − inf0≤s≤t(Xs ∧ 0), (Kδ)

(0)
t = 0, z(1) = x̄ and T0 = 0.

• Let ∆0 = T1 = inf
{
t ≥ 0 : V

(0)
t > x̄

}
.

Step (n ton+ 1):

• Let X
(n)
t = V

(n−1)
∆n−1

+XTn+t −XTn for t ≥ 0 and n ≥ 1.

• If X
(n)
0 = z(n), then for t ≥ 0, (Kδ)

(n)
t = 0, and

V
(n)
t = X

(n)
t −

∫ t

0+

δ(V
(n)

s ) dX
(n)
s ,

where V
(n)

t = sup0≤s≤t V
(n)
s . Put

∆n = inf
{
t ≥ 0 : V

(n)
t < 0

}
.

Note that, X(n) is continuous since X(n) does not have upward jumps. Therefore,

by Theorem 3.2.3, V (n) is well defined.

– If ∆n < ∞, then let Tn+1 = Tn + ∆n, z(n+1) = V
(n)

∆n
and go to step

(n ton+ 1), otherwise stop.

• If X
(n)
0 < 0, then for t ≥ 0

(Kδ)
(n)
t = −X(n)

0 − inf
0≤s<t

{
(X(n)

s −X
(n)
0 ) ∧ 0

}
and

V
(n)
t = X

(n)
t + (Kδ)

(n)
t .

Put

∆n = inf
{
t ≥ 0 : V

(n)
t > z(n)

}
.

– If ∆n < ∞, then let Tn+1 = Tn + ∆n , z(n+1) = z(n) and go to step (n to

n+1), otherwise stop.
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Finally, for t ∈ (Tn, Tn+1], we set:

V δ,∞
t = V

(n)
t−Tn , and Kδ

t =
n−1∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(n)
t−Tn . (6.3)

Proposition 6.2.1 For almost every sample path of X, the pair of processes (V δ,∞
t , Kδ

t )

defined in (6.3) is the unique solution of the following integral equation:

V δ,∞
t = (X +Kδ)t −

∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s, t ≥ 0, (6.4)

such that V δ,∞
t+ ≥ 0.

Proof We show that (V δ,∞
t , Kδ

t ) given by (6.3) is well defined for all t ≥ 0. Since

T0 ≤ T1 ≤ T2 ≤ ..., then it is enough to show that limn→∞ Tn = ∞ almost surely.

Note that,

Tn =
n−1∑
i=0

∆i.

From the algorithm, for n ≥ 1, the up-crossings T2n+1 times are when

∆2n = inf
{
t ≥ 0 : V

(2n)
t > z(2n)

}
.

Since, for any n ≥ 1, z(n) is increasing, then

∆2 = inf
{
t ≥ 0 : V

(2)
t > z(2)

}
> 0.

From the strong Markov property of (V δ,∞, V
δ,∞

), (∆2n)n≥1 is a sequence of indepen-

dent random variables. Note that, for n ≥ 1, ∆2n is bigger in stochastic order than

∆2. That is,

Px,x̄ (∆2n ≥ t) ≥ Px,x̄ (∆2 ≥ t) .

Therefore, by taking independent identically distributed copies of ∆2, we get that

Px,x̄
(

lim
n→∞

Tn =∞
)
≥ Px,x̄

(∑
n≥1

∆2n =∞

)
≥ Px,x̄

(∑
n≥1

∆
(n)
2 =∞

)
= 1,

where the last equality follows from the fact that the sum of independent identi-

cally distributed positive random variables converges to infinity. This implies that

limn→∞ Tn =∞ almost surely.

Note that, from the algorithm construction, (X +Kδ) is continuous. This is be-

cause X is a spectrally negative Lévy process, thus the upward jumps in (X + Kδ)
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come from Kδ. So, when there is a bail-out, the surplus process V δ,∞ follows the

maximum that it has previously. Moreover, since the tax is paid whenever the process

(X +Kδ) reaches its maximum, then Kδ does not increase in that case, which implies

that (X +Kδ) does not increase. Therefore, (X +Kδ) satisfies the assumptions of

Theorem 3.2.3, which proves uniqueness of the solution.

Now we show by induction, that (V δ,∞
t , Kδ

t ) defined in (6.3) satisfies (6.4). First

step is to prove that the statement is true for n = 0, 1. Since V
(0)

∆0
= V

(0)
T1

= z(1), i.e

tax starts in intervals with odd index, so on (0, T1] there is no tax, and for t ∈ (T1, T2],

there is no injection, so

Kδ
t = (Kδ)

(1)
t−T1

= 0. (6.5)

Also,

X
(1)
t−T1

= V
(0)

∆0
+XT1+t−T1 −XT1 = Xt, (6.6)

because ∆0 = T1 and V
(0)
T1

= XT1 . Therefore,

V δ,∞
t = V

(1)
t−T1

= X
(1)
t−T1
−
∫ t−T1

0+

δ(V
(1)

s ) dX
(1)
s

= Xt −
∫ t

T1

δ(V
(1)

s−T1
) dX

(1)
s−T1

= Xt −
∫ t

0+

δ(V
(1)

s−T1
) dXs

= Xt +Kδ
t −

∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s,

where we use (6.6) in the second and third equality, and also in the third equality we

use that there is no tax in (0, T1]. The fourth equality comes from (6.5).

For the second step in the proof, we suppose that for all m ≤ n and t ∈ (Tm, Tm+1],

the pair of processes (V δ,∞
t , Kδ

t ) defined by

V δ,∞
t = V

(m)
t−Tm and Kδ

t =
m−1∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(m)
t−Tm , (6.7)

satisfies (6.4).

The third step is to prove that (6.3) satisfies (6.4) for n + 1, that is, for t ∈

(Tn+1, Tn+2] the pair of processes (V δ,∞
t , Kδ

t ) defined by

V δ,∞
t = V

(n+1)
t−Tn+1

, and Kδ
t =

n∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(n+1)
t−Tn+1

,
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satisfies (6.4). We first recall that, for t ∈ (Tn+1, Tn+2],

X
(n+1)
t−Tn+1

= V
(n)

∆n
+XTn+1+t−Tn+1 −XTn+1

= V
(n)
Tn+1−Tn +Xt −XTn+1 . (6.8)

Let us suppose that we are in the case X
(n+1)
0 = z(n+1), then for t ≥ 0, (Kδ)

(n+1)
t = 0

and hence for t ∈ (Tn+1, Tn+2]

(Kδ)
(n+1)
t−Tn+1

= 0. (6.9)

Then, use (6.7) with m = n and t = Tn+1 to get that

V δ,∞
Tn+1

= V
(n)
Tn+1−Tn and Kδ

Tn+1
=

n−1∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(n)
Tn+1−Tn =

n∑
i=0

(Kδ)
(i)
∆i

(6.10)

satisfies (6.4). Thus, (6.8) becomes

X
(n+1)
t−Tn+1

= V δ,∞
Tn+1

+Xt −XTn+1

= XTn+1 +Kδ
Tn+1
−
∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s +Xt −XTn+1

= Xt +
n∑
i=0

(Kδ)
(i)
∆i
−
∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s

= Xt +
n∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(n+1)
t−Tn+1

−
∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s

= Xt +Kδ
t −

∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s, (6.11)

where in the second equality we use that (V δ,∞
Tn+1

, Kδ
Tn+1

) given by (6.10) satisfies (6.4)

and in the fourth equality, we use (6.9). For s ∈ (Tn+1, t], we have that

X
(n+1)
s−Tn+1

= sup
Tn+1≤s′≤s

X
(n+1)
s′−Tn+1

= sup
Tn+1≤s′≤s

(Xs′ +Kδ
s′) = (X +Kδ)s. (6.12)
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Therefore,

V δ,∞
t = V

(n+1)
t−Tn+1

= X
(n+1)
t−Tn+1

−
∫ t−Tn+1

0+

δ(V
(n+1)

s ) dX
(n+1)
s

= Xt +Kδ
t −

∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s

−
∫ t

Tn+1

δ(V
(n+1)

s−Tn+1
) dX

(n+1)
s−Tn+1

= Xt +Kδ
t −

∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s

−
∫ t

Tn+1

δ(V
δ,∞
s ) d(X +Kδ)s

= Xt +Kδ
t −

∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s,

where we use (6.11) and (6.12).

Now suppose that we are in the case X
(n+1)
0 < 0, so

V δ,∞
t = V

(n+1)
t−Tn+1

= X
(n+1)
t−Tn+1

+ (Kδ)
(n+1)
t−Tn+1

= Xt + V δ,∞
Tn+1
−XTn+1 + (Kδ)

(n+1)
t−Tn+1

= Xt +XTn+1 +Kδ
Tn+1
−
∫ Tn+1

0+

δ(V
δ,∞
s ) d(X +Kδ)s

−XTn+1 + (Kδ)
(n+1)
t−Tn+1

= Xt +
n∑
i=0

(Kδ)
(i)
∆i

+ (Kδ)
(n+1)
t−Tn+1

−
∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s

= Xt +Kδ
t −

∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s, (6.13)

where we use (6.8) and (6.10) in the second equality, and in the third equality that

(V δ,∞
Tn+1

, Kδ
Tn+1

) given by (6.10) satisfies (6.4). In the fourth equality of (6.13), we use

again (6.10) and that
∫ t
Tn+1

δ(V
δ,∞
s ) d(X +Kδ)s = 0 as in the interval (Tn+1, Tn+2],

injections only that happens.

The last part of the proof is to show that for n ≥ 1 and t ∈ (Tn, Tn+1], V δ,∞
t+ ≥ 0,

which is clear from the construction of the algorithm. Hence, the statement is proved.�

In the next two subsections, we find the analytic expression of the net present tax

value function for the process (6.4), which is defined for any x ≤ x̄ and x̄ > 0 by

vδ,∞(x, x̄) = vδ,∞tax (x, x̄)− η vδ,∞inj (x, x̄), (6.14)
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where η ≥ 1 a bail-out cost factor,

vδ,∞tax (x, x̄) = Ex,x̄
[∫ ∞

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s

]
,

and

vδ,∞inj (x, x̄) = Ex,x̄
[∫ ∞

0

e−qs dKδ
s

]
.

Recall that for f ∈ S[b,a]×[c,d], y ∈ [b, a] and z ∈ [c, d],

Γδf(y, z) =
∂

∂y
f(y, z) δ(z)− ∂

∂z
f(y, z)(1− δ(z)). (6.15)

6.2.1 The tax value function

As the title explain, we find separately in this subsection the expected accumulated

discounted tax payments for the natural tax process with forced bail-out, V δ,∞. First,

we note that, since the tax starts when x = x̄, then by using the strong Markov

property of (V δ,∞, V
δ,∞

),

vδ,∞tax (x, x̄) = Ex,x̄
[∫ ∞

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s

]
= Ex,x̄

[
e−qτ

+
x̄ Ex,x̄

[
eqτ

+
x̄

∫ ∞
τ+
x̄

e−qs δ(V
δ,∞
s ) d(X +Kδ)s|Fτ+

x̄

]]

= Ex,x̄
[
e−qτ

+
x̄

]
Ex̄,x̄

[∫ ∞
0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s

]
=
Z(q)(x)

Z(q)(x̄)
vδ,∞tax (x̄, x̄), (6.16)

where in the last equality we use Lemma 2.2.7 since the process before reaching level x̄

is just the reflected process at zero. For convenience of calculations, we consider first

that x ≤ x̄ ≤ a and find the expression of

vδ,∞tax,a(x, x̄) = Ex,x̄

[∫ τ+
a

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s

]
, (6.17)

then we can take the limit as a goes to ∞ in order to get the required expression in

(6.14). To find (6.17), we will use our approach explained in Section 4.3. Before we

do that, we state and prove an important result which will be used in the proofs of

some of the next results.

Lemma 6.2.2 For the process

V π̄
t = (X +K)t −

∫ t

0+

Hs d(X +K)s, t ≥ 0,
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we have that

V
π̄

t = (X +K)t −
∫ t

0+

Hs d(X +K)s.

Moreover, {t ≥ 0 : V π̄
t = V

π̄

t } agree precisely with {t ≥ 0 : (X +K)t = (X +K)t}.

Proof The proof is similar to the one for Lemma 3.2.1.�

The next lemma gives the conditions under which a function is the tax value function

given by (6.17).

Lemma 6.2.3 Let V δ,∞ be the natural tax process with forced bail-out given in (6.4).

For fixed a > 0, suppose f is a function with domain Df = (−∞, a] × (0, a] and

satisfying the following conditions:

(I) For each n ≥ 1, f ∈ S[−n,a]×[ 1
n
,a] such that f is of the form, f(x, x̄) = g(x)h(x̄),

where g and h satisfy the conditions of Definition 4.1.1.

(II) For x < 0, f(x, x̄) = f(0, x̄).

(III) f(a, a) = 0.

(IV) (A− q)f(x, x̄) = 0 for 0 < x ≤ x̄ ≤ a.

(V) (A− q)f(0, x̄) = 0 for 0 < x̄ ≤ a.

(VI) There exists a locally bounded density for h such that

Γδf(x̄, x̄) = δ(x̄) for all 0 < x̄ ≤ a,

where Γδ is given by (6.15). Then,

f(x, x̄) = vδ,∞tax,a(x, x̄), for x ≤ x̄ ≤ a and x̄ > 0.

Proof Let Ṽ , K̃ be the right-continuous modifications of V δ,∞ and Kδ. Define

τ−−n := inf
{
t ≥ 0 : Ṽt < −n

}
, τ+

a := inf
{
t ≥ 0 : Ṽt > a

}
and

κ−1
n

:= inf

{
t ≥ 0 : Ṽ t <

1

n

}
.
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Since Ṽ is greater or equal to zero, then T = τ−−n ∧ τ+
a ∧ κ−1

n

= τ+
a ∧ κ−1

n

. By condition

(I), f ∈ S[−n,a]×[ 1
n
,a], and since Ṽ and Ṽ are semi-martingales and as Ṽ is a continuous

process of bounded variation, then we can use Corollary 4.1.3 and get that

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

=

∫ t∧T

0+

−qe−qs f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s) dṼs

+

∫ t∧T

0+

e−qs
∂f

∂x̄
(Ṽs−, Ṽ s) dṼ s +

1

2

∫ t∧T

0+

e−qs
∂2f

∂x2
(Ṽs−, Ṽ s) d

[
Ṽ , Ṽ

]c
s

+
∑

0<s≤t

e−qs
[
∆f(Ṽs, Ṽ s)−

∂f

∂x
(Ṽs−, Ṽ s) ∆Ṽs

]
,

where we use the notations: ∆Ṽs = Ṽs − Ṽs− and for a stochastic process Z, (Z̃s)
c =

Z̃s −
∑

0<u≤s ∆Z̃u.

Note that,

∆f(Ṽs, Ṽ s) = f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− , Ṽ s)

= f(Ṽs− + ∆Xs, Ṽ s)− f(Ṽs− , Ṽ s)

+ f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s).

Also, note that [
Ṽ , Ṽ

]c
s

= σ2s. (6.18)

Now using definition of the operator A in (4.8), (6.4) and (6.18), we get

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q) f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)dK̃s

+
∑

0<s≤t∧T

e−qs
{
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)−

∂f

∂x
(Ṽs−, Ṽ s)∆K̃s

}
+

∫ t∧T

0+

e−qs
[
∂f

∂x̄
(Ṽs−, Ṽ s)(1− δ(Ṽ s))−

∂f

∂x
(Ṽs−, Ṽ s)δ(Ṽ s)

]
d(X + K̃)s, (6.19)

where Mt∧T is the sum of the two zero mean martingales M1
t∧T and M2

t∧T given re-

spectively by

M1
t∧T =

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s) d

[
Xs − µs−

∑
0<u≤s

∆Xu1{|∆Xu|>1}

]
,
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and

M2
t∧T =

∑
0<s≤t∧T

e−qs
{
f(Ṽs− + ∆Xs, Ṽ s)− f(Ṽs− , Ṽ s)−

∂f

∂x
(Ṽs−, Ṽ s) ∆Xs 1{|∆Xs|≤1}

}
−
∫ t∧T

0+

∫ ∞
0+

e−qs
{
f(Ṽs− − θ, Ṽ s)− f(Ṽs−, Ṽ s) + θ

∂f

∂x
(Ṽs−, Ṽ s) 1{0<θ≤1}

}
ν(dθ) ds.

Since the last integral in (6.19) is counted only when X + K̃ = (X + K̃), which is

by Lemma 6.2.2, when Ṽ = Ṽ , and by (6.15), then we can rewrite the expansion in

(6.19) as

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q)f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s) dK̃s

+
∑

0<s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)−

∂f

∂x
(Ṽs−, Ṽ s)∆K̃s

]

−
∫ t∧T

0+

e−qs
[
Γδf(Ṽ s, Ṽ s)

]
d(X + K̃)s. (6.20)

On the right hand side of (6.20), by conditions (IV) and (V), the first integral term

vanishes. Use condition (VI), and combine the second integral term together with the

last term of the summation term in (6.20) and use that (K̃s)
c = K̃s −

∑
0<u≤s ∆K̃u,

we get

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0<s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs δ(Ṽ s) d(X + K̃)s. (6.21)

Since (X + K̃) = (X +Kδ), then Ṽ = V
δ,∞

. We define Ṽ0− := V δ,∞
0 = x, therefore,
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(6.21) can be rewritten as

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
[
f(Ṽ0, Ṽ 0)− f(Ṽ0− , Ṽ 0)

]
−
∫ t∧T

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s. (6.22)

Since f(Ṽ0− , Ṽ 0) = f(x, x̄), then (6.22) becomes

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s. (6.23)

Note first that, if ∆K̃s > 0, by the mean value theorem, ∃ζ : Ω → R such that

ζ ∈ (Ṽs− + ∆Xs, Ṽs− + ∆Xs + ∆K̃s) ⊆ (−∞, 0) and

f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s) =
∂f

∂x
(ζ, Ṽ s) ∆K̃s. (6.24)

By condition (II),
∂f

∂x
(x, y) = 0, for x < 0, this implies that (6.24) becomes zero. If

we are in the bounded variation case, then (K̃s)
c = 0. In the unbounded variation

case, (K̃s)
c changes when Ṽs− = 0, but since for each n ≥ 1, g ∈ C1[−n, a], then

∂f

∂x
(x, y)|x=0 = limx↑0

∂f

∂x
(x, y) = 0, and hence this term equals zero.

Take expectation in (6.23). Note that, since Ṽ is greater or equal zero and by

conditions on f , g is bounded on [0, a] and Ṽ can not go below zero, then we can use

bounded convergence theorem on the left hand side of (6.23). So, by letting t and n

go to infinity and using the monotone convergence theorem on the right hand side of

(6.23), after taking expectation, and by condition (III) that f(a, a) = 0, we find that

f(x, x̄) = vδ,∞tax,a(x, x̄). (6.25)

�



CHAPTER 6. NATURAL TAXATION WITH FORCED BAIL-OUT 105

The next point is to guess the candidate expression of vδ,∞tax,a(x, x̄). We use Lemma

6.2.3. First, by (6.16),

f(x, x̄) = vδ,∞tax,a(x, x̄) =
Z(q)(x)

Z(q)(x̄)
vδ,∞tax,a(x̄, x̄). (6.26)

Then, we use (6.26) and that f satisfies conditions (VI) and (III), so we get the

following ODE

∂

∂x̄
vδ,∞tax,a(x̄, x̄)− 1

1− δ(x̄)

Z(q)′(x̄)

Z(q)(x̄)
vδ,∞tax,a(x̄, x̄) = − δ(x̄)

1− δ(x̄)
,

with the condition

vδ,∞tax,a(a, a) = 0.

Thus, solving this ODE by integrating factor method, we can find that

vδ,∞tax,a(x̄, x̄) = exp

{∫ x̄

a

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
×
{
−
∫ x̄

a

exp

{
−
∫ y

a

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy + C

}
,

where C is a constant. To find it, we use the initial condition and find that C = 0.

Therefore, we get that the candidate expression should be

vδ,∞tax,a(x, x̄) =
Z(q)(x)

Z(q)(x̄)

∫ a

x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy. (6.27)

In the next theorem, we prove that (6.27) is the correct expression.

Theorem 6.2.4 For x̄ > 0, let δ : [x̄,∞) → [0, 1) be a natural tax rate function

such that 1/(1− δ(s)), for all s ∈ [x̄,∞), is locally bounded. The net present value of

taxation for the process V δ,∞, for all x ≤ x̄, is given by

vδ,∞tax (x, x̄) =
Z(q)(x)

Z(q)(x̄)

∫ ∞
x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy. (6.28)

Proof Let

f(x, x̄) = g(x) h(x̄),

where g(x) = Z(q)(x), and

h(x̄) =
1

Z(q)(x̄)

∫ a

x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy,
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which can be written as

h(x̄) =
1

Z(q)(x̄)
exp

{
−
∫ a

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
×
∫ a

x̄

exp

{
−
∫ y

a

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy.

We only need to show that f satisfies the conditions in Lemma 6.2.3, then by (6.25)

and taking the limit as a goes to infinity, the statement is proved. By assumption on

1/(1−δ(s)), and the properties of the scale functions mentioned below Theorem 2.2.1,

it is clear that for each n ≥ 1, g and h satisfy the first and third conditions in Definition

4.1.1 on [−n, a] and [ 1
n
, a] respectively. For the second condition of Definition 4.1.1,

it is true that there exists λ > 0 such that s 7→
∫∞
λ
Z(q)(s − θ) ν(dθ) is bounded on

(−n, a) for each n ≥ 1. This is because, by choosing λ = a, then θ ≥ λ = a ≥ s. Thus,

s− θ ≤ 0 which implies that Z(q)(s− θ) = 1, and from the definition of Lévy measure

(see [9, p.29]), ν(ε,∞) <∞ for all ε > 0, the condition is satisfied. So, condition (I)

is verified. Since g(x) = 1 for x < 0, then (II) is satisfied. Also, as h(a) = 0, then

f(a, a) = 0, this satisfies condition (III). By the martingale property (2.14) and [50,

p.193], we have that for x > 0

(A− q)f(x, x̄) = h(x̄) (A− q)Z(q)(x) = 0, (6.29)

which verifies condition (IV). By continuity of Z(q), right-continuity of Z(q)′ and Z(q)′′

at 0,

(A− q)f(0, x̄) = h(x̄) (A− q)Z(q)(0) = 0,

which verifies condition (V). For the last condition in Lemma 6.2.3, since

∂f(x, x̄)

∂x
|x=x̄ = Z(q)′(x̄) h(x̄), (6.30)

and

∂f(x, x̄)

∂x̄
|x=x̄ = Z(q)(x̄) h′(x̄), (6.31)

where

h′(x̄) = − 1

Z(q)(x̄)

δ(x̄)

1− δ(x̄)

+
δ(x̄)

1− δ(x̄)
exp

{
−
∫ a

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
Z(q)′(x̄)

[Z(q)(x̄)]2
A(x̄), (6.32)
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and

A(x̄) =

∫ a

x̄

exp

{
−
∫ y

a

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy.

By (6.30), (6.31) and (6.32) we find that Γδf(x̄, x̄) = δ(x̄) for all 0 < x̄ ≤ a.�

6.2.2 The injection value function

As the title explained, we find in this subsection the expected accumulated discounted

capital injections for the natural tax process with forced bail-out, V δ,∞. It is given by

vδ,∞inj (x, x̄) = Ex,x̄

[∫ τ+
x̄

0

e−qs dKδ
s

]
+ Ex,x̄

[∫ ∞
τ+
x̄

e−qs dKδ
s

]
.

From [10, p.12], we find that

Ex,x̄

[∫ τ+
x̄

0

e−qs dKδ
s

]
= −Z(q)

(x)− ψ′(0+)

q
+
Z(q)(x)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
, (6.33)

where Z
(q)

(x) =
∫ x

0
Z(q)(r)dr. Then, similar to (6.16),

Ex,x̄

[∫ ∞
τ+
x̄

e−qs dKδ
s

]
=
Z(q)(x)

Z(q)(x̄)
vδ,∞inj (x̄, x̄),

therefore,

vδ,∞inj (x, x̄) = −Z(q)
(x)− ψ′(0+)

q
+
Z(q)(x)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
+
Z(q)(x)

Z(q)(x̄)
vδ,∞inj (x̄, x̄). (6.34)

For convenience of calculations, we consider first that x ≤ x̄ ≤ a and find the expression

of

vδ,∞inj,a(x, x̄) = Ex,x̄

[∫ τ+
a

0

e−qs dKδ
s

]
,

then we can take the limit as a goes to ∞ in order to get the required expression in

(6.14). With similar steps to the previous section, we can find the net present value

of injections, vδ,∞inj , as follows.

Lemma 6.2.5 Let V δ,∞ be the natural tax process with forced bail-out given in (6.4).

For fixed a > 0, suppose f is a function with domain Df = (−∞, a] × (0, a] and

satisfying the following conditions:
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(I) For each n ≥ 1, f ∈ S[−n,a]×[ 1
n
,a] such that f is of the form, f(x, x̄) = f1(x, x̄) +

f2(x, x̄), where for each i = 1, 2, fi(x, x̄) = gi(x)hi(x̄), and each gi and hi satisfy

the conditions of Definition 4.1.1.

(II) For x < 0, let f(x, x̄) = −x+ f(0, x̄).

(III) f(a, a) = 0.

(IV) (A− q)f(x, x̄) = 0 for 0 < x ≤ x̄ ≤ a.

(V) (A− q)f(0, x̄) = 0 for 0 < x̄ ≤ a.

(VI) There exists a locally bounded density for each hi such that

Γδf(x̄, x̄) = 0 for all 0 < x̄ ≤ a,

where Γδ is given by (6.15). Then,

f(x, x̄) = vδ,∞inj,a(x, x̄), for x ≤ x̄ ≤ a and x̄ > 0. (6.35)

Proof We follow the same steps as in the proof of Lemma 6.2.3 up to (6.20). Use

that (K̃s)
c = K̃s −

∑
0<u≤s ∆K̃u, we get

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs(A− q)f(Ṽs−, Ṽ s)ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0<s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs
[
Γδf(Ṽ s, Ṽ s)

]
d(X + K̃)s.

Use conditions (IV), (V) and (VI), and that f(Ṽ0− , Ṽ 0) = f(x, x̄) to get

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
, (6.36)

where ∆K̃0 = K̃0− K̃0− such that K̃0− := 0. Note first that, if ∆K̃s > 0, by the mean

value theorem, ∃ζ : Ω→ R such that ζ ∈ (Ṽs− + ∆Xs, Ṽs− + ∆Xs + ∆K̃s) ⊆ (−∞, 0)
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and

f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s) =
∂f

∂x
(ζ, Ṽ s) ∆K̃s. (6.37)

By condition (II), for any x < 0,
∂f

∂x
(x, x̄) = −1, this implies that the summation

term in (6.36) becomes −
∑

0≤s≤t∧T e
−qs∆K̃s. Then the summation term becomes

−
∑

0<s≤t∧T e
−qs∆K̃s − K̃0. If we are in the bounded variation case, then (K̃s)

c = 0,

that is, K̃s =
∑

0<u≤s ∆K̃u, and hence, in the right hand side of (6.36), we have the

integral term

−
∫ t∧T

0+

e−qsdK̃s.

In the unbounded variation case, (K̃s)
c changes when Ṽs− = 0, but since for each

n ≥ 1, g1, g2 ∈ C1[−n, a],
∂f

∂x
(x, y)|x=0 = limx↑0

∂f

∂x
(x, y)|x<0 = −1, and therefore, we

get the term

−
∫ t∧T

0+

e−qsd(K̃s)
c.

Add this term to the one resulted from (6.37), then also in this case, we have the

integral term

−
∫ t∧T

0+

e−qsdK̃s.

Since ∫ t∧T

0+

e−qsdK̃s =

∫ t∧T

0

e−qsdKδ
s −Kδ

0+ ,

then (6.36) becomes

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T −
∫ t∧T

0

e−qsdKδ
s +Kδ

0+ − K̃0.

Since Kδ
0+ = K̃0, then by taking expectation, letting t and n go to infinity, using the

bounded convergence theorem on the left hand side and the monotone convergence

theorem on the right hand side, and by condition (III) that f(a, a) = 0, we find that

f(x, x̄) = vδ,∞inj,a(x, x̄).

�
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The next point is to guess the candidate expression of vδ,∞inj,a. For that, we use (6.35)

and (6.34), so that

f(x, x̄) = vδ,∞inj,a(x, x̄) = −Z(q)
(x)− ψ′(0+)

q
+
Z(q)(x)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
+
Z(q)(x)

Z(q)(x̄)
vδ,∞inj,a(x̄, x̄). (6.38)

Now we find that

∂

∂x
vδ,∞inj,a(x, x̄)|x=x̄ = −Z(q)(x̄) +

Z(q)′(x̄)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
+
Z(q)′(x̄)

Z(q)(x̄)
vδ,∞inj,a(x̄, x̄),

(6.39)

and

∂

∂x̄
vδ,∞inj,a(x, x̄)|x=x̄ = −Z

(q)′(x̄)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
+ Z(q)(x̄)

− Z(q)′(x̄)

Z(q)(x̄)
vδ,∞inj,a(x̄, x̄) +

∂

∂x̄
vδ,∞inj,a(x̄, x̄). (6.40)

Then, we use (6.38), (6.39), (6.40) and that f satisfies conditions (VI) and (III), so

we get the following ODE

∂

∂x̄
vδ,∞inj,a(x̄, x̄)− 1

1− δ(x̄)

Z(q)′(x̄)

Z(q)(x̄)
vδ,∞inj,a(x̄, x̄)

= − 1

1− δ(x̄)
Z(q)(x̄) +

1

1− δ(x̄)

Z(q)′(x̄)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
,

with the condition

vδ,∞inj,a(a, a) = 0.

Thus, solving this ODE by integrating method, we can get the solution

vδ,∞inj,a(x̄, x̄) =

∫ a

x̄

1

1− δ(y)

[
Z(q)(y)− Z(q)′(y)

Z(q)(y)

(
Z

(q)
(y) +

ψ′(0+)

q

)]
× exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
dy. (6.41)
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We consider (6.41) as the first expression of vδ,∞inj,a(x̄, x̄). Then, we can write (6.41) as

vδ,∞inj,a(x̄, x̄) =

∫ a

x̄

1

1− δ(y)
Z(q)(y) exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
dy

−
∫ a

x̄

1

1− δ(y)

Z(q)′(y)

Z(q)(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
×
(
Z

(q)
(y) +

ψ′(0+)

q

)
dy

=

∫ a

x̄

1

1− δ(y)
Z(q)(y) exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
dy

+
{(

Z
(q)

(y) +
ψ′(0+)

q

)
exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
|y=a
y=x̄

−
∫ a

x̄

Z(q)(y) exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
dy
}
,

where we use integration by parts in the second integral of the first equality to get a

second expression of vδ,∞inj,a(x̄, x̄),

vδ,∞inj,a(x̄, x̄) =

[
Z

(q)
(a) +

ψ′(0+)

q

]
exp

{
−
∫ a

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
−
[
Z

(q)
(x̄) +

ψ′(0+)

q

]
+

∫ a

x̄

δ(y)

1− δ(y)
Z(q)(y) exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
dy. (6.42)

Since
1

1− δ(s)
=

δ(s)

1− δ(s)
+ 1,

then

exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
= exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
exp

{
−
∫ y

x̄

Z(q)′(s)

Z(q)(s)
ds

}
=
Z(q)(x̄)

Z(q)(y)
exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
. (6.43)

So, we can use (6.43) to rewrite (6.42) and get a third expression of vδ,∞inj,a(x̄, x̄),

which we consider it as the candidate expression.



CHAPTER 6. NATURAL TAXATION WITH FORCED BAIL-OUT 112

That is, the candidate expression for vδ,∞inj,a(x, x̄) is given by

vδ,∞inj,a(x, x̄) = −
[
Z

(q)
(x) +

ψ′(0+)

q

]
+ Z(q)(x)

∫ a

x̄

exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+ Z(q)(x)

{
ψ′(0+)

q

1

Z(q)(a)
+
Z

(q)
(a)

Z(q)(a)

}
exp

{
−
∫ a

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
.

(6.44)

In the next theorem, we prove that (6.44) is the correct expression.

Theorem 6.2.6 Let ψ′(0+) > −∞ and for x̄ > 0, let δ : [x̄,∞)→ [0, 1) be a natural

tax rate function such that 1/(1− δ(s)), for all s ∈ [x̄,∞), is locally bounded. The net

present value of capital injections for the process V δ,∞, for all x ≤ x̄, is given by

vδ,∞inj (x, x̄) = −
[
Z

(q)
(x) +

ψ′(0+)

q

]
+ Z(q)(x)

∫ ∞
x̄

exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+
Z(q)(x)

Φ(q)
exp

{
−
∫ ∞
x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
. (6.45)

Proof Let

f(x, x̄) = −
[
Z

(q)
(x) +

ψ′(0+)

q

]
+ Z(q)(x)

∫ a

x̄

exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+ Z(q)(x)

{
ψ′(0+)

q

1

Z(q)(a)
+
Z

(q)
(a)

Z(q)(a)

}
exp

{
−
∫ a

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
.

We only need to show that f satisfies the conditions in Lemma 6.2.5, which implies

that

f(x, x̄) = vδ,∞inj,a(x, x̄),

and hence,

vδ,∞inj (x, x̄) = lim
a↑∞

vδ,∞inj,a(x, x̄).

Note that f can be written as

f(x, x̄) = g1(x) h1(x̄) + g2(x) h2(x̄),
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where

g1(x) =

[
Z

(q)
(x) +

ψ′(0+)

q

]
, h1(x̄) = −1, g2(x) = Z(q)(x),

and

h2(x̄) =

∫ a

x̄

exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+

{
ψ′(0+)

q

1

Z(q)(a)
+
Z

(q)
(a)

Z(q)(a)

}
exp

{
−
∫ a

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
,

which can be written as

h2(x̄) = exp

{
−
∫ a

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
A(x̄),

where

A(x̄) =

∫ a

x̄

exp

{
−
∫ y

a

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+

{
ψ′(0+)

q

1

Z(q)(a)
+
Z

(q)
(a)

Z(q)(a)

}
.

Now, following the same argument as in the proof of Lemma (6.2.4), we find that

for each n ≥ 1, each gi and hi for i = 1, 2 satisfies the first and third conditions

of Definition 4.1.1 on [−n, a] and [ 1
n
, a], respectively. For the second condition of

Definition 4.1.1, we should verify that there exists λ > 0 such that s 7→
∫∞
λ
Z

(q)
(s −

θ) ν(dθ) is bounded on (−n, a) for each n ≥ 1. We choose λ = max{a, 1}, so θ ≥ λ ≥ s

for all s ∈ (−n, a) and hence s− θ ≤ 0. Since

Z
(q)

(x) =

∫ x

0

Z(q)(z)dz = x+ q

∫ x

0

∫ z

0

W (q)(w)dw dz,

so Z
(q)

(x) = x for x < 0. Therefore, we find that∫ ∞
λ

Z
(q)

(s− θ) ν(dθ) =

∫ ∞
λ

(s− θ) ν(dθ) = −
∫ ∞
λ

(θ − s) ν(dθ)

<

∫ ∞
λ

θ ν(dθ)

≤
∫ ∞

1

θ ν(dθ),

where the last integral is finite because the assumption ψ′(0+) > −∞ is equivalent to∫∞
1
θ ν(dθ) < ∞. Since

∫∞
λ
Z

(q)
(s− θ) ν(dθ) is bounded below by 0, then we proved

that for s ∈ (−n, a), ∣∣∣ ∫ ∞
λ

Z
(q)

(s− θ) ν(dθ)
∣∣∣ <∞.
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For condition (III), it is clear that f(a, a) = 0. Since for x < 0, Z
(q)

(x) = x and

Z(q)(x) = 1, then condition (II) is satisfied.

For any x ∈ (0,∞), by (6.29), we have that

(A− q)Z(q)(x) = 0,

and from Lemma (2.2.8) and [13, p.367 (Step 2)], we also have

(A− q)
[
Z

(q)
(x) +

ψ′(0+)

q

]
= 0.

Therefore, condition (IV) is satisfied. Also, by right-continuity of Z(q) and Z
(q)

(x),

and their first and second derivatives, at 0, we see that condition (V) is satisfied.

For condition (VI), we first find

∂f(x, x̄)

∂x
|x=x̄ = [g′1(x) h1(x̄) + g′2(x) h2(x̄)] |x=x̄

= −Z(q)(x̄) + Z(q)′(x̄) h2(x̄), (6.46)

and

∂f(x, x̄)

∂x̄
|x=x̄ = [g1(x) h′1(x̄) + g2(x) h′2(x̄)] |x=x̄

= Z(q)(x̄) h′2(x̄), (6.47)

where

h′2(x̄) =
Z(q)′(x̄)

Z(q)(x̄)

δ(x̄)

1− δ(x̄)
exp

{
−
∫ a

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
A(x̄)− δ(x̄)

1− δ(x̄)
. (6.48)

Then, by (6.46), (6.47) and (6.48) we find that Γδf(x̄, x̄) = 0.�

We conclude this section with the net present value of profit for the process (6.4),

for any x ≤ x̄ and x̄ > 0,

vδ,∞(x, x̄) = vδ,∞tax (x, x̄)− η vδ,∞inj (x, x̄)

=
Z(q)(x)

Z(q)(x̄)

∫ ∞
x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

− η

{
−
[
Z

(q)
(x) +

ψ′(0+)

q

]
+ Z(q)(x)

∫ ∞
x̄

exp

{
−
∫ y

x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}
δ(y)

1− δ(y)
dy

+
Z(q)(x)

Φ(q)
exp

{
−
∫ ∞
x̄

δ(s)

1− δ(s)
Z(q)′(s)

Z(q)(s)
ds

}}
. (6.49)
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Remark 13 Note that, for δ(s) = γ ∈ (0, 1), and with x = x̄ > 0, (6.49) equals

vγ,∞(x, x) =
γ

1− γ

∫ ∞
x

[
Z(q)(x)

Z(q)(y)

]1/(1−γ)

dy

− η

{
−
[
Z

(q)
(x) +

ψ′(0+)

q

]
+ Z(q)(x)

γ

1− γ

∫ ∞
x

[
Z(q)(x)

Z(q)(y)

]γ/(1−γ)

dy

}
.

(6.50)

We found that (6.50) agrees with the result of [4, Theorem 2], which can be shown

by a long tedious computations when taking the limit as θ → 0 in [4, Theorem 2].

Moreover, (6.50) also agrees with a recent study in [64, p.14], when we use the first

candidate expression (6.41) with a constant tax rate γ.

Lemma 6.2.7 For γ ∈ (0, 1) and x > 0,

lim
γ↓0

γ

1− γ

∫ ∞
x

[
Z(q)(x)

Z(q)(y)

]γ/(1−γ)

dy =
1

Φ(q)
.

Proof Let
γ

1− γ
= α and f(y) =

Z(q)(x)

Z(q)(y)
, then f is decreasing and f(x) = 1. Then

[f(y)]α = e−α(− log f(y)). Let U = − log f(y), then as

dU

dy
= −f

′(y)

f(y)
> 0,

U has an inverse say y = g(U) so that g(0) = x and g(∞) =∞. So, substituting this

and using integral by parts we get that

lim
γ↓0

γ

1− γ

∫ ∞
x

[
Z(q)(x)

Z(q)(y)

]γ/(1−γ)

dy = lim
α↓0

α

∫ ∞
x

[f(y)]α dy

= lim
α↓0

∫ ∞
0

−αe−αU f(g(U))

f ′(g(U))
dU

= lim
α↓0

{ f(g(U))

f ′(g(U))
e−αU |U=∞

U=0

−
∫ ∞

0

e−αU
[
f(g(U))

f ′(g(U))

]′
dU
}

= − lim
y↓0

f(y)

f ′(y)

=
1

Φ(q)
.

�
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Remark 14 From Lemma 6.2.6, Remark 13 and Lemma 6.2.7, the net present value

of capital injections without taxation when x = x̄ > 0 is given by

v0,∞
inj (x, x) = −

[
Z

(q)
(x) +

ψ′(0+)

q

]
+
Z(q)(x)

Φ(q)
. (6.51)

We note that (6.51) agrees with the result in [4, Remark in p.4]. Also, by using (2.10),

it agrees with [10, (4.4)].

6.3 Optimal control problem

In this section, we solve the optimal control problem that we introduced in (6.2).

Lemma 6.3.1 (The verification lemma)

Let V π̄ be a tax process with forced bail-out as given by (6.1). Let π̂ := (Ĥ, K̂)

be an admissible policy such that, for each n ≥ 1, vπ̂ ∈ S[−n,n]×[ 1
n
,n]. Suppose that vπ̂

satisfies the following conditions:

(I) vπ̂(x, x̄) = ηx+ vπ̂(0, x̄), for x < 0,

(II) (A− q)vπ̂(x, x̄) = 0, for all 0 < x ≤ x̄,

(III) (A− q)vπ̂(0, x̄) = 0, for all 0 < x̄,

(IV) There exist Radon-Nikodým derivatives
∂vπ̂

∂x
and

∂vπ̂

∂x̄
such that

H
∂vπ̂

∂x
(x̄, x̄)− (1−H)

∂vπ̂

∂x̄
(x̄, x̄) ≥ H, for all H ∈ [α, β] and all x̄ > 0.

(V)
∂vπ̂

∂x
(x, x̄) ≤ η, for all 0 < x ≤ x̄.

Then, vπ̂(x, x̄) = v∗(x, x̄) for all x ≤ x̄ and x̄ > 0.

Proof Fix π̄ := (H,K) to be an admissible strategy. We let Ṽ and K̃ to be the

right-continuous modifications of V π̄ and K, respectively. Define

τ−−n := inf
{
t ≥ 0 : Ṽt < −n

}
, τ+

n := inf
{
t ≥ 0 : Ṽt > n

}
and

κ−1
n

:= inf

{
t ≥ 0 : Ṽ t <

1

n

}
.
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Let T = τ−−n ∧ τ+
n ∧ κ−1

n

= τ+
n ∧ κ−1

n

, as Ṽ always greater or equal to zero. Since

vπ̂ ∈ S[−n,n]×[ 1
n
,n], Ṽ and Ṽ are semi-martingales, and as Ṽ is a continuous process of

bounded variation, then we can use Corollary 4.1.3 to get that,

e−q(t∧T ) vπ̂(Ṽt∧T , Ṽ t∧T )− vπ̂(Ṽ0, Ṽ 0)

=

∫ t∧T

0+

−qe−qs vπ̂(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) dṼs

+

∫ t∧T

0+

e−qs
∂vπ̂

∂x̄
(Ṽs−, Ṽ s) dṼ s +

1

2

∫ t∧T

0+

e−qs
∂2vπ̂

∂x2
(Ṽs−, Ṽ s) d

[
Ṽ , Ṽ

]c
s

+
∑

0<s≤t

e−qs
[
∆vπ̂(Ṽs, Ṽ s)−

∂vπ̂

∂x
(Ṽs−, Ṽ s) ∆Ṽs

]
.

since

∆vπ̂(Ṽs, Ṽ s) = vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− , Ṽ s)

= vπ̂(Ṽs− + ∆Xs, Ṽ s)− vπ̂(Ṽs− , Ṽ s)

+ vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s).

Also, note that [
Ṽ , Ṽ

]c
s

= σ2s. (6.52)

Now using the operator A definition in (4.8), (6.1) and (6.52), we get

e−q(t∧T )vπ̂(Ṽt∧T , Ṽ t∧T )− vπ̂(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q) vπ̂(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) dK̃s

+
∑

0<s≤t∧T

e−qs
{
vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s)−

∂vπ̂

∂x
(Ṽs−, Ṽ s) ∆K̃s

}
−
∫ t∧T

0+

e−qs
[
∂vπ̂

∂x
(Ṽs−, Ṽ s)Hs −

∂vπ̂

∂x̄
(Ṽs−, Ṽ s)(1−Hs)

]
d(X + K̃)s,

where Mt∧T is the sum of the two zero mean martingales M1
t∧T and M2

t∧T given re-

spectively by

M1
t∧T =

∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) d

[
Xs − µs−

∑
0<u≤s

∆Xu1{|∆Xu|>1}

]
,

and

M2
t∧T =

∑
0<s≤t∧T

e−qs
{
vπ̂(Ṽs− + ∆Xs, Ṽ s)− vπ̂(Ṽs− , Ṽ s)−

∂vπ̂

∂x
(Ṽs−, Ṽ s) ∆Xs 1{|∆Xs|≤1}

}
−
∫ t∧T

0+

∫ ∞
0+

e−qs
{
vπ̂(Ṽs− − θ, Ṽ s)− vπ̂(Ṽs−, Ṽ s) + θ

∂vπ̂

∂x
(Ṽs−, Ṽ s) 1{0<θ≤1}

}
ν(dθ) ds,
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where we used the Lévy-Itô decomposition (2.3) and the compensation formula in

2.1.5, respectively. Then, use that (K̃s)
c = K̃s −

∑
0<u≤s ∆K̃u, and get that

e−q(t∧T )vπ̂(Ṽt∧T , Ṽ t∧T )− vπ̂(Ṽ0, Ṽ 0)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q) vπ̂(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s)

]
−
[
vπ̂(Ṽ0, Ṽ 0)− vπ̂(Ṽ0− , Ṽ 0)

]
−
∫ t∧T

0+

e−qs
[
∂vπ̂

∂x
(Ṽs−, Ṽ s)Hs −

∂vπ̂

∂x̄
(Ṽs−, Ṽ s)(1−Hs)

]
d(X + K̃)s. (6.53)

Since vπ̂(Ṽ0− , Ṽ 0) = vπ̂(x, x̄) and by Lemma 6.2.2, the last integral in (6.53) is counted

only when Ṽ = Ṽ , then we can rewrite (6.53) as

vπ̂(x, x̄) = −Mt∧T + e−q(t∧T ) vπ̂(Ṽt∧T , Ṽ t∧T )−
∫ t∧T

0+

e−qs (A− q) vπ̂(Ṽs−, Ṽ s) ds

−
∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) d(K̃s)

c

−
∑

0≤s≤t∧T

e−qs
[
vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s)

]
+

∫ t∧T

0+

e−qs
[
∂vπ̂

∂x
(Ṽ s−, Ṽ s)Hs −

∂vπ̂

∂x̄
(Ṽ s−, Ṽ s)(1−Hs)

]
d(X + K̃)s.

Use that vπ̂ ≥ 0, conditions (II), (III) and (IV), then we get

vπ̂(x, x̄) ≥ −Mt∧T −
∫ t∧T

0+

e−qs
∂vπ̂

∂x
(Ṽs−, Ṽ s) d(K̃s)

c

−
∑

0≤s≤t∧T

e−qs
[
vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s)

]
+

∫ t∧T

0+

e−qsHsd(X + K̃)s.

Note first that, if ∆K̃s > 0, by the mean value theorem,

vπ̂(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− vπ̂(Ṽs− + ∆Xs, Ṽ s) =
∂vπ̂

∂x
(ζ, Ṽ s) ∆K̃s, (6.54)

where ζ : Ω → R. If ζ < 0, then by condition (I), we have that
∂vπ̂

∂x
(ζ, y) = η, and if

ζ > 0, then we can use condition (V). In both cases, this implies that the summation

term becomes

−η
∑

0≤s≤t∧T

e−qs∆K̃s = −η
∑

0<s≤t∧T

e−qs∆K̃s − ηK̃0.
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If we are in the bounded variation case, then (K̃s)
c = 0, that is, K̃s =

∑
0<u≤s ∆K̃u,

and hence, in the right hand side we get the term

−η
[∫ t∧T

0+

e−qsdK̃s + K̃0

]
= −η

∫ t∧T

0

e−qsdKs,

and this is because K0+ = K̃0. In the unbounded variation case, (K̃s)
c changes when

Ṽs− = 0, but since for each n ≥ 1, from the conditions on vπ̂ as it belongs to the

space S[−n,n]×[ 1
n
,n], then it is a finite sum of multiple functions g(x)h(x̄) such that

g ∈ C1[−n, n], then
∂vπ̂

∂x
(x, y)|x=0 = limx↑0

∂vπ̂

∂x
(x, y) = η, and therefore, we get the

term

−η
∫ t∧T

0+

e−qsd(K̃s)
c.

Add this term to the one resulted from (6.54), similarly we get the term

−η
∫ t∧T

0

e−qsdKs.

Then, take the expectation, let t and n go to infinity, and by monotone convergence

theorem we get that

vπ̂(x, x̄) ≥ Ex,x̄

[∫ ∞
0+

e−qsHsd(X +K)s − η
∫ ∞

0

e−qsdKs

]
.

That is, we proved that for any π̄ ∈ Π, and for all 0 < x ≤ x̄, vπ̂(x, x̄) ≥ vπ̄(x, x̄).

Hence,

vπ̂(x, x̄) ≥ sup
π̄∈Π

vπ̄(x, x̄) = v∗(x, x̄).

Since from the definition of v∗, we have that vπ̂(x, x̄) ≤ v∗(x, x̄), therefore, vπ̂(x, x̄) =

v∗(x, x̄) for all 0 < x ≤ x̄.

For the case (0, x̄), where x̄ > 0, since v∗ is an increasing function in the initial

capital and as vπ̂ is right-continuous at (0, x̄) by the assumptions, we have the following:

v∗(0, x̄) ≤ lim
x↓0

v∗(x, x̄) ≤ lim
x↓0

vπ̂(x, x̄) = vπ̂(0, x̄).

Hence, the proof is complete.�

Next, we find the expression for the net present value of profit for the process V δ,∞,

when the tax is given by the piecewise constant function (the (α 7−→ β)-tax strategy

at level b) defined in (5.5).
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Case 1: α = 0 and β > 0

By (6.49), we find that for the case 0 < x̄ ≤ b, the value function vπ̄
b
(x, x̄), where

π̄b := (δb, Kδb), is given by

vπ̄
b

(x, x̄) =
Z(q)(x)

Z(q)(b)

β

1− β

∫ ∞
b

[
Z(q)(b)

Z(q)(y)

]1/(1−β)

dy

− η

{
−Z(q)

(x)− ψ′(0+)

q
+ Z(q)(x)

β

1− β

∫ ∞
b

[
Z(q)(b)

Z(q)(y)

]β/(1−β)

dy

}
,

and for the case x̄ > b

vπ̄
b

(x, x̄) =
Z(q)(x)

Z(q)(x̄)

β

1− β

∫ ∞
x̄

[
Z(q)(x̄)

Z(q)(y)

]1/(1−β)

dy

− η

{
−Z(q)

(x)− ψ′(0+)

q
+ Z(q)(x)

β

1− β

∫ ∞
x̄

[
Z(q)(x̄)

Z(q)(y)

]β/(1−β)

dy

}
.

That is,

vπ̄
b

(x, x̄) = Z(q)(x)C(b ∨ x̄) + η

[
Z

(q)
(x) +

ψ′(0+)

q

]
, (6.55)

where

C(b) =
β

1− β
[
Z(q)(b)

]β/(1−β)
∫ ∞
b

[
Z(q)(y)

]−1/(1−β) [
1− ηZ(q)(y)

]
dy.

Note that, since η ≥ 1 and Z(q)(y) ≥ 1, C(b) ≤ 0, moreover, we have that

lim
b↑∞

C(b) = − η

Φ(q)
.

Indeed,

lim
b↑∞

C(b) =
β

1− β
lim
b↑∞

−[Z(q)(b)]−1/(1−β) + η[Z(q)(b)]−β/(1−β)

(−β/(1− β))[Z(q)(b)]−1/(1−β)Z(q)′(b)

= lim
b↑∞

[
1

Z(q)′(b)
− η Z

(q)(b)

Z(q)′(b)

]
= − η

Φ(q)
.

This means that if we never reach the level b, then we only have bail-out and hence

the value function (6.55) agrees with the net present value of injections in a previous

literature as we mentioned in Remark 14. Also, we can find that

C ′(b) =
β

1− β
Z(q)′(b)

Z(q)(b)
[C(b)−Q(b)] ,
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where Q(b) =
1− ηZ(q)(b)

Z(q)′(b)
.

Case 2: α > 0.

By (6.49), we find that for the case 0 < x̄ ≤ b, the value function is given by

vπ̄
b

(x, x̄) =
Z(q)(x)

Z(q)(x̄)

{
α

1− α

∫ b

x̄

[
Z(q)(x̄)

Z(q)(y)

]1/(1−α)

dy

+
β

1− β

∫ ∞
b

[
Z(q)(x̄)

Z(q)(b)

]1/(1−α) [
Z(q)(b)

Z(q)(y)

]1/(1−β)

dy

}

− η

{
−Z(q)

(x)− ψ′(0+)

q
+ Z(q)(x)

{ α

1− α

∫ b

x̄

[
Z(q)(x̄)

Z(q)(y)

]α/(1−α)

dy

+
β

1− β

∫ ∞
b

[
Z(q)(x̄)

Z(q)(b)

]α/(1−α) [
Z(q)(b)

Z(q)(y)

]β/(1−β)

dy
}}

.

For the case x̄ > b,

vπ̄
b

(x, x̄) =
Z(q)(x)

Z(q)(x̄)

β

1− β

∫ ∞
x̄

[
Z(q)(x̄)

Z(q)(y)

]1/(1−β)

dy

− η

{
−Z(q)

(x)− ψ′(0+)

q
+ Z(q)(x)

β

1− β

∫ ∞
x̄

[
Z(q)(x̄)

Z(q)(y)

]β/(1−β)

dy

}
.

By some easy calculations, we can rewrite the value function as

vπ̄
b

(x, x̄) =
[
Z(q)(x̄)

]α/(1−α)
Z(q)(x)

{
α

(1− α)

∫ ∞
x̄

[
Z(q)(y)

]−1/(1−α) [
1− ηZ(q)(y)

]
dy

+ C(b ∨ x̄)

}
+ η

[
Z

(q)
(x) +

ψ′(0+)

q

]
, (6.56)

where

C(b) =
β

1− β
[
Z(q)(b)

]1/(1−β)−1/(1−α)
∫ ∞
b

[
Z(q)(y)

]−1/(1−β) [
1− ηZ(q)(y)

]
dy

− α

(1− α)

∫ ∞
b

[
Z(q)(y)

]−1/(1−α) [
1− ηZ(q)(y)

]
dy. (6.57)

Remark 15 If we let α ↓ 0 in (6.56), then we can see that the value functions in

(6.56) and (6.55) are equal.

Also, we can find that

C ′(b) =

(
1

1− β
− 1

1− α

)
Z(q)′(b)

Z(q)(b)
[C(b)−Q(b)] , (6.58)



CHAPTER 6. NATURAL TAXATION WITH FORCED BAIL-OUT 122

where

Q(b) =
Z(q)(b)

Z(q)′(b)

[
Z(q)(b)

]−1/(1−α) [
1− ηZ(q)(b)

]
− α

(1− α)

∫ ∞
b

[
Z(q)(y)

]−1/1−α [
1− ηZ(q)(y)

]
dy. (6.59)

Lemma 6.3.2 Let q > 0,

a∗ = inf
{
a ≥ 0 : G(a) := [ηZ(q)(a)− 1]W (q)′(a)− ηq[W (q)(a)]2 ≤ 0

}
, (6.60)

and let Q be given as in (6.59). Then, a∗ <∞ and Q is strictly increasing on (0, a∗)

and strictly decreasing on (a∗,∞). Furthermore, for η > 1, if ν(0,∞) ≤ q/(η− 1) and

σ = 0, then a∗ = 0; otherwise a∗ > 0.

Proof First, note that

Q′(u) = −η
[
Z(q)(u)

]−α/(1−α) − Z(q)′′(u)

[Z(q)′(u)]2
[
1− ηZ(q)(u)

] [
Z(q)(u)

]−α/(1−α)
, (6.61)

which can be simplified as

Q′(u) =

[
Z(q)(u)

]−α/(1−α)

qW (q)(u)2
G(u), (6.62)

where G is defined as in (6.60). We are going to use the same argument as in [10, pp.

15 and 16]. Let τ̂a := inf
{
t ≥ 0 : X t −Xt > a

}
and

A(a) = E0[e−qτ̂a ] = Z(q)(a)− q[W (q)(a)]2

W (q)′(a)
,

where the last equality is given by (3.10) in [10] with y = 0. Then, as a 7→ τ̂a is

increasing with lima→∞ τ̂a = ∞ almost surely, then A(a) decreases to zero almost

surely as a→∞, and hence [ηA(a)− 1] decreases to −1 almost surely as a→∞. We

can rewrite G(a) as

G(a) = [ηA(a)− 1]W (q)′(a).

Note that, W (q)′(a) > 0 for all a ≥ 0, therefore, if G(0+) ≤ 0, then [ηA(0+)− 1] ≤ 0,

which implies that [ηA(a) − 1] ≤ 0 for all a > 0, and hence G(a) ≤ 0 for all a > 0.

If G(0+) > 0, as G is continuous and lima→∞G(a) = −∞, then by the intermediate

value theorem, G(a) = 0 has a root in (0,∞), which proves the existence of a∗. Since

A is decreasing, this implies that G(a) ≤ 0 for a > a∗. If a∗ > 0, then G(a∗) = 0,

and by the definition of a∗, G(a) > 0 for 0 < a < a∗. Consequently, from (6.62),
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the statement of the lemma is proved. Furthermore, since both W (q)(0+) > 0 and

W (q)′(0+) <∞ hold true if ν(0,∞) <∞ and σ = 0, then by easy calculations we find

that G(0+) ≤ 0 if and only if both σ = 0 and ν(0,∞) ≤ q/(η − 1).�

Lemma 6.3.3 Let b∗ = sup {b ≥ 0 : C(b) ≥ C(s) for all s ≥ 0}. Then b∗ < ∞ and

C is strictly increasing on (0, b∗) and strictly decreasing on (b∗,∞).

Proof First, b∗ <∞ since we have that

lim
b↑∞

C(b) = 0.

Indeed,

lim
b↑∞

C(b) = lim
b↑∞

β

1− β

∫ ∞
b

[
Z(q)(y)

]−1/(1−β) [
1− ηZ(q)(y)

]
dy

[Z(q)(b)]
1/(1−α)−1/(1−β)

= Cη lim
b↑∞

[
1

[Z(q)(b)]α/(1−α)

] [
W (q)(b)

W (q)′(b)

]
= 0,

where C is some constant. From (6.58), we have that

C ′(b) > 0(< 0,= 0) if and only if C(b) > Q(b) (< Q(b),= Q(b)) , (6.63)

and hence, the rest of the proof is like the proof of Lemma 5.2.5.�

Remark 16 We can prove by simple calculations that

β

1− β
[Z(q)(y)]−1/(1−β)

[
1− ηZ(q)(y)

]
+ η[Z(q)(y)]−β/(1−β)

= −
(

[Z(q)(y)]−β/(1−β)

Z(q)′(y)

[
1− ηZ(q)(y)

])′
−

[Z(q)(y)]−β/(1−β)
[
1− ηZ(q)(y)

]
Z(q)′′(y)

[Z(q)′(y)]2
.

(6.64)

For b∗ > 0, we have that C ′(b∗) = 0, then by (6.63), C(b∗) = Q(b∗), which implies that

β

1− β

∫ ∞
b∗

[
Z(q)(s)

]−(1/(1−β))
[1− ηZ(q)(s)]ds =

[Z(q)(b∗)]−β/(1−β)

Z(q)′(b∗)
[1− ηZ(q)(b∗)].

(6.65)
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By (6.64), we have that

β

1− β

∫ ∞
b∗

[
Z(q)(s)

]−(1/(1−β))
[1− ηZ(q)(s)]ds

=
[Z(q)(b∗)]−β/(1−β)))

Z(q)′(b∗)
[1− ηZ(q)(b∗)]−

∫ ∞
b∗

[Z(q)(s)]−β/(1−β)[1− ηZ(q)(s)]Z(q)′′(s)

[Z(q)′(s)]2
ds

− η
∫ ∞
b∗

[Z(q)(s)]−β/(1−β)ds.

By (6.65), we get that b∗ is the unique solution to

∫ ∞
b∗

{
[Z(q)(s)]−β/(1−β)[1− ηZ(q)(s)]

Z(q)′′(s)

[Z(q)′(s)]2
+ η[Z(q)(s)]−β/(1−β)

}
ds = 0. (6.66)

We can see by Lemma (6.3.2), and by finding the derivative and using (6.61) for the

left hand side of (6.66), we can see it is a strictly increasing function in b∗. Then, the

existence of a unique solution b∗ > 0 is guaranteed by the condition∫ ∞
0

{
[Z(q)(s)]−β/(1−β)[1− ηZ(q)(s)]

Z(q)′′(s)

[Z(q)′(s)]2
+ η[Z(q)(s)]−β/(1−β)

}
ds < 0.

Since b∗ ≤ a∗, then a∗ = 0 implies that b∗ = 0. Therefore, we find that b∗ = 0 if either

a∗ = 0 or the following condition is satisfied:∫ ∞
0

{
[Z(q)(s)]−β/(1−β)[1− ηZ(q)(s)]

Z(q)′′(s)

[Z(q)′(s)]2
+ η[Z(q)(s)]−β/(1−β)

}
ds ≥ 0.

Remark 17 We find the partial derivatives of vπ̄
b
(x, x̄), given by (6.56) as we will use

it in the proof of the next Theorem.

∂vπ̄
b

∂x
(x, x̄) = Z(q)′(x)[Z(q)(x̄)]α/(1−α)

{ α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+ C(b ∨ x̄)
}

+ ηZ(q)(x).

∂vπ̄
b

∂x̄
(x, x̄) =


F1(x, x̄) if 0 < x̄ ≤ b

F2(x, x̄) if x̄ > b,

where

F1(x, x̄) =

(
α

1− α

)2
Z(q)(x)

Z(q)(x̄)
Z(q)′(x̄)[Z(q)(x̄)](α/(1−α))

∫ ∞
x̄

[Z(q)(s)]−(1/(1−α))[1− ηZ(q)(s)]ds

+
α

1− α
Z(q)(x)

Z(q)(x̄)

[
Z(q)′(x̄)[Z(q)(x̄)](α/(1−α))C(b) + ηZ(q)(x̄)− 1

]
,
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and

F2(x, x̄) =
β

1− β
Z(q)(x)

Z(q)(x̄)

{ β

1− β
Z(q)′(x̄)[Z(q)(x̄)](β/(1−β))

∫ ∞
x̄

[Z(q)(s)]−(1/(1−β))[1− ηZ(q)(s)]ds

+ ηZ(q)(x̄)− 1
}
.

Theorem 6.3.4 Let ψ′(0+) > −∞, δb as defined in (5.5) and b∗ as given in Lemma

6.3.3, then π̄b
∗

:= (δb
∗
, Kδb

∗
) is an optimal strategy and vπ̄

b∗
is the optimal solution

for (6.2).

Proof We need to prove that vπ̄
b∗

(x, x̄) satisfies all the conditions of Lemma 6.3.1.

First, using (6.56), and by similar arguments to the proofs in Lemma (6.2.4) and

Lemma 6.2.6, with using n instead of a, we can show that for each n ≥ 1, vπ̄
b∗ ∈

S[−n,n]×[ 1
n
,n].

Condition I. By (6.56), we can verify this condition easily.

Conditions II and III. For 0 < x ≤ x̄, we show that (A − q)vπ
b∗

(x, x̄) = 0.

Recall that, for any x ∈ (0,∞), by (6.29), we have that

(A− q)Z(q)(x) = 0, (6.67)

and from Lemma (2.2.8) and [13, p.367 (Step 2)], we also have

(A− q)
[
Z

(q)
(x) +

ψ′(0+)

q

]
= 0. (6.68)

Also, we use right-continuity of Z(q) and Z
(q)

(x), and their first and second derivatives,

at 0, to have (6.67) and (6.68) valid at x = 0. Therefore, by the definition of A and

(6.56), for (x, x̄) with x ≥ 0 and such that x̄ > 0, we have that

(A− q)vπb
∗

(x, x̄)

= (A− q)Z(q)(x)

{
[Z(q)(x̄)]α/(1−α)

{ α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+ C(b∗ ∨ x̄)
}}

+ η

{
(A− q)

[
Z

(q)
(x) +

ψ′(0+)

q

]}
= 0.

Condition IV . Show that

H
∂vπ̄

b∗

∂x
(x̄, x̄) + (H − 1)

∂vπ̄
b∗

∂x̄
(x̄, x̄) ≥ H, for all H ∈ [α, β] and all x̄ > 0.
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For 0 < x̄ ≤ b∗, this condition is satisfied for vπ̄
b∗

(x, x̄) and for H ∈ [α, β] when

H
∂vπ̄

b∗

∂x
(x̄, x̄) + (H − 1)

∂vπ̄
b∗

∂x̄
(x̄, x̄)−H ≥ 0,

which by some calculations is satisfied if and only if[
∂vπ̄

b∗
(x, x̄)

∂x
|x=x̄ − 1

][
H − α
1− α

]
≥ 0.

Since H ∈ [α, β], it is always true that[
H − α
1− α

]
≥ 0,

so in order to have the condition satisfied, we should have that

∂vπ̄
b∗

(x, x̄)

∂x
|x=x̄ ≥ 1.

For 0 < x̄ ≤ b∗, and by Lemma 6.3.3, C ′(x̄) ≥ 0 on (0, b∗]. By (6.63), C ′(x̄) ≥ 0 is

satisfied if and only if C(x̄) ≥ Q(x̄), but as C(b∗) ≥ C(x̄), then we get that C(b∗) ≥

Q(x̄). By (6.59), we have that

C(b∗) ≥ Q(x̄)

⇐⇒{
Z(q)′(x̄)[Z(q)(x̄)]α/(1−α)

{ α

1− α

∫ ∞
x̄

[Z(q)(s)]−1/(1−α)[1− ηZ(q)(s)]ds+ C(b∗)
}

+ ηZ(q)(x̄)

}
≥ 1,

where the last inequality is

∂vπ̄
b∗

(x, x̄)

∂x
|x=x̄ ≥ 1.

That is, vπ̄
b∗

(x, x̄) satisfies IV for 0 < x̄ ≤ b∗.

Similarly, for x̄ > b∗, condition IV in the verification lemma is satisfied for vπ̄
b∗

(x, x̄)

and for H ∈ [α, β] when

H
∂vπ̄

b∗

∂x
(x̄, x̄) + (H − 1)

∂vπ̄
b∗

∂x̄
(x̄, x̄)−H ≥ 0,

which by some calculations is satisfied if and only if[
∂vπ̄

b∗
(x, x̄)

∂x
|x=x̄ − 1

][
H − β
1− β

]
≥ 0.
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Since H ≤ β, the last inequality is satisfied if and only if

∂vπ̄
b∗

(x, x̄)

∂x
|x=x̄ < 1.

Now, by Lemma 6.3.3 and as x̄ > b∗, we have that C ′(x̄) < 0. By (6.63), this is

equivalent to C(x̄) < Q(x̄). By a similar argument to the first case above, we can do

the calculations and prove that C(x̄) < Q(x̄) if and only if
∂vπ̄

b∗
(x, x̄)

∂x
|x=x̄ < 1. Hence,

vπ̄
b∗

(x, x̄) satisfies IV for x̄ > b∗.

Condition V . For 0 < x ≤ x̄, show that

∂vπ̄
b∗

∂x
(x, x̄) ≤ η.

Recall that, for 0 < x ≤ x̄,

∂vπ̄
b∗

∂x
(x, x̄) = Z(q)′(x)[Z(q)(x̄)]α/(1−α)

{
α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+ C(b∗ ∨ x̄)

}
+ ηZ(q)(x).

We fix x and show that
∂vπ̄

b∗

∂x
(x, x̄), in the x̄ variable, is strictly increasing on (0, b∗)

and strictly decreasing on (b∗,∞), and hence has it’s maximum at x̄ = b∗. For that,

we compute the derivative, use (6.57) and (6.59), and by some easy calculations we

find that for x̄ ∈ (0, b∗):

1− α
α

1

qW (q)(x)

∂

∂x̄

(
∂vπ̄

b∗

∂x
(x, x̄)

)
=
Z(q)′(x̄)

Z(q)(x̄)
[Z(q)(x̄)]α/(1−α) [C(b∗)−Q(x̄)] . (6.69)

From Lemma 6.3.3 and (6.63), we have that C(b∗) > C(x̄) > Q(x̄). This implies that

(6.69) is greater than zero and hence
∂vπ̄

b∗

∂x
(x, x̄), is strictly increasing on (0, b∗). For

x̄ ∈ (b∗,∞),

1− β
β

1

qW (q)(x)

∂

∂x̄

(
∂vπ̄

b∗

∂x
(x, x̄)

)
=
Z(q)′(x̄)

Z(q)(x̄)
[Z(q)(x̄)]α/(1−α) [C(x̄)−Q(x̄)] , (6.70)

so from Lemma 6.3.3, we know that C ′(x̄) < 0, which is by (6.63) if and only if

C(x̄) < Q(x̄). This implies that (6.70) is less than zero and hence
∂vπ̄

b∗

∂x
(x, x̄) is

strictly decreasing on (b∗,∞).
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Now for b∗ > 0, recall by Remark 16 that

β

1− β

∫ ∞
b∗

[
Z(q)(s)

]−1/(1−β)
[1− ηZ(q)(s)]ds =

[Z(q)(b∗)]−β/(1−β)

Z(q)′(b∗)
[1− ηZ(q)(b∗)].

(6.71)

Then,[
∂vπ̄

b∗

∂x
(x, x̄)− η

]
W (q)(b∗) ≤

[
∂vπ̄

b∗

∂x
(x, b∗)− η

]
W (q)(b∗)

= qW (q)(x)W (q)(b∗)[Z(q)(b∗)]−1 Z
(q)(b∗)

Z(q)′(b∗)

[
1− ηZ(q)(b∗)

]
+ [ηZ(q)(x)− η]W (q)(b∗)

= W (q)(x)(1− η) + η q
[
W (q)(b∗)W

(q)
(x)−W (q)(x)W

(q)
(b∗)
]

≤ 0, (6.72)

where to get the second equality, we used (6.71), and in last inequality, we used that

η ≥ 1 and Lemma 2.2.2. As W (q)(b∗) > 0, we conclude that condition (V) is satisfied

when b∗ > 0.

If b∗ = 0, that is for x̄ ≥ x > 0, recall first that

∂vπ̄
0

∂x
(x, x̄) = Z(q)′(x)[Z(q)(x̄)]α/(1−α)

{
α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+ C(0 ∨ x̄)

}
+ ηZ(q)(x)

= Z(q)′(x)[Z(q)(x̄)]α/(1−α)

{
α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+ C(x̄)

}
+ ηZ(q)(x)

< Z(q)′(x)[Z(q)(x̄)]α/(1−α)

{
α

1− α

∫ ∞
x̄

[Z(q)(y)]−1/(1−α)[1− ηZ(q)(y)]dy

+Q(x̄)

}
+ ηZ(q)(x)

= Z(q)′(x)
[1− ηZ(q)(x̄)]

Z(q)′(x̄)
+ ηZ(q)(x),

where in the third inequality, we used (6.63), C is strictly decreasing on (0,∞) and
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(6.59). Therefore, as W (q)(x̄) > 0, then similar to (6.72) we have[
∂vπ̄

0

∂x
(x, x̄)− η

]
W (q)(x̄) < Z(q)′(x)W (q)(x̄)

[1− ηZ(q)(x̄)]

Z(q)′(x̄)
+ ηZ(q)(x)W (q)(x̄)− ηW (q)(x̄)

= W (q)(x)(1− η) + η q
[
W (q)(x̄)W

(q)
(x)−W (q)(x)W

(q)
(x̄)
]

≤ 0,

which completes the proof.�



Chapter 7

Natural Taxation with a limited

bail-out

7.1 Introduction

In some situations, the tax authority may decide to stop providing bail-outs to a

financially distressed company. One of the reasons is that, it could be a huge expense

for the tax authority to continue bail-outs without a promise of having a solid return in

tax revenue. This may bring large amount of losses for that tax authority, and which

makes the best solution is to stop bailing out the company and declare its bankruptcy.

The tax authority would want to know, in that situation, what is the value of its net

profit. In the context of dividends, a recent article studied this problem, which is

[22], and found the maximum firm value in that case under the setting of a spectrally

negative Lévy process. In this chapter, for the first time in literature, we study the

natural tax process V δ,∞ with a limited bail-out at a parameter c < 0.

Recall first the process V δ,∞ given in Chapter 6 satisfying

V δ,∞
t = (X +Kδ)t −

∫ t

0+

δ(V
δ,∞
s ) d(X +Kδ)s, t ≥ 0.

Also, recall that τ+
a = inf

{
t ≥ 0 : V δ,∞

t > a
}

for a > 0 and for c < 0, let τ−c :=

inf
{
t ≥ 0 : V δ,∞

t < c
}

. We study here the process V δ,−c, which is the natural tax

process V δ,∞ with a limited bail-out at a parameter c and denoted by:

V δ,−c
t := V δ,∞

t∧τ−c
. (7.1)

130
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Note that, even though V δ,∞
t+ , the right-continuous version, is always greater or equal

zero, the process V δ,∞ actually attains its overshoots and therefore the time at which

it drops below c is actually observable from its path. So, for V δ,−c, bail-outs or capital

injections are only allowed if the amount of ruin is above or at level c. Once the

ruin level is below c, then the government stops bailing-out, which incurs some ruin-

dependent loss in the revenue and which we call penalty. Define a penalty function,

P : R→ R, and we assume throughout this chapter that P is bounded. The net profit

value function of the process (7.1) is given by

vδ,−c(x, x̄) = vδ,−ctax (x, x̄)− η vδ,−cinj (x, x̄)− Ex,x̄
[
e−qτ

−
c P (V δ,∞

τ−c
)1{τ−c <∞}

]
, (7.2)

where η ≥ 1 is a bail-out cost factor,

vδ,−ctax (x, x̄) = Ex,x̄

[∫ τ−c

0+

e−qsδ(V
δ,∞
s ) d(X +Kδ)s

]
,

and

vδ,−cinj (x, x̄) = Ex,x̄

[∫ τ−c

0

e−qs dKδ
s

]
.

Note that, in this chapter, we derive new fluctuation identities which will be used

through the steps of finding the net profit value function for the process V δ,−c, while

in Chapter 6, we used the corresponding available results from [10]. Our main results

are as follows. For the reflected Lévy process in [c, x̄] and x̄ > 0, we state and prove

Proposition 7.2.1, which we call the two sided exit problem. Further, Proposition

7.2.2 gives the expression of the expected accumulated discounted amount of capital

injections before taxation starts in the model. Theorems 7.3.5 and 7.3.8, under the

assumption that X has a positive Gaussian coefficient in the unbounded variation case,

give explicit expressions for the net present value of taxation and capital injections,

respectively, for the process V δ,−c. Also, under the same assumption with the addition

that P is a bounded function, Theorem 7.3.11 gives the net present value of penalty

for V δ,−c.

This chapter is organised as follows. In Section 7.2, we prove our new results

for the reflected Lévy process from below at zero, provided that the crossing-down

level is above or equal c. In Section 7.3, we find by our approach each term of (7.2)

separately. We also verify that when we take the limit of c ↓ −∞, they agree with

the forced bail-out results in the previous chapter. Moreover, we show in this section
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through Corollaries 7.3.6 and 7.3.9, the advantage of our approach in finding the value

functions. Our approach leads us to prove that our new results in the second section

are also valid in the unbounded variation case without the need of an approximation

scheme, like for example the work done in [49].

7.2 Reflected Lévy processes

In this section, we give some results for the Lévy process reflected at its infimum,

defined as, for t ≥ 0, Yt = Xt − It where It = inf0≤s≤t(Xs ∧ 0). We will use these

results in the next section. Define

T−c := inf {t ≥ 0 : Yt < c} ,

and

T+
a := inf {t ≥ 0 : Yt > a} .

Recall ρ−c := inf {t ≥ 0 : Xt < c} and ρ+
a := inf {t ≥ 0 : Xt > a} , then [41, Theorem 2]

gives the analytic expression of the overshoot for the process X by choosing a suitable

extension f̃ ,

Ex,x̄
[
e−qρ

−
0 f(Xρ−0

)1{ρ−0 <ρ+
x̄ }
]

= f̃(x)− W (q)(x)

W (q)(x̄)
f̃(x̄)

+

∫ x̄

0

(A− q)f̃(z)

[
W (q)(x)

W (q)(x̄)
W (q)(x̄− z)−W (q)(x− z)

]
dz

+
(
f(0)− f̃(0+)

) σ2

2

(
W (q)′(x)− W (q)(x)

W (q)(x̄)
W (q)′(x̄)

)
, (7.3)

where we recall (4.10),

Af(y) = µf ′(y) +
σ2

2
f ′′(y)

+

∫ ∞
0+

[
f(y − θ)− f(y) + θf ′(y)1{0<θ≤1}

]
ν(dθ).

Also, we recall the functions l and l′ that we introduced in Chapter 4. Let l :

(0,∞)→ R be given by

l(x) = (A− q)f(x), where f(x) = x1{x≥0},
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then we can prove that,

l′(x) = (A− q)g(x), where g(x) = 1{x≥0}. (7.4)

Indeed, for x > 0,

l(x) = (A− q)f(x)

= µ1{x>0} +

∫ ∞
0+

[
(x− θ) 1{x−θ≥0} − x1{x≥0} + θ 1{x>0}1{0<θ≤1}

]
ν(dθ)

− q x1{x≥0}

= µ+

∫ ∞
0+

[
(x− θ) 1{x−θ≥0} − x+ θ 1{0<θ≤1}

]
ν(dθ)− q x. (7.5)

Then by (7.5), for x > 0,

l′(x) =

∫ ∞
0+

[
1{x>θ} − 1{x>0}

]
ν(dθ)− q 1{x>0}

= −
∫ ∞
x

ν(dθ)− q

= −ν(x,∞)− q, (7.6)

where we get the last equality because x > 0. Now, the right hand side of (7.4), for

x > 0 is,

(A− q)g(x) =

∫ ∞
0+

[
1{x≥θ} − 1{x≥0}

]
ν(dθ)− q 1{x≥0}

= −
∫ ∞
x

ν(dθ)− q

= −ν(x,∞)− q,

hence, (7.4) is satisfied. Also, for c < 0, let fc(z) = z 1{z≥c}, and gc(z) = 1{z≥c}, then

for z > c,

(A− q)fc(z) = (A− q)fc(z)− c (A− q) gc(z) + c (A− q) gc(z)

= (A− q) [fc − c gc] (z) + c (A− q) gc(z)

= l(z − c) + c l′(z − c),

where we use (7.5) and (7.6) such that the last line follows from spatial homogeneity

of A. That is, for x ∈ R, where fx(z) = f(x+ z), we have that Afx(z) = Af(x+ z).
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Remark 18 For z ∈ R such that z > c,

lim
c↓−∞

[l(z − c) + c l′(z − c)] = lim
c↓−∞

{
µ− (z − c)

∫ ∞
z−c

ν(dθ)−
∫ z−c

1

θν(dθ)− q(z − c)

− c
∫ ∞
z−c

θν(dθ)− q c
}

= lim
c↓−∞

{
µ− z

∫ ∞
z−c

ν(dθ)−
∫ z−c

1

θν(dθ)− q z
}

= µ−
∫ ∞

1

θν(dθ)− q z

= ψ′(0+)− q z. (7.7)

Proposition 7.2.1 (The two sided exit problem)

For c < 0 < a, x ≤ a, and when X is of bounded variation,

Ex
[
e−q T

+
a 1{T+

a <T
−
c }
]

=
Jc(x)

Jc(a)
, (7.8)

where Jc : R→ R is defined by,

Jc(x) :=

[
1−

∫ x

0

l′(z − c)W (q)(x− z)dz

]
1{x≥c}. (7.9)

Proof Since we look at the reflected process Y when X is in [c, a] for c < 0 < a, we

have that

Ex
[
e−q T

+
a 1{T+

a <T
−
c }
]

= Ex

[
e−qρ

−
0 1{

X
ρ−0
≥c
}1{ρ−0 <ρ+

a }

]
E0

[
e−q T

+
a 1{T+

a <T
−
c }
]

+ Ex
[
e−qρ

+
a 1{ρ+

a <ρ
−
0 }
]
. (7.10)

For x ≤ a, and by (7.3),

Ex

[
e−q ρ

−
0 1{

X
ρ−0
≥c
} 1{ρ−0 <ρ+

a }

]
= Ex

[
e−q ρ

−
0 gc(Xρ−0

) 1{ρ−0 <ρ+
a }
]

= gc(x)− W (q)(x)

W (q)(a)
gc(a)

+

∫ a

0

(A− q) gc(z)

[
W (q)(x)

W (q)(a)
W (q)(a− z)−W (q)(x− z)

]
dz

= Jc(x)− W (q)(x)

W (q)(a)
Jc(a). (7.11)
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Use (2.7), (7.11) and substitute in (7.10),

Ex
[
e−q T

+
a 1{T+

a <T
−
c }
]

=

[
Jc(x)− W (q)(x)

W (q)(a)
Jc(a)

]
E0

[
e−q T

+
a 1{T+

a <T
−
c }
]

+
W (q)(x)

W (q)(a)
.

Put x = 0 in both sides and use (2.11), that is W (q)(0+) = 1/d in the bounded

variation case,

E0

[
e−q T

+
a 1{T+

a <T
−
c }
]

=

{
1− 1/d

W (q)(a)
+

1/d

W (q)(a)

∫ a

0

l′(z − c)W (q)(a− z)dz

}
E0

[
e−q T

+
a 1{T+

a <T
−
c }
]

+
1/d

W (q)(a)
,

then,

E0

[
e−q T

+
a 1{T+

a <T
−
c }
]

=
1

Jc(a)
.

Therefore, (7.10) equals,

Ex
[
e−q T

+
a 1{T+

a <T
−
c }
]

=

[
Jc(x)− W (q)(x)

W (q)(a)
Jc(a)

]
1

Jc(a)
+
W (q)(x)

W (q)(a)

=
Jc(x)

Jc(a)
, (7.12)

which completes the proof.�

Remark 19 Note that, by (7.6), taking the limit as c ↓ −∞ of l′(z − c) gives −q.

Therefore, if we take the limit as c ↓ −∞ for (7.12), we get the same result as in (2.2.7)

Ex
[
e−q T

+
a

]
=
Z(q)(x)

Z(q)(a)
. (7.13)

Proposition 7.2.2 For c < 0 < a, x ≤ a, and when X is of bounded variation,

Ex

[∫ T+
a ∧T−c

0

e−qs dIs

]
= Qc(x)− Jc(x)

Jc(a)
Qc(a), (7.14)

where Qc : R→ R is defined by,

Qc(x) :=

[
x−

∫ x

0

[l(z − c) + c l′(z − c)]W (q)(x− z)dz

]
1{x≥c}. (7.15)
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Proof Since we look at the process X when it is in [c, a] for c < 0 < a, and as

It = inf0≤s≤t(Xs ∧ 0), we have that

Ex

[∫ T+
a ∧T−c

0

e−qs dIs

]
= Ex

[
e−qρ

−
0 Xρ−0

1{
X
ρ−0
≥c
}1{ρ−0 <ρ+

a }

]

+ Ex

[
e−qρ

−
0 1{

X
ρ−0
≥c
}1{ρ−0 <ρ+

a }

]
E0

[∫ T+
a ∧T−c

0+

e−qs dIs

]
.

(7.16)

To find the value of (7.16), we use (7.3). That is, for x ≤ a,

Ex

[
e−qρ

−
0 Xρ−0

1{
X
ρ−0
≥c
}1{ρ−0 <ρ+

a }

]
= Ex

[
e−qρ

−
0 fc(Xρ−0

) 1{ρ−0 <ρ+
a }
]

= fc(x)− W (q)(x)

W (q)(a)
fc(a)

+

∫ a

0

(A− q)fc(z)

[
W (q)(x)

W (q)(a)
W (q)(a− z)−W (q)(x− z)

]
dz

= Qc(x)− W (q)(x)

W (q)(a)
Qc(a). (7.17)

Substitute (7.17) and (7.11) in (7.16), put x = 0, use that in the bounded variation

case W (q)(0+) = 1/d, and find by some calculations that,

E0

[∫ T+
a ∧T−c

0

e−qs dIs

]
=
−a+

∫ a
0

[l(z − c) + c l′(z − c)]W (q)(a− z) dz

1−
∫ a

0
l′(z − c)W (q)(a− z)dz

=
−Qc(a)

Jc(a)
. (7.18)

Then, put (7.17), (7.11) and (7.18) in (7.16) to get the required statement.�

7.3 Value function

In this section, we find the net present value of profit for the process V δ,−c. Moreover,

Propositions 7.2.1 and 7.2.2 are verified for the unbounded variation case in Corollaries

7.3.6 and 7.3.9, respectively.

For convenience, we will first find the value function (7.2) up to some level a > 0,

and then we can take the limit as a ↑ ∞. That is, we will first find

vδ,−ca (x, x̄) = vδ,−ctax,a(x, x̄)− η vδ,−cinj,a(x, x̄)− Ex,x̄
[
e−qτ

−
c P (V δ,∞

τ−c
)1{τ−c <τ+

a }
]
,



CHAPTER 7. NATURAL TAXATION WITH A LIMITED BAIL-OUT 137

where

vδ,−ctax,a(x, x̄) = Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qsδ(V
δ,∞
s ) d(X +Kδ)s

]
,

and

vδ,−cinj,a(x, x̄) = Ex,x̄

[∫ τ−c ∧τ+
a

0

e−qs dKδ
s

]
.

7.3.1 The tax value function

Since the tax starts when x = x̄, then by using the strong Markov property of

(V δ,∞, V
δ,∞

), the tax value,

vδ,−ctax,a(x, x̄) = Ex,x̄

[∫ τ−c ∧τ+
a

0+

e−qsδ(V
δ,∞
s ) d(X +Kδ)s

]

= Ex,x̄

[
e−q T

+
x̄ 1{T+

x̄ <T
−
c }Ex,x̄

[
eq T

+
x̄

∫ τ−c ∧τ+
a

τ+
x̄

e−qsδ(V
δ,∞
s ) d(X +Kδ)s|Fτ+

x̄

]]

= Ex,x̄
[
e−q T

+
x̄ 1{T+

x̄ <T
−
c }
]
Ex̄,x̄

[∫ τ−c ∧τ+
a

0+

e−qsδ(V
δ,∞
s ) d(X +Kδ)s

]
= Ex,x̄

[
e−q T

+
x̄ 1{T+

x̄ <T
−
c }
]
vδ,−ctax,a(x̄, x̄), (7.19)

where we used that the process V δ,∞, in the region between level x̄ and level c, is just

the reflected process Y .

Recall that for f ∈ S[b,a]×[c,d], y ∈ [b, a] and z ∈ [c, d],

Γδf(y, z) =
∂

∂y
f(y, z) δ(z)− ∂

∂z
f(y, z)(1− δ(z)). (7.20)

Lemma 7.3.1 Let V δ,−c
t := V δ,∞

t∧τ−c
, for all t ≥ 0, be the natural tax process V δ,∞ with

a limited bail-out at a parameter c < 0. For fixed a > 0, suppose f is a function with

domain Df = (−∞, a]× (0, a], n ≥ 1, and satisfying the following conditions:

(I) f is bounded on Df , and f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1, such that it is of the

form f(x, x̄) = g(x)h(x̄), where g and h satisfy the conditions of Definition

4.1.1.

(II)

f(x, x̄) =

f(0, x̄), c ≤ x ≤ 0,

0, x < c.
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(III) f(a, a) = 0.

(IV) (A− q)f(x, x̄) = 0 for 0 < x ≤ x̄ ≤ a.

(V) (A− q)f(0, x̄) = 0 for 0 < x̄ ≤ a.

(VI) There exists a locally bounded density for h such that

Γδf(x̄, x̄) = δ(x̄), for all 0 < x̄ ≤ a,

where Γδ is defined in (7.20).

Then,

f(x, x̄) = vδ,−ctax,a(x, x̄), for x ≤ x̄ ≤ a, x̄ > 0. (7.21)

Proof Let (x, x̄) be fixed, where x ≤ x̄ ≤ a and x̄ > 0. For t ≥ 0, let Kδ,−c
t :=

Kδ
t∧τ−c

. Let Ṽ and K̃ be the right-continuous modifications of V δ,−c and Kδ,−c. Let

τ−c = inf{t > 0 : Ṽt < c}, τ+
a = inf{t > 0 : Ṽt > a}, and κ−1

n

= inf{t > 0 : Ṽ t <
1
n
}. Let

T = τ−c ∧ τ+
a ∧ κ−1

n

. By (I), f ∈ S[c,a]×[ 1
n
,a], so we can use Corollary 4.1.3 and follow the

same steps of the proof for Lemma 6.2.3 until (6.20),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q)f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs
[
Γδf(Ṽ s, Ṽ s)

]
d(X + K̃)s,

where M is a zero mean martingale. Since (X + K̃) = (X +Kδ), then Ṽ = V
δ,∞

.

Also, by conditions (IV), (V) and (VI),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s, (7.22)
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By condition (II), f(x, x̄) = f(0, x̄) for c ≤ x ≤ 0, then the summation term on the

RHS of (7.22) becomes zero as for each s ≤ t ∧ T ,

f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s) = f(0, Ṽ s)− f(0, Ṽ s) = 0.

For the first integral term on the RHS of (7.22), if we are in the bounded variation

case, then (K̃s)
c = 0. In the unbounded variation case, (K̃s)

c changes when Ṽs− = 0,

but by condition (II) and since g ∈ C1[c, a],
∂f

∂x
(x, x̄)|x=0 = limx↑0

∂f

∂x
(x, x̄) = 0, as

f(0, x̄) is constant in x, and hence this term also becomes zero.

After that, we take the expectation and get,

Ex,x̄
[
e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )

]
− f(x, x̄) = −Ex,x̄

[∫ t∧T

0+

e−qs δ(V
δ,∞
s ) d(X +Kδ)s

]
.

(7.23)

Finally, we let t and n go to infinity. By condition (I), f is bounded. So, on the LHS of

(7.23), we use the bounded convergence theorem and condition (III) that f(a, a) = 0

together with (II) that f(x, x̄) = 0 for x < c. That is, this term vanishes. The term

on the RHS of (7.23), is the tax revenue, which is monotone in t, and therefore, by

using the monotone convergence theorem we get,

f(x, x̄) = vδ,−ctax,a(x, x̄).

�

Remark 20 We are going to attempt to guess an expression for f , by assuming

it satisfies conditions (I − V I) in Lemma 7.3.1, and we will later verify that these

conditions hold in Theorem 7.3.5. In order to guess the candidate expression, we use

(7.19) and (7.8), for x ≤ x̄ ≤ a, so we have that,

f(x, x̄) = vδ,−ctax,a(x, x̄) =
Jc(x)

Jc(x̄)
vδ,−ctax,a(x̄, x̄), (7.24)

where Jc as given in (7.9). After that, we use (7.24) and that f satisfies conditions

(III) and (VI), so we get the following ODE,

∂

∂x̄
vδ,−ctax,a(x̄, x̄)− 1

1− δ(x̄)

J ′c(x̄)

Jc(x̄)
vδ,−ctax,a(x̄, x̄) = − δ(x̄)

1− δ(x̄)
,

such that the boundary condition is

vδ,−ctax,a(a, a) = 0.
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Thus, solving this ODE by integrating factor method, we can find that

vδ,−ctax,a(x̄, x̄)

= exp

{∫ x̄

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}{
−
∫ x̄

a

exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy + C

}
,

where C is a constant. To find it, we use the boundary condition and find that C = 0.

Therefore, we get that the candidate expression should be

vδ,−ctax,a(x̄, x̄) =

∫ a

x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy.

We give here the meaning for a notation before we present some result,

L1
loc(R+) =

{
f : R+ → Rmeasurable, for anyx > 0,

∫ x

0

|f(y)|dy <∞
}
. (7.25)

Lemma 7.3.2 [17, Lemma 2.4] Let f : R+ → R be absolutely continuous on R+ and

g ∈ L1
loc(R+). Assume that f ′ ∈ L1

loc(R+), where f ′ denotes a version of the density of

f, and further assume that f(0+) = limy↓0 f(y) ∈ R. Then the convolution

h(y) =

∫ y

0

f(y − r) g(r) dr

has a density on R+ and a version of it is given, for any y > 0, by

h′(y) =

∫ y

0

f ′(y − r) g(r) dr + f(0+) g(y).

Lemma 7.3.3 Let x̄ > 0 and g(x) be a function on R such that the overshoot expres-

sion (7.3) is,

Ex,x̄
[
e−qρ

−
0 f(Xρ−0

)1{ρ−0 <ρ+
x̄ }
]

= g(x), (7.26)

for some function f on (−∞, 0]. Then,

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(Xt∧ρ+

x̄ ∧ρ
−
0

), t ≥ 0,

is a martingale.

Proof We use identity (7.26) with the same argument given in [50, p.192] to prove

that

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(Xt∧ρ+

x̄ ∧ρ
−
0

)

is a martingale.�
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Lemma 7.3.4 Let g be a function on R such that g ∈ S[0,x̄], for any x̄ > 0, where the

first and the second derivatives of g are right-continuous on [0, x̄]. Suppose that

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(Xt∧ρ+

x̄ ∧ρ
−
0

)

is a martingale. Then, for x ∈ (0,∞),

(A− q) g(x) = 0.

Proof We use the same argument of proof in [14]. By assumption that g ∈ S[0,x̄],

then g satisfies the first and second conditions of Definition 4.1.1 on [0, x̄]. That

implies, we can apply the extant second derivative Meyer-Itô formula [52, Theorem

71] to e−qtg(Xt) in the unbounded variation case and [52, Theorem 78] in the bounded

variation case. Therefore, we have the expansion, for x ∈ (0, x̄),

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(X(t∧ρ+

x̄ ∧ρ
−
0 ))− g(x)

=

∫ t∧ρ+
x̄ ∧ρ

−
0

0+

−qe−qs g(Xs−) ds+

∫ t∧ρ+
x̄ ∧ρ

−
0

0+

e−qs g′(Xs−) dXs

+
σ2

2

∫ t∧ρ+
x̄ ∧ρ

−
0

0

e−qsg′′(Xs−) d [X,X]cs

+
∑

0<s≤(t∧ρ+
x̄ ∧ρ

−
0 )

e−qs [g(Xs)− g(Xs−)− g′(Xs−)∆Xs] .

This expansion can be rewritten using (2.3) as

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(X(t∧ρ+

x̄ ∧ρ
−
0 ))− g(x)

= Mt +

∫ t∧ρ+
x̄ ∧ρ

−
0

0+

e−qs (A− q) g(Xs−) ds, (7.27)

where

Mt =

∫ t∧ρ+
x̄ ∧ρ

−
0

0+

e−qs g′(Xs−) d
[
Xs − µs−

∑
0<u≤s

∆Xu1{|∆Xu|>1}
]

+

{ ∑
0<s≤t∧ρ+

x̄ ∧ρ
−
0

e−qs
[
g(Xs− + ∆Xs)− g′(Xs−)∆Xs1{|∆Xs|≤1}

]
−
∫ t∧ρ+

x̄ ∧ρ
−
0

0+

∫ ∞
0+

e−qs
[
g(Xs− − θ)− g(Xs−) + θ g′(Xs−)1{0<θ≤1}

]
ν(dθ) ds

}
is a martingale. Since the left hand side of (7.27) is a martingale by assumptions, then∫ t∧ρ+

x̄ ∧ρ
−
0

0+

e−qs (A− q) g(Xs−) ds = 0.
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Therefore, by the right-continuity assumptions, for x ∈ (0, x̄),

(A− q) g(x) = 0,

which is valid also for any x > 0 as x̄ > 0 is arbitrary here.�

Theorem 7.3.5 For x̄ > 0, let δ : [x̄,∞)→ [0, 1) be a natural tax rate function such

that the function 1/(1−δ(s)) is locally bounded. Suppose that X has positive Gaussian

coefficient in the unbounded variation case. Then, the net present value of taxation

for the process V δ,−c, for x ≤ x̄ and x̄ > 0, is given by

vδ,−ctax (x, x̄) =
Jc(x)

Jc(x̄)

∫ ∞
x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy, (7.28)

where Jc as given in (7.9).

Proof For fixed a > 0, let f : (−∞, a]× (0, a]→ R be given by,

f(x, x̄) = g(x) h(x̄),

where the function g : (−∞, a]→ R is,

g(x) = Jc(x) =

[
1−

∫ x

0

l′(z − c)W (q)(x− z)dz

]
1{x≥c}. (7.29)

The function h : (0, a]→ R is given by,

h(x̄) =
1

Jc(x̄)

∫ a

x̄

exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy,

which can be written as

h(x̄) =
1

Jc(x̄)
exp

{
−
∫ a

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}∫ a

x̄

exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy.

We only need to show that f satisfies the conditions in Lemma 7.3.1, then by (7.21)

and taking the limit as a goes to infinity, the statement is proved. Note first that,

from (7.6), l′(z − c) is finite and the integral term in (7.29) is finite. Also, as l′(z − c)

is negative, then Jc(x) ≥ 1 and bounded on (−∞, a]. As by assumption 1/(1− δ(s)) is

bounded, then this implies that f is bounded on (−∞, a]× (0, a]. Next, we prove that

f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1. For that, we verify that g and h satisfy the conditions

in Definition 4.1.1 on [c, a], and on [ 1
n
, a], for each n ≥ 1, respectively. By definition, g



CHAPTER 7. NATURAL TAXATION WITH A LIMITED BAIL-OUT 143

equals 0 on (−∞, c) and 1 on [c, 0]. Accordingly, g′ is zero on (−∞, 0), and on (0,∞)

is

g′(x) = −l′(x− c)W (q)(0+)−
∫ x

0

l′(z − c)W (q)′(x− z) dz. (7.30)

Therefore, in the bounded variation case, g is absolutely continuous with locally

bounded density g′ on [c, a]. This is clear on (−∞, c) or [c, 0], as explained above.

On (0,∞), since W (q) is absolutely continuous with density W (q)′ ∈ L1
loc(R+), and as

l′(z−c) ∈ L1
loc(R+), then we use Lemma (7.3.2) and see that g has a density on R+ given

by (7.30), which is bounded on (0,∞). In the unbounded variation case, on (0,∞),

clearly g is continuous, and as W (q)(0+) = 0, g′(x) = −
∫ x

0
l′(z − c)W (q)′(x − z) dz.

Since X has positive Gaussian component, then by Theorem 2.2.4, W (q) is twice con-

tinuously differentiable. Since W (q)′ is absolutely continuous with density W (q)′′ ∈

L1
loc(R+), and as l′(z − c) ∈ L1

loc(R+), then again we use Lemma (7.3.2), and see that

g′ is an absolutely continuous with a density g′′,

g′′(x) = −l′(x− c)W (q)′(0+)−
∫ x

0

l′(z − c)W (q)′′(x− z) dz,

which is clearly bounded on (0,∞). For the function h, it is absolutely continuous

with locally bounded density on [ 1
n
, a], for each n ≥ 1, since we have that

h(x̄)− h(
1

n
) =

∫ s

1
n

h′(r) dr,

for all s ∈ [ 1
n
, a], for each n ≥ 1, where h′ is given by

h′(x̄) =
−J ′c(x̄)

Jc(x̄)2
A(x̄) exp

{
−
∫ a

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
+

1

Jc(x̄)
exp

{
−
∫ a

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
A(x̄)

J ′c(x̄)

Jc(x̄)

1

1− δ(x̄)
− 1

Jc(x̄)

δ(x̄)

1− δ(x̄)
,

(7.31)

where

A(x̄) =

∫ a

x̄

exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
δ(y)

1− δ(y)
dy.

For the second condition of Definition 4.1.1, we need to show that there exists λ > 0

such that s 7→
∫∞
λ
g(s− θ) ν(dθ) is bounded on (c, a). Since we have that

g(s− θ) =

[
1−

∫ s−θ

0

l′(z − c)W (q)(s− θ − z)dz

]
1{s−θ≥c},

so if we choose λ = a, then θ ≥ λ = a ≥ s which implies that s − θ ≤ 0. Therefore,

either s− θ < c and thus, g(s− θ) = 0, or s− θ ≥ c which implies that g(s− θ) = 1,
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and thus, by the definition of Lévy measure (see [9, p.29]), ν(λ,∞) <∞. So, in either

cases, the condition is satisfied. Hence, f satisfies condition (I).

Since h(a) = 0, then f(a, a) = 0. From (7.29), it is clear that g(x) = g(0) for

c ≤ x ≤ 0, and g(x) = 0 for x < c. Hence, conditions (II) and (III) are satisfied.

By (7.11),

Ex,x̄

[
e−q ρ

−
0 1{

X
ρ−0
≥c
} 1{ρ−0 <ρ+

x̄ }

]
= g(x)− W (q)(x)

W (q)(x̄)
g(x̄),

then by Lemma 7.3.3, (2.13), and taking linear combination,

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g(Xt∧ρ+

x̄ ∧ρ
−
0

)

is a martingale. Since g satisfies the assumptions of Lemma 7.3.4, then

(A− q) g(x) = 0, x > 0,

which is condition (IV). By continuity of g, right-continuity of g′ and g′′,

(A− q) g(0) = 0,

which is condition (V).

For condition (VI), we have,

∂f(x, x̄)

∂x
|x=x̄ = J ′c(x̄)h(x̄), (7.32)

where J ′ is given by (7.30) and

∂f(x, x̄)

∂x̄
|x=x̄ = Jc(x̄) h′(x̄), (7.33)

where h′ is given by (7.31). By (7.32), (7.33) and (7.31) we find that Γδf(x̄, x̄) = δ(x̄)

for all 0 < x̄ ≤ a.�

Remark 21 Note that, when we take limit of c ↓ −∞ in (7.28), and using that

limc↓−∞ l′(z − c) = −q, we get the same result as in (6.28).

Corollary 7.3.6 For x ≤ x̄, the two sided exit formula given in (7.8) is correct even

if X is in the unbounded variation case.

Proof By Lemma 7.3.5, we verified that the expression (7.28) is the correct one in

all cases of X. Hence, by (7.19) the statement is proved.�
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7.3.2 The injection value function

We have that,

vδ,−cinj (x, x̄) = Ex,x̄

[∫ τ+
x̄ ∧τ

−
c

0

e−qs dKδ
s

]
+ Ex,x̄

[∫ τ−c

τ+
x̄ ∧τ

−
c

e−qs dKδ
s

]
. (7.34)

For the first term in (7.34), we use Proposition 7.2.2,

Ex,x̄

[∫ τ+
x̄ ∧τ

−
c

0

e−qs dKδ
s

]
= −Ex,x̄

[∫ T+
x̄ ∧T

−
c

0

e−qs dIs

]
= −Qc(x) +

Jc(x)

Jc(x̄)
Qc(x̄),

(7.35)

where Qc is given by (7.15) and Jc is given by (7.9).

Remark 22 By (7.7) and Remark 19, one can show that when c ↓ −∞, (7.35) be-

comes,

Ex,x̄

[∫ T+
x̄

0+

e−qs dKδ
s

]
= −

[
Z

(q)
(x) +

ψ′(0+)

q

]
+
Z(q)(x)

Z(q)(x̄)

[
Z

(q)
(x̄) +

ψ′(0+)

q

]
,

which agrees with the previous expression in the forced bail-out case, (6.33).

For the second term in (7.34), by the strong Markov property of (V δ,∞, V
δ,∞

),

Ex,x̄

[∫ τ−c

τ+
x̄ ∧τ

−
c

e−qs dKδ
s

]
= Ex,x̄

[
e−q T

+
x̄ 1{T+

x̄ <T
−
c }
]
vδ,−cinj (x̄, x̄).

Therefore, the injection value function for the process (7.1), for x ≤ x̄ ≤ a,

vδ,−cinj,a(x, x̄) = −Qc(x) +
Jc(x)

Jc(x̄)

[
Qc(x̄) + vδ,−cinj,a(x̄, x̄)

]
. (7.36)

Lemma 7.3.7 Let V δ,−c
t := V δ,∞

t∧τ−c
, for all t ≥ 0, be the natural tax process V δ,∞ with

a limited bail-out at a parameter c < 0. For fixed a > 0, suppose f is a function with

domain Df = (−∞, a]× (0, a] and satisfying the following conditions:

(I) f is bounded on Df and f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1, such that it is of the

form f(x, x̄) = f1(x, x̄)+f2(x, x̄), where for each i = 1, 2, fi(x, x̄) = gi(x)hi(x̄),

and each gi and hi satisfies the conditions of Definition 4.1.1.
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(II)

f(x, x̄) =

−x+ f(0, x̄), c ≤ x ≤ 0,

0, x < c,

(III) f(a, a) = 0.

(IV) (A− q)f(x, x̄) = 0 for 0 < x ≤ x̄ ≤ a.

(V) (A− q)f(0, x̄) = 0 for 0 < x̄ ≤ a.

(VI) There exists a locally bounded density for each hi such that

Γδf(x̄, x̄) = 0 for all 0 < x̄ ≤ a,

where Γδ is defined in (7.20).

Then,

f(x, x̄) = vδ,−cinj,a(x, x̄), for x ≤ x̄ ≤ a, x̄ > 0. (7.37)

Proof Let (x, x̄) be fixed, where x ≤ x̄ ≤ a and x̄ > 0. For t ≥ 0, let Kδ,−c
t :=

Kδ
t∧τ−c

. Let Ṽ and K̃ be the right-continuous modifications of V δ,−c and Kδ,−c. Let

τ−c = inf{t > 0 : Ṽt < c}, τ+
a = inf{t > 0 : Ṽt > a}, and κ−1

n

= inf{t > 0 : Ṽ t <
1
n
}.

Let T = τ−c ∧ τ+
a ∧ κ−1

n

. By condition (I), f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1, so we can use

Corollary 4.1.3 and follow the same steps of the proof for Lemma 6.2.3 until (6.20),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q)f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs
[
Γδf(Ṽ s, Ṽ s)

]
d(X + K̃)s,

where M is a zero mean martingale, and ∆K̃0 = K̃0− K̃0− such that K̃0− := 0. Since

(X + K̃) = (X +Kδ), then Ṽ = V
δ,∞

. Also, by conditions (IV), (V), and (VI),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
. (7.38)
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By condition (II), since for any s ≤ t∧ T , Ṽs− + ∆Xs, Ṽs− + ∆Xs + ∆K̃s ∈ [c, 0], then

f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s) = −∆K̃s.

This implies that the summation term of (7.38) becomes

−
∑

0<s≤t∧T

e−qs∆K̃s − K̃0. (7.39)

For the integral term on the RHS of (7.38), if we are in the bounded variation case,

then (K̃s)
c = 0, that is, K̃s =

∑
0<u≤s ∆K̃u, and hence, by (7.39) this integral term

becomes,

−
∫ t∧T

0+

e−qsdK̃s − K̃0. (7.40)

If we are in the unbounded variation case, for the first integral term on the RHS

of (7.38), (K̃s)
c changes when Ṽs− = 0. Since gi ∈ C1[c, a], for i = 1, 2, then

∂f

∂x
(x, x̄)|x=0 = limx↑0

∂f

∂x
(x, x̄) = −1, and hence, by using (7.39), also this integral

term becomes (7.40). Since∫ t∧T

0+

e−qsdK̃s =

∫ t∧T

0

e−qsdKδ
s −Kδ

0+ ,

where Kδ
0+ = K̃0. Therefore, (7.38) becomes,

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄) = Mt∧T −
∫ t∧T

0

e−qsdKδ
s .

Next, we take expectations,

Ex,x̄
[
e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )

]
− f(x, x̄) = −Ex,x̄

[∫ t∧T

0

e−qsdKδ
s

]
. (7.41)

Finally, we let t and n go to infinity. For the LHS of (7.41), since f is bounded by

condition (I), we use the bounded convergence theorem together with conditions (II)

that f(a, a) = 0, and condition (III) that f(x, x̄) = 0 for x < c, hence, in either

cases the first term on the LHS vanishes. The term on the RHS is the accumulate of

capital injections Kδ, which is monotone in t, and therefore, by using the monotone

convergence theorem, we get,

f(x, x̄) = vδ,−cinj,a(x, x̄).

�
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Remark 23 We are going to attempt to guess an expression for f , by assuming

it satisfies conditions (I − V I) in Lemma 7.3.7, and we will later verify that these

conditions hold in Theorem 7.3.8. In order to guess the candidate expression for vδ,−cinj,a,

we use (7.36) and (7.37) for x ≤ x̄ ≤ a,

f(x, x̄) = vδ,−cinj,a(x, x̄) = −Qc(x) +
Jc(x)

Jc(x̄)

[
Qc(x̄) + vδ,−cinj,a(x̄, x̄)

]
. (7.42)

We use (7.42) and that f satisfies conditions (III) and (VI), so we get the following

ODE,

∂

∂x̄
vδ,−cinj,a(x̄, x̄)− 1

1− δ(x̄)

J ′c(x̄)

Jc(x̄)
vδ,−cinj,a(x̄, x̄) = − 1

1− δ(x̄)

[
Q′c(x̄)− J ′c(x̄)

Jc(x̄)
Qc(x̄)

]
,

with the boundary condition

vδ,−cinj,a(a, a) = 0.

Thus, solving this ODE by integrating factor method, we can find that

vδ,−cinj,a(x̄, x̄)

=

{
−
∫ x̄

a

1

1− δ(y)
exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy

}
×

exp

{∫ x̄

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
.

Therefore, we get the expression,

vδ,−cinj,a(x̄, x̄)

=

∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy.

This implies that the final candidate expression for vδ,−cinj,a(x, x̄), x ≤ x̄, is given by,

vδ,−cinj,a(x, x̄) = −Qc(x) +
Jc(x)

Jc(x̄)

[
Qc(x̄) + vδ,−cinj,a(x̄, x̄)

]
= −Qc(x) +

Jc(x)

Jc(x̄)

{
Qc(x̄)

+

∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy

}
.

(7.43)
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Remark 24 Note that, when we take limit of (7.43) as c ↓ −∞ by using Remark

18, and by following the steps starting from (6.42), we get expression (6.44). Then by

taking the limit as a ↑ ∞, we get the same value of injections as in the forced bail-out

case (6.45).

Theorem 7.3.8 For x̄ > 0, let δ : [x̄,∞) → [0, 1) be a natural tax rate function

such that the function 1/(1 − δ(s)) is locally bounded. Suppose that X has positive

Gaussian coefficient in the unbounded variation case. Then, the net present value of

capital injections for the process V δ,−c, for x ≤ x̄ and x̄ > 0, is given by

vδ,−cinj (x, x̄)

= −Qc(x) +
Jc(x)

Jc(x̄)

{
Qc(x̄)

+

∫ ∞
x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy

}
,

(7.44)

where Jc and Qc are given by (7.9) and (7.15), respectively.

Proof For fixed a > 0, let f : (−∞, a]× (0, a]→ R be given by,

f(x, x̄) = g1(x) h1(x̄) + g2(x) h2(x̄).

The functions gi : (−∞, a]→ R, for i = 1, 2, are

g1(x) = Qc(x) =

[
x−

∫ x

0

[l(z − c) + c l′(z − c)]W (q)(x− z)dz

]
1{x≥c}, (7.45)

and

g2(x) = Jc(x) =

[
1−

∫ x

0

l′(z − c)W (q)(x− z)dz

]
1{x≥c}. (7.46)

The functions hi : (0, a]→ R, for i = 1, 2, are h1(x̄) = −1 and

h2(x̄) =
1

Jc(x̄)

{
Qc(x̄)

+

∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy

}
,

which can be written as

h2(x̄) =
1

Jc(x̄)

{
Qc(x̄) + exp

{
−
∫ a

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×

∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} [
Q′c(y)− J ′c(y)

Jc(y)
Qc(y)

]
dy

}
.
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We only need to show that f satisfies the conditions in Lemma 7.3.7, then by (7.37)

and taking the limit as a goes to infinity, the statement is proved. From the proof of

Theorem (7.3.5), Jc(x) ≥ 1 is bounded on (−∞, a]. Moreover, by the expansion in

Remark 18, l(z − c) + c l′(z − c) is finite and the integral term in (7.45) is finite, and

x is bounded by a, that is, Qc(x) is bounded on its domain. Also, as by assumption

1/(1− δ(s)) is bounded, then this implies that f is bounded on (−∞, a]× (0, a]. Next,

we prove that f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1. For that, we should verify that each gi

and hi, for i = 1, 2, satisfy the conditions in Definition 4.1.1 on [c, a], and on [ 1
n
, a], for

each n ≥ 1, respectively. For condition (I), by definition, g1(x) equals 0 on (−∞, c)

and x on [c, 0]. Accordingly, g′1 is zero on (−∞, c), and 1 on (c, 0). On (0,∞), it is

given by

g′1(x) = 1− [l(x− c) + c l′(x− c)]W (q)(0+)−
∫ x

0

[l(z − c) + c l′(z − c)]W (q)′(x− z) dz.

(7.47)

Therefore, in the bounded variation case, g1 is absolutely continuous with locally

bounded density g′1 on [c, a]. This is clear on (−∞, c) or [c, 0], as explained above.

On (0,∞), since W (q) is absolutely continuous with density W (q)′ ∈ L1
loc(R+), and as

[l(z−c)+c l′(z−c)] ∈ L1
loc(R+), then we use Lemma 7.3.2 and see that g1 has a density

on R+ given by (7.47), which is bounded on (0,∞). In the unbounded variation case,

on (0,∞), clearly g1 is continuous, and as W (q)(0+) = 0, g′1(x) = 1 −
∫ x

0
[l(z − c) +

c l′(z−c)]W (q)′(x−z) dz. Since X has positive Gaussian component, then by Theorem

2.2.4, W (q) is twice continuously differentiable. Since W (q)′ is absolutely continuous

with density W (q)′′ ∈ L1
loc(R+), and as [l(z− c) + c l′(z− c)] ∈ L1

loc(R+), then again we

use Lemma 7.3.2, and see that g′1 is an absolutely continuous with a density g′′1 ,

g′′1(x) = −[l(x− c) + c l′(x− c)]W (q)′(0+)−
∫ x

0

[l(z − c) + c l′(z − c)]W (q)′′(x− z) dz,

which is clearly bounded on (0,∞). For the functions hi, i = 1, 2, each one is absolutely

continuous with locally bounded density on [ 1
n
, a], for each n ≥ 1. This is because h1

is constant, and for h2 since we have that,

h2(x̄)− h2(
1

n
) =

∫ s

1
n

h′2(r) dr,
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for all s ∈ [ 1
n
, a], for each n ≥ 1, where h′2 is given by

h′2(x̄) = −J
′
c(x̄)

Jc(x̄)
h2(x̄) +

1

Jc(x̄)
Q′c(x̄)

+
J ′c(x̄)

Jc(x̄)2

1

1− δ(x̄)

∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
A(y) dy

− 1

Jc(x̄)

1

1− δ(x̄)
A(x̄), (7.48)

such that

A(y) = Q′c(y)− J ′c(y)

Jc(y)
Qc(y).

For the second condition of Definition 4.1.1, we need to show that there exists λ > 0

such that s 7→
∫∞
λ
g1(s− θ) ν(dθ) is bounded on (c, a). Now, we have that

g1(s−θ) =

[
(s− θ)−

∫ s−θ

0

[l(z − c) + c l′(z − c)]W (q)(s− θ − z)dz

]
1{s−θ≥c}, (7.49)

so if we choose λ = a, then θ ≥ λ = a ≥ s and hence s − θ ≤ 0. Therefore, either

s − θ < c which implies that g1(s − θ) = 0, or 0 ≥ s − θ ≥ c which implies that

g1(s− θ) = s− θ, but then g1 is bounded by a and thus∣∣∣ ∫ ∞
λ

g1(s− θ) ν(dθ)
∣∣∣ ≤ a

∫ ∞
λ

ν(dθ),

where the last integral is a bounded integral for all s ∈ (c, a). So, in either cases,

the condition is satisfied. For g2, see the proof of Lemma 7.3.5. Hence, f satisfies

condition (I).

Clearly, f(a, a) = −Qc(a) + Qc(a) = 0. From (7.45) and (7.46), it is clear that

g1(x) = x and g2(x) = 1 for c ≤ x ≤ 0. Also, g1(x) = 0 and g2(x) = 0 for x < c. Thus,

f(x, x̄) = −x+ f(0, x̄) for c ≤ x ≤ 0 and f(x, x̄) = 0 for x < c. Hence, conditions (II)

and (III) are satisfied.

By (7.17),

Ex,x̄

[
e−q ρ

−
0

(
Xρ−0

1{
X
ρ−0
≥c
}
)

1{ρ−0 <ρ+
x̄ }

]
= g1(x)− W (q)(x)

W (q)(x̄)
g1(x̄),

then by Lemma 7.3.3, (2.13), and taking linear combination,

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g1(Xt∧ρ+

x̄ ∧ρ
−
0

)

is a martingale. Since g1 satisfies the assumptions of Lemma 7.3.4, then

(A− q) g1(x) = 0, x > 0,
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which is condition (IV). By continuity of g1, right-continuity of g′1 and g′′1 ,

(A− q) g1(0) = 0,

which is condition (V).

For condition (VI),

Now,
∂f(x, x̄)

∂x
|x=x̄ = −Q′c(x̄) + J ′c(x̄)h2(x̄), (7.50)

and
∂f(x, x̄)

∂x̄
|x=x̄ = Jc(x̄)h′2(x̄), (7.51)

where h′2 is given by (7.48)

Then, by (7.50), (7.51) and (7.48), we find that Γδf(x̄, x̄) = 0.�

Corollary 7.3.9 For x ≤ x̄, the identity in (7.14) is correct even if X is in the

unbounded variation case.

Proof By Lemma 7.3.8, we verified that the expression (7.44) is the correct one in

all cases of X. Hence, by (7.36) the statement is proved.�

7.3.3 The penalty value function

Recall that P : R→ R is a penalty function which is a bounded function.

Lemma 7.3.10 Let V δ,−c
t := V δ,∞

t∧τ−c
, for all t ≥ 0, be the natural tax process V δ,∞ with

a limited bail-out at a parameter c < 0. For fixed a > 0, suppose f is a function with

domain Df = (−∞, a]× (0, a] and satisfying the following conditions:

(I) f is bounded on Df , and f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1, such that it is of the

form f(x, x̄) = f1(x, x̄)+f2(x, x̄), where for each i = 1, 2, fi(x, x̄) = gi(x)hi(x̄),

and each gi and hi satisfies the conditions of Definition 4.1.1.

(II)

f(x, x̄) =

f(0, x̄), c ≤ x ≤ 0,

P (x), x < c,
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(III) f(a, a) = 0.

(IV) (A− q)f(x, x̄) = 0 for 0 < x ≤ x̄ ≤ a.

(V) (A− q)f(0, x̄) = 0 for 0 < x̄ ≤ a.

(VI) There exists a locally bounded density for each hi such that

Γδf(x̄, x̄) = 0 for all 0 < x̄ ≤ a,

where Γδ is defined in (7.20).

Then,

f(x, x̄) = Ex,x̄
[
e−qτ

−
c P (V δ,∞

τ−c
)1{τ−c <τ+

a }
]
, for x ≤ x̄ ≤ a, x̄ > 0. (7.52)

Proof Let (x, x̄) be fixed, where x ≤ x̄ ≤ a and x̄ > 0. For t ≥ 0, let Kδ,−c
t :=

Kδ
t∧τ−c

. Let Ṽ and K̃ be the right-continuous modifications of V δ,−c and Kδ,−c. Let

τ−c = inf{t > 0 : Ṽt < c}, τ+
a = inf{t > 0 : Ṽt > a}, and κ−1

n

= inf{t > 0 : Ṽ t <
1
n
}.

Let T = τ−c ∧ τ+
a ∧ κ−1

n

= τ−c . By condition (I), f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1, so we

can use Corollary 4.1.3 and follow the same steps of the proof for Lemma 6.2.3 until

(6.20),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs (A− q)f(Ṽs−, Ṽ s) ds+

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
−
∫ t∧T

0+

e−qs
[
Γδf(Ṽ s, Ṽ s)

]
d(X + K̃)s,

where M is a zero mean martingale. By conditions (IV), (V), and (VI),

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s≤t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
,
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which can be written as,

e−q(t∧T )f(Ṽt∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s<t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
+ e−q(t∧T )

[
f(Ṽ(t∧T )− + ∆Xt∧T + ∆K̃t∧T , Ṽ t∧T )− f(Ṽ(t∧T )− + ∆Xt∧T , Ṽ s)

]
.

(7.53)

Since Ṽ(t∧T )− + ∆Xt∧T = V δ,∞
t∧T and Ṽ(t∧T )− + ∆Xt∧T + ∆K̃t∧T = Ṽt∧T , then (7.53)

becomes,

e−q(t∧T )f(V δ,∞
t∧T , Ṽ t∧T )− f(x, x̄)

= Mt∧T +

∫ t∧T

0+

e−qs
∂f

∂x
(Ṽs−, Ṽ s)d(K̃s)

c

+
∑

0≤s<t∧T

e−qs
[
f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s)

]
. (7.54)

By condition (II), f(x, x̄) = f(0, x̄) for c ≤ x ≤ 0, then the summation term on the

RHS of (7.54) becomes zero as for each s < t ∧ T ,

f(Ṽs− + ∆Xs + ∆K̃s, Ṽ s)− f(Ṽs− + ∆Xs, Ṽ s) = f(0, Ṽ s)− f(0, Ṽ s) = 0.

For the integral term on the RHS of (7.54), if we are in the bounded variation case,

(K̃s)
c = 0. If we are in the unbounded variation case, (K̃s)

c changes only when

Ṽs− = 0, but as for each i, gi ∈ C1[c, a],
∂f

∂x
(x, x̄)|x=0 = limx↑0

∂f

∂x
(x, x̄) = 0. Therefore,

all terms on the RHS of (7.54) becomes zero except the martingale. After that, we

take the expectation on both sides and get,

f(x, x̄) = Ex,x̄
[
e−q(t∧T )f(V δ,∞

t∧T , Ṽ t∧T )
]
. (7.55)

Finally, we n go to infinity and t go to infinity. By condition (I), f is bounded. So, on

the RHS of (7.55), we use the bounded convergence theorem and get,

f(x, x̄) = Ex,x̄
[
e−q(τ

−
c ∧τ+

a )f(V δ,∞
τ−c ∧τ+

a
, Ṽ τ−c ∧τ+

a
)
]

= Ex,x̄
[
e−qτ

−
c f(V δ,∞

τ−c
, Ṽ τ−c

)1{τ−c <τ+
a }
]

+ Ex,x̄
[
e−qτ

+
a f(V δ,∞

τ+
a
, Ṽ τ+

a
)1{τ+

a <τ
−
c }
]

= Ex,x̄
[
e−qτ

−
c P (V δ,∞

τ−c
)1{τ−c <τ+

a }
]
,
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where the last equality comes from condition (III) that f(a, a) = 0 together with (II)

that f(x, x̄) = P (x) for x < c.�

Remark 25 In order to guess the candidate expression of the penalty function, we

have to consider some facts. First we know that for x ≤ x̄ ≤ a,

f(x, x̄) = Ex,x̄
[
e−qτ

−
c P (V δ,∞

τ−c
)1{τ−c <τ+

a }
]

= P (x) 1{x<c} +R(x, x̄) 1{x≥c}, (7.56)

where

R(x, x̄) = g(x, x̄) + Ex,x̄
[
e−qτ

+
x̄ 1{τ+

x̄ <τ
−
c }
]
f(x̄, x̄),

such that, for c ≤ x ≤ 0,

R(x, x̄) = R(0, x̄).

So, we find R(x, x̄) for 0 < x ≤ x̄. To do so, we need first to find g(x, x̄) and then we

continue to find the guessing candidate of f(x, x̄).

g(x, x̄) = Ex,x̄

[
e−qρ

−
0 P (Xρ−0

)1{
X
ρ−0
<c

}1{ρ−0 <ρ+
x̄ }

]

+ Ex,x̄

[
e−qρ

−
0 1{

X
ρ−0
≥c
}1{ρ−0 <ρ+

x̄ }

]
g(0, x̄). (7.57)

We are going to use the overshoot formula, (7.3), for each term separately in (7.57).

So, for the first term, our f : (−∞, 0]→ R is given by,

f(x) = P (x) 1{x<c},

and the extension is f̃ : (−∞, x̄]→ R is given by,

f̃(x) = P (x) 1{x<c}.

By definition of f̃ , the creeping term in (7.3) vanishes and the first term in (7.57),
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for 0 < x ≤ x̄ is given by,

Ex,x̄

[
e−qρ

−
0 P (Xρ−0

)1{
X
ρ−0
<c

}1{ρ−0 <ρ+
x̄ }

]

=

∫ x̄

0

(A− q)f̃(z)

[
W (q)(x)

W (q)(x̄)
W (q)(x̄− z)−W (q)(x− z)

]
dz

=
W (q)(x)

W (q)(x̄)

∫ x̄

0

Af̃(z)W (q)(x̄− z)dz −
∫ x

0

Af̃(z)W (q)(x− z)dz

=
W (q)(x)

W (q)(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz, (7.58)

where as f̃(z − θ) = P (z − θ)1{z−θ<c} and P is a bounded function, then

Af̃(z) =

∫ ∞
z−c

P (z − θ)ν(dθ) <∞.

The second term in (7.57) has been found before in (7.11) and we recall it here, so for

0 < x ≤ x̄,

Ex,x̄

[
e−qρ

−
0 1{

X
ρ−0
≥c
}1{ρ−0 <ρ+

x̄ }

]

= 1− W (q)(x)

W (q)(x̄)
+

∫ x̄

0

l′(z − c)
[
W (q)(x)

W (q)(x̄)
W (q)(x̄− z)−W (q)(x− z)

]
dz.

So,

g(x, x̄) =
W (q)(x)

W (q)(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+ g(0, x̄)

[
1− W (q)(x)

W (q)(x̄)
+

∫ x̄

0

l′(z − c)
[
W (q)(x)

W (q)(x̄)
W (q)(x̄− z)−W (q)(x− z)

]
dz

]
.

(7.59)

Now, put x = 0 in (7.59) and use that in the bounded variation case W (q)(0+) = 1
d

to

find

g(0, x̄) =

∫ x̄
0

[∫∞
z−c P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

1−
∫ x̄

0
l′(z − c)W (q)(x̄− z)dz

. (7.60)
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Substitute (7.60) in (7.59) and then use that in (7.56) to get,

f(x, x̄)

= P (x) 1{x<c} + 1{x≥c}

{
W (q)(x)

W (q)(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+

∫ x̄
0

[∫∞
z−c P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

1−
∫ x̄

0
l′(z − c)W (q)(x̄− z)dz

×[
1− W (q)(x)

W (q)(x̄)
+
W (q)(x)

W (q)(x̄)

∫ x̄

0

l′(z − c)W (q)(x̄− z)dz −
∫ x

0

l′(z − c)W (q)(x− z)dz

]
+

1−
∫ x

0
l′(z − c)W (q)(x− z)dz

1−
∫ x̄

0
l′(z − c)W (q)(x̄− z)dz

f(x̄, x̄)

}
,

which is,

f(x, x̄)

= P (x) 1{x<c} − 1{x≥c}

∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+
Jc(x)

Jc(x̄)

[∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz + f(x̄, x̄)

]
.

Now, to derive the ODE for f(x̄, x̄) we use that Γδf(x̄, x̄) = 0, that is,

∂f(x, x̄)

∂x
|x=x̄δ(x̄)− ∂f(x, x̄)

∂x̄
|x=x̄(1− δ(x̄)) = 0,

which after some simple calculations, we get the following ODE,

∂f(x̄, x̄)

∂x̄
− 1

1− δ(x̄)

J ′c(x̄)

Jc(x̄)
f(x̄, x̄)

=
1

1− δ(x̄)

{
J ′c(x̄)

Jc(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−W (q)(0+)

∫ ∞
x̄−c

P (x̄− θ)ν(dθ)

−
∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(x̄− z)dz

}
, (7.61)

with the boundary condition

f(a, a) = 0.
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The solution of the ODE (7.61) is given by

f(x̄, x̄) = exp

{∫ x̄

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

} ∫ x̄

a

1

1− δ(y)
exp

{
−
∫ y

a

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy.

That is,

f(x̄, x̄) = −
∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy.

Therefore, the candidate expression for the penalty term equals

f(x, x̄) = P (x) 1{x<c} − 1{x≥c}

∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+
Jc(x)

Jc(x̄)

{∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy

}
. (7.62)

Remark 26 It is clear that when c ↓ −∞, the penalty term (7.62) equals zero.

Theorem 7.3.11 For x̄ > 0, let δ : [x̄,∞) → [0, 1) be a natural tax rate function

such that the function 1/(1 − δ(s)) is locally bounded. Suppose that X has positive

Gaussian coefficient in the unbounded variation case, and P : R → R is a bounded
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function. Then, the net present value of penalty for the process V δ,−c, for x ≤ x̄ and

x̄ > 0, is given by

f(x, x̄) = P (x) 1{x<c} − 1{x≥c}

∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+
Jc(x)

Jc(x̄)

{∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ ∞
x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy

}
.

Proof For fixed a > 0, let f : (−∞, a] × (0, a] → R be given by, f(x, x̄) =

g1(x)h1(x̄) + g2(x)h2(x̄), where

g1(x) =

P (x), x < c,

−
∫ x

0

[∫∞
z−c P (z − θ)ν(dθ)

]
W (q)(x− z)dz, x ≥ c,

(7.63)

h1(x̄) = 1 , g2(x) = Jc(x) , and

h2(x̄) =
1

Jc(x̄)

{∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

−
∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy

}
. (7.64)

We only need to show that f satisfies the conditions in Lemma 7.3.10, then by (7.52)

and taking the limit as a goes to infinity, the statement is proved. Recall that, since

P is bounded,
∫ x

0

[∫∞
z−c P (z − θ)ν(dθ)

]
W (q)(x − z)dz is finite. So, g1 is bounded on

(−∞, a]. Also, as Jc(x̄) ≥ 1, and as by assumption 1/(1− δ(s)) is bounded, then this

implies that f is bounded on (−∞, a]× (0, a].
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Next, we prove that f ∈ S[c,a]×[ 1
n
,a], for each n ≥ 1. For that, we should verify that

each gi and hi, for i = 1, 2, satisfy the conditions in Definition 4.1.1 on [c, a], and on

[ 1
n
, a], for each n ≥ 1, respectively. We prove first condition (I) for gi, i = 1, 2. By

definition, g1 equals 0 on [c, 0], and on (0, a], g′1 is

g′1(x) = −W (q)(0+)

∫ ∞
x−c

P (x− θ)ν(dθ)−
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(x− z)dz.

(7.65)

In the bounded variation case, we need to prove that g1 is absolutely continuous

with locally bounded density g′1 on [c, a]. This is clear on [c, 0], as g1 is zero. On

(0, a], since W (q) is absolutely continuous with density W (q)′ ∈ L1
loc(R+), and as∫∞

z−c P (z − θ)ν(dθ) ∈ L1
loc(R+), then we use Lemma 7.3.2 and see that g1 has a den-

sity on R+ given by (7.65), which is bounded on (0, a]. In the unbounded varia-

tion case, on (0, a], clearly g1 is continuous on [c, a], and as W (q)(0+) = 0, g′1(x) =

−
∫ x

0

[∫∞
z−c P (z − θ)ν(dθ)

]
W (q)′(x− z)dz. Since X has positive Gaussian component,

then by Theorem 2.2.4, W (q) is twice continuously differentiable. Since W (q)′ is abso-

lutely continuous with density W (q)′′ ∈ L1
loc(R+), and as

∫∞
z−c P (z−θ)ν(dθ) ∈ L1

loc(R+),

then again we use Lemma 7.3.2, and see that g′1 is an absolutely continuous with a

density g′′1 ,

g′′1(x) = −W (q)′(0+)

∫ ∞
x−c

P (x− θ)ν(dθ)−
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′′(x− z)dz,

which is clearly bounded on (0, a]. For the functions hi, i = 1, 2, it is clear that each

one is absolutely continuous with locally bounded density on [ 1
n
, a], for each n ≥ 1.

This is because h1 is constant, and for h2 since we have that,

h2(x̄)− h2(
1

n
) =

∫ s

1
n

h′2(r) dr,

for all s ∈ [ 1
n
, a], for each n ≥ 1, where h′2 is given by

h′2(x̄) = − J
′
c(x̄)

J2
c (x̄)

[∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz + A(x̄)

]
+

1

Jc(x̄)
[−g′1(x̄) + A′(x̄)] , (7.66)
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such that,

A(x̄) = −
∫ a

x̄

1

1− δ(y)
exp

{
−
∫ y

x̄

1

1− δ(s)
J ′c(s)

Jc(s)
ds

}
×{

J ′c(y)

Jc(y)

∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(y − z)dz

−W (q)(0+)

∫ ∞
y−c

P (y − θ)ν(dθ)

−
∫ y

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)′(y − z)dz

}
dy, (7.67)

and

A′(x̄) =
1

1− δ(x̄)

J ′c(x̄)

Jc(x̄)
A(x̄)

+
1

1− δ(x̄)

[
J ′c(x̄)

Jc(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz − g′1(x̄)

]
. (7.68)

For the second condition of Definition 4.1.1, we need to show that there exists

λ > 0 such that s 7→
∫∞
λ
g1(s − θ) ν(dθ) is bounded on (c, a). For that, we choose

λ = a, so that θ ≥ λ = a ≥ s which implies s− θ ≤ 0. Therefore, either c ≤ s− θ ≤ 0

which implies that g1(s− θ) = 0, or s− θ < c which implies that g1(s− θ) = P (s− θ),

which is bounded by assumptions. Therefore, in either cases, the condition is satisfied.

For g2, see the proof of Lemma 7.3.5. Hence, f satisfies condition (I).

Clearly, from (7.63) and (7.64), f(a, a) = 0. By definitions, it is clear that g1(x) =

g1(0) and g2(x) = g2(0) = 1 for c ≤ x ≤ 0. Also, g1(x) = P (x) and g2(x) = 0 for

x < c. Thus, by the construction of f above, we can see that f(x, x̄) = f(0, x̄) for

c ≤ x ≤ 0 and f(x, x̄) = P (x) for x < c. Hence, conditions (II) and (III) are satisfied.

On [0, x̄], by (7.58),

Ex,x̄

[
e−q ρ

−
0 P (Xρ−0

)1{
X
ρ−0
≥c
}1{ρ−0 <ρ+

x̄ }

]

= −
∫ x

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x− z)dz

+
W (q)(x)

W (q)(x̄)

∫ x̄

0

[∫ ∞
z−c

P (z − θ)ν(dθ)

]
W (q)(x̄− z)dz

= g1(x) +
W (q)(x)

W (q)(x̄)
g1(x̄),

then by Lemma 7.3.3, (2.13), and taking linear combination,

e−q(t∧ρ
+
x̄ ∧ρ

−
0 ) g1(Xt∧ρ+

x̄ ∧ρ
−
0

)
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is a martingale. Since g1 satisfies the assumptions of Lemma 7.3.4, then

(A− q) g1(x) = 0, x > 0,

which is condition (IV). By continuity of g1, right-continuity of g′1 and g′′1 ,

(A− q) g1(0) = 0,

which is condition (V).

For the last condition in Lemma 7.3.10, we have that

∂f(x, x̄)

∂x
|x=x̄ = g′1(x̄) + J ′c(x̄)h2(x̄), (7.69)

where g1 as given by (7.63) and h2 by (7.64). Also,

∂f(x, x̄)

∂x̄
|x=x̄ = Jc(x̄)h′2(x̄), (7.70)

where h′2 is given by (7.66).

By (7.69), (7.70), (7.66), (7.67) and (7.68), we see that Γδf(x̄, x̄) = 0 is verified for

all 0 < x̄ ≤ a. Hence, the proof is complete.�



Chapter 8

Further literature review

We recall that dividends of an insurance company can be modelled by reflecting the

paths of the risk process X at a given barrier. In a series of papers, many authors

studied dividend barrier models and the problem of finding the optimal dividend strat-

egy that maximises the net present value of dividends paid out until ruin time. For

example, [38, 70, 23] in the Cramér-Lundberg setting, and [10, 42] for a general spec-

trally negative Lévy process. Further, we recall that also X can be modified to model

the case where dividends are paid out at a certain fixed rate, whenever the capital is

above the level by ‘refracting’ the paths of X at a given level and with a given angle, as

given in [31]. The class of modified risk processes between the reflected and refracted

processes, we call it loss-carry-forward tax processes. As we mentioned in the introduc-

tion of this thesis, it was introduced in [2], in the case where X is a Cramér–Lundberg

process and with a constant tax rate γ ∈ (0, 1). In that study, authors studied the

ruin probabilities, proving a strikingly simple relation between ruin probabilities with

and without tax, the so-called tax identity. Moreover, they derived the expression for

the expected accumulated discounted tax payments, and obtained the optimal surplus

threshold for starting taxation such that the tax value is maximized. It was also com-

mented in [2], that when the tax rate γ = 1, the risk process with tax payments is

the same as the risk process with horizontal dividend barrier strategy, with the barrier

equals to the initial surplus. In [7], the tax identity is generalised to arbitrary surplus-

dependent tax rate in the Cramér–Lundberg model. After that, Wei in [68] derived the

tax identity for the Cramér–Lundberg risk model with a surplus-dependant premium

rate, surplus-dependant tax rate and in the presence of a constant force of interest.

163
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The same model is studied in [56], such that an explicit expression for the tax value

is obtained and the optimal surplus threshold for starting taxation is characterized

when the tax rate is constant. In the context of the latter model, [18] extended the

tax identity to a generalised Gerber-Shiu function (the quantity that relates ruin time,

surplus prior to ruin and the deficit at ruin) in which the maximum surplus preceding

ruin is involved. Authors in [47] considered the Cramér–Lundberg risk model with

debit interest and tax payments. That is, when the insurer is in deficit and borrows

some amount of money with a debit interest say ρ > 0 to continue his business and

meanwhile repay continuously the debt from his premium income, say the premium

rate is c > 0. In the setting of this model, when the surplus reaches or below the level

−c/ρ, then the surplus is no longer to recover and the time at that moment is called

the absolute ruin time. In that article, some important quantities are obtained, such

as the expected discounted total sum of tax payments until the absolute time and the

Laplace-Stieltjes transform of the total duration of negative surplus. In [61], consid-

ering the generalised Cramér–Lundberg risk model with tax payments, the expression

of the expected discounted penalty due at ruin is derived together with some other

ruin-related quantities, such as the discounted joint probability density function of the

surplus immediately before ruin and the deficit at ruin. In [66], the tax value function

is found for the the Cramér-Lundberg risk model, including a constant force of interest

and with surplus-dependent tax rate. For the same model, a recent research [46] is

made regarding the problem of finding an optimal policy that maximises the tax value

function.

The previous results are extended to general spectrally negative Lévy process. For

instance, the work in [2] was extended in [6] to the case where X is a general spectrally

negative Lévy process, with the tax rate still constant. In [33], authors extend the tax

rate γ to be a function, and studied problems related to the two-sided exit problem

and the net present value of the taxes paid before ruin. In the same setting in [53],

a formula for arbitrary moments of the discounted tax payments until ruin time is

derived. Also, [57] studied an optimal control problem for the tax process given in

[33], where one seeks to maximise the net present value of the taxes paid before ruin.

Lately, [63] obtained representations of joint Laplace transforms of occupation times

of intervals for this tax process. We point out that, a study of this tax process where
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the tax rate function could exceeds the value 1 can be found in [32].

In the same loss-carry-forward tax structure, specific cases are investigated in some

articles such as the following. In [67], the results in [2] are extended into the Markov-

modulated Lundberg risk model, which is an extension of the Lundberg process such

that the claim inter-arrivals and claim sizes are influenced by an external environment

process, assumed to be a homogenous continuous-time Markov chain. It was mentioned

in [67], that this type of model could be useful in a way to capture the advantage that

insurance policies may need to change when the political or economical environment

changes. This Markov-modulated Lundberg risk model is a special case of spectrally

negative Markov additive risk processes (spectrally negative MAPs) that is defined in

[8]. The tax identity is obtained in both [67] and [8]. On the other hand, the results of

[2] were also extended in [5] to a more complicated model called the dual risk model.

This model is relevant for companies whose business requires a constant outflow of

expenses whilst arrival of revenues happens at random as a result of some probable

events such as sales or discoveries; e.g. petroleum or pharmaceutical companies. Note

that, in the dual risk model without tax, the aggregate revenue process is added to

the initial surplus, while the expenses are subtracted (paid out) at a constant rate. In

the setting of a time-homogenous diffusion risk process, [36] addressed the two sided

exit problem and obtained an expression of the expected present value of taxation.

In [12], a Brownian motion risk model with interest rate collection and tax payments

is investigated and an approximation for the ruin probability in the model when the

initial capital is very large is obtained. For a spectrally negative Lévy process X,

some research like [60] and [? ] studied problems related to a draw-down time. In

loss-carry-forward taxation, some recent articles studied the case of stopping the tax

process at its draw-down time instead of the classical ruin time such as [11] and [59].

In [11], for a constant tax rate, the two sided exit problem is solved, the expression

of the tax value is derived and choosing the optimal delay point to start taxation is

investigated. For a general tax rate function, authors in [59] obtained a solution to the

two sided exit problem and found the expression of tax value function. Moreover, they

studied the optimal control problem introduced in [57] but until the draw-down time.

The interesting point in the draw-down time is that, studying optimality until this

time could give some balance between the taxation optimisation for the tax authority
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and solvency of the insurance company. Authors in [65, Section 4.1] explained how

draw-down problems in models without tax is related to loss-carry-forward tax ruin

problems. This relation has been used in [64], where an implementation delay of

tax is investigated for two cases, one when there is a termination value incurred to

the insurance company at the termination time of business, and the other case when

adding capital injections to the risk process. The loss-carry-forward tax with capital

injections is studied first in [3], then in [4] and in Chapters 6 and 7 of this thesis. While

[64] obtained the net present tax value for the tax process with capital injections for

a constant tax rate, our work in Chapter 6 found it for general tax rate function.

Moreover, in Chapter 6 we found the optimal solution that maximises the net present

value of tax payments over larger class of strategies than the one considered in [64].

In the literature, some curious topics were also discussed such as the periodic

taxation. For a spectrally negative Lévy process with loss-carry-forward tax, [69]

studied the case when the observation of the insurer’s surplus level is made only at

a sequence of Poisson arrival times. This comes from the idea that tax payments are

collected periodically(e.g. monthly, quarterly or annually) and which was commented

first in [25]. The analytic expression for the tax value function and the expected

discounted penalty function are obtained. Furthermore, in the literature, the idea of

considering tax payments and dividends together is studied in some recent articles

such as [62, 39, 58].
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https://doi.org/10.1007/978-3-642-31407-0_2
https://doi.org/10.1007/978-3-642-31407-0_2
https://doi-org.manchester.idm.oclc.org/10.1007/978-3-642-31407-0_2
https://doi-org.manchester.idm.oclc.org/10.1007/978-3-642-31407-0_2
https://doi.org/10.1007/978-3-319-02303-8
https://doi-org.manchester.idm.oclc.org/10.1007/978-3-319-02303-8
https://doi-org.manchester.idm.oclc.org/10.1007/978-3-319-02303-8
https://doi.org/10.1007/978-3-642-37632-0
https://doi.org/10.1214/08-AIHP307
https://doi-org.manchester.idm.oclc.org/10.1214/08-AIHP307
https://doi-org.manchester.idm.oclc.org/10.1214/08-AIHP307
https://doi.org/10.1017/s0021900200012845
https://doi-org.manchester.idm.oclc.org/10.1017/s0021900200012845
https://doi-org.manchester.idm.oclc.org/10.1017/s0021900200012845
https://doi.org/10.1239/jap/1261670694
https://doi.org/10.1007/s10959-009-0220-z
https://doi-org.manchester.idm.oclc.org/10.1007/s10959-009-0220-z
https://doi-org.manchester.idm.oclc.org/10.1007/s10959-009-0220-z


BIBLIOGRAPHY 172

49(1):150–166, 2012. ISSN 0021-9002. URL https://doi.org/10.1239/jap/

1331216839.

[36] B. Li, Q. Tang, and X. Zhou. A time-homogeneous diffusion model

with tax. J. Appl. Probab., 50(1):195–207, 2013. ISSN 0021-9002.

doi:10.1239/jap/1363784433. URL https://doi-org.manchester.idm.oclc.

org/10.1239/jap/1363784433.

[37] B. Li, N. L. Vu, and X. Zhou. Exit problems for general draw-down times of
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