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Abstract

We review and extend the class of hypergeometric Lévy processes explored in Kuznetsov
and Pardo (2013) with a view to computing fluctuation identities related to stable
processes. We give the Wiener–Hopf factorisation of a process in the extended class,
characterise its exponential functional, and give three concrete examples arising from
transformations of stable processes.
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1. Introduction

The simple definition of a Lévy process—a stochastic process with stationary independent
increments—has been sufficient to fuel a vast field of study for many decades, and Lévy
processes have been employed in many successful applied models. However, historically, there
have been few classes of processes for which many functionals could be computed explicitly.
In recent years, the field has seen a proliferation of examples which have proved to be more
analytically tractable; in particular, we single out spectrally negative Lévy processes [19],
Lamperti-stable processes [5, 6, 9], β- and θ -processes [15, 16], and finally the inspiration for
this work, hypergeometric Lévy processes [6, 17, 20, 25]. It is also worth mentioning that the
close relationship which appears to hold between hypergeometric Lévy processes and stable
processes has also allowed the computation of several identities for the latter; see [17, 25, 26].

In this work, we review the hypergeometric class of Lévy processes introduced by Kuznetsov
and Pardo [17], and introduce a new class of extended hypergeometric processes which have
many similar properties. In particular, for an extended hypergeometric process ξ , we compute
the Wiener–Hopf factors and find that its ladder height processes are related to Lamperti-stable
subordinators; we characterise explicitly the distribution of the exponential functional of ξ/δ for
any δ > 0. We also give three examples of processes connected via the Lamperti representation
toα-stable processes; these fall into the hypergeometric class whenα ≤ 1, and into the extended
hypergeometric class when α > 1. Finally, we give some new identities for the stable process
when α > 1.

First we discuss the results of Kuznetsov and Pardo [17]. For a choice of parameters
(β, γ, β̂, γ̂ ) from the set AHG = {β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)}, we define

ψ(z) = −	(1 − β + γ − z)

	(1 − β − z)

	(β̂ + γ̂ + z)

	(β̂ + z)
,
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392 A. E. KYPRIANOU ET AL.

which we view as a meromorphic function on C. Let ξ be a Lévy process started from 0, with
law P and expectation operator E. We say that ξ is a member of the hypergeometric class of
Lévy processes if it has Laplace exponent ψ , in the sense that

E[ezξ1 ] = eψ(z), z ∈ iR. (1)

Note that, in general, when the Laplace exponent ψ of a Lévy process ξ is a meromorphic
function, relation (1) actually holds on any neighbourhood of 0 ∈ C which does not contain a
pole of ψ ; thus, in this article we generally do not specify the domain of Laplace exponents
which may arise.

In [17], it was shown that, for any choice of parameters in AHG, there is a Lévy process with
Laplace exponent ψ , and its Wiener–Hopf factorisation, in the following sense, is found. The
(spatial) Wiener–Hopf factorisation of a Lévy process ξ with Laplace exponent ψ consists of
the equation

ψ(z) = −κ(−z)κ̂(z), z ∈ iR,

where κ and κ̂ are the Laplace exponents of subordinators H and Ĥ , respectively, this time
in the sense that E[e−λH1 ] = e−κ(λ) for Re λ ≥ 0. The subordinators H and Ĥ are known as
the ascending and descending ladder heights, and are related via a time change to the running
maximum and running minimum of the process ξ . For more details, see [22, Chapter 6]. The
insight into the structure of ξ given by the Wiener–Hopf factorisation allows one to simplify
first passage problems for ξ ; see [22, Chapter 7] for a collection of results.

Kuznetsov and Pardo [17] computed

κ(z) = 	(1 − β + γ + z)

	(1 − β + z)
, κ̂(z) = 	(β̂ + γ̂ + z)

	(β̂ + z)
,

thus demonstrating that the ascending and descending ladder height processes are Lamperti-
stable subordinators (see [6]). They also considered the exponential functional of a hypergeo-
metric Lévy process ξ . For each δ > 0, the random variable

I (ξ/δ) =
∫ ∞

0
e−ξt /δ dt

is almost surely (a.s.) finite provided that ξ drifts to +∞. This random variable is known as the
exponential functional of the Lévy process ξ , and it has been studied extensively in general; the
paper of Bertoin andYor [3] gives a survey of the literature, and mentions, among other aspects,
applications to diffusions in random environments, mathematical finance, and fragmentation
theory. In the context of self-similar Markov processes (ssMps), the exponential functional
appears in the entrance law of a positive ssMp (pssMp) started at 0 (see, e.g. [2]), and Pardo
[31] related the exponential functional of a Lévy process to envelopes of its associated pssMp;
furthermore, it is related to the hitting time of points for pssMps, and we shall make use of it
in this capacity in our example of Subsection 4.2.

For the purpose of characterising the distribution of I (ξ/δ), its Mellin transform

M(s) = E[I (ξ/δ)s−1]
is useful. For ξ in the hypergeometric class, M was calculated by Kuznetsov and Pardo [17]
in terms of gamma and double gamma functions; we recall and extend this in Section 3.



The extended hypergeometric class of Lévy processes 393

We now give a brief outline of the main body of the paper. In Section 2 we demonstrate that
the parameter set AHG may be extended by changing the domains of the two parameters β and
β̂, and find the Wiener–Hopf factorisation of a process ξ in this new class, identifying explicitly
the ladder height processes. In Section 3 we find an expression for the Mellin transform M in
this new case, making use of an auxiliary hypergeometric Lévy process. In Section 4 we give
three examples where the extended hypergeometric class is of use, on the way extending the
result in [7] on the Wiener–Hopf factorisation of the Lamperti representation associated with
the radial part of a stable process.

2. The extended hypergeometric class

We begin by defining the set of admissible parameters

AEHG = {β ∈ [1, 2], γ, γ̂ ∈ (0, 1), β̂ ∈ [−1, 0]; 1 − β + β̂ + γ ≥ 0, 1 − β + β̂ + γ̂ ≥ 0}.
We are interested in proving the existence and investigating the properties of a Lévy process ξ
whose Laplace exponent is given by the meromorphic function

ψ(z) = −	(1 − β + γ − z)

	(1 − β − z)

	(β̂ + γ̂ + z)

	(β̂ + z)
, z ∈ C,

when (β, γ, β̂, γ̂ ) ∈ AEHG. To facilitate more concise expressions below, we also define

η = 1 − β + γ + β̂ + γ̂ .

We now present our main result on the existence and properties of ξ .

Proposition 1. There exists a Lévy process ξ such that E[ezξ1 ] = eψ(z). Its Wiener–Hopf
factorisation is expressible as

ψ(z) = −(−β̂ − z)
	(1 − β + γ − z)

	(2 − β − z)
(β − 1 + z)

	(β̂ + γ̂ + z)

	(1 + β̂ + z)
.

Its Lévy measure possesses the density

π(x) =

⎧⎪⎪⎨⎪⎪⎩
− 	(η)

	(η − γ̂ ) 	(−γ )e−(1−β+γ )x
2F1(1 + γ, η; η − γ̂ ; e−x), x > 0,

− 	(η)

	(η − γ ) 	(−γ̂ )e(β̂+γ̂ )x
2F1(1 + γ̂ , η; η − γ ; ex), x < 0,

(2)

where 2F1 is the Gauss hypergeometric function.
If β ∈ (1, 2) and β̂ ∈ (−1, 0), the process ξ is killed at rate

q = 	(1 − β + γ )

	(1 − β)

	(β̂ + γ̂ )

	(β̂)
.

Otherwise, the process has infinite lifetime and

(i) ξ drifts to +∞ if β > 1 and β̂ = 0,

(ii) ξ drifts to −∞ if β = 1 and β̂ < 0,

(iii) ξ oscillates if β = 1 and β̂ = 0; in this case, ξ is a hypergeometric Lévy process.

Furthermore, the process ξ has no Gaussian component, and is of bounded variation with zero
drift when γ + γ̂ < 1 and of unbounded variation when γ + γ̂ ≥ 1.
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Proof. We remark that there is nothing to do in case (iii) since such processes are analysed
in [17]; however, the proof we give below also carries through in this case.

First we identify the proposed ascending and descending ladder processes. Then, when
we have shown that ψ really is the Laplace exponent of a Lévy process, this is proof of the
Wiener–Hopf factorisation.

Before we begin, we must review the definitions of special subordinators and the
T -transformations of subordinators. Suppose that υ is the Laplace exponent of a subordinator
H , in the sense that E[e−zH1 ] = e−υ(z). We say that H is a special subordinator and that υ is
a special Bernstein function if the function

υ∗(z) = z

υ(z)
, z ≥ 0,

is also the Laplace exponent of a subordinator. The function υ∗ is said to be conjugate to υ.
Special Bernstein functions play an important role in potential theory; see, for example, [34]
for more details.

Again taking υ to be the Laplace exponent of a subordinator, not necessarily special, we
define, for c ≥ 0, the transformation

Tcυ(z) = z

z+ c
υ(z+ c), z ≥ 0.

It is then known (see [13, 23]) that Tcυ is the Laplace exponent of a subordinator. Furthermore,
if υ is in fact a special Bernstein function then Tcυ is also a special Bernstein function.

We are now in a position to identify the ladder height processes in the Wiener–Hopf
factorisation of ξ . Let the (proposed) ascending factor be given for z ≥ 0 by

κ(z) = (−β̂ + z)
	(1 − β + γ + z)

	(2 − β + z)
.

Then some simple algebraic manipulation shows that κ(z) = (T−β̂υ)
∗(z), where

υ(z) = 	(2 − β + β̂ + z)

	(1 − β + β̂ + γ + z)
,

provided that υ is a special Bernstein function. This follows immediately from Example 2
of Kyprianou and Rivero [24], under the constraint 1 − β + β̂ + γ ≥ 0 which is included
in the parameter set AEHG. Note that υ is in fact the Laplace exponent of a Lamperti-stable
subordinator (see [6]), although we do not use this fact.

Proceeding similarly for the descending factor, we obtain

κ̂(z) = (β − 1 + z)
	(β̂ + γ̂ + z)

	(1 + β̂ + z)
= (Tβ−1υ̂)

∗(z), z ≥ 0,

where

υ̂(z) = 	(2 − β + β̂ + z)

	(1 − β + β̂ + γ̂ + z)
, z ≥ 0,

and again the function υ̂ is a special Bernstein function provided that 1 − β + β̂ + γ̂ ≥ 0. As
before, υ̂ is the Laplace exponent of a Lamperti-stable subordinator.

We have now shown that both κ and κ̂ are Laplace exponents of subordinators; we wish to
show that the function

ψ(z) = −κ(−z)κ̂(z)
is the Laplace exponent of a Lévy process. For this purpose, we apply the theory of philanthropy
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developed by Vigon [35, Chapter 7]. This states, in part, that it is sufficient for both of the
subordinators corresponding to κ and κ̂ to be ‘philanthropists’, which means that their Lévy
measures possess decreasing densities.

We recall our discussion of T -transforms and special Bernstein functions. We have already
stated that when υ is a special Bernstein function, then so is Tcυ; furthermore, we may show
that its conjugate satisfies

(Tcυ)
∗(z) = Ecυ

∗(z)+ υ∗(c), z ≥ 0,

where Ec is the Esscher transform, given by

Ecυ
∗(z) = υ∗(z+ c)− υ∗(c), z ≥ 0.

The Esscher transform of the Laplace exponent of any subordinator is again the Laplace
exponent of a subordinator; and if the subordinator corresponding to υ∗ possesses a Lévy
density πυ∗ then the Lévy density of Ecυ

∗ is given by x �→ e−cxπυ∗(x) for x > 0.
Returning to our Wiener–Hopf factors, we have

κ(z) = (T−β̂υ)
∗(z) = E−β̂υ

∗(z)+ υ∗(−β̂), z ≥ 0,

where υ∗ is the Laplace exponent conjugate to υ. Now, υ is precisely the type of special
Bernstein function considered in [24, Example 2]. In that work, the authors even established
that the subordinator corresponding to υ∗ has a decreasing Lévy density πυ∗ . Finally, the Lévy
density of the subordinator corresponding to κ is x �→ eβ̂xπυ∗(x), and this is then clearly also
decreasing.

We have thus shown that the subordinator whose Laplace exponent is κ is a philanthropist.
By a very similar argument, the subordinator corresponding to κ̂ is also a philanthropist. As we
have stated, the theory developed by Vigon now shows that the function ψ really is the Laplace
exponent of a Lévy process ξ , with the Wiener–Hopf factorisation claimed.

We now proceed to calculate the Lévy measure of ξ . A fairly simple way to do this is to
make use of the theory of ‘meromorphic Lévy processes’, as developed in [18]. We first show
that ξ is in the meromorphic class. Initially, suppose that

1 − β + β̂ + γ > 0, 1 − β + β̂ + γ̂ > 0; (3)

we relax this assumption later. Looking at the expression forψ , we see that it has zeros (ζn)n≥1

and (−ζ̂n)n≥1, and (simple) poles (ρn)n≥1 and (−ρ̂n)n≥1 given by

ζ1 = −β̂, ζn = n− β, n ≥ 2,

ρn = n− β + γ, n ≥ 1,

ζ̂1 = β − 1, ζ̂n = β̂ + n− 1, n ≥ 2,

ρ̂n = β̂ + γ̂ + n− 1, n ≥ 1,

which satisfy the interlacing condition

· · · < −ρ̂2 < −ζ̂2 < −ρ̂1 < −ζ̂1 < 0 < ζ1 < ρ1 < ζ2 < ρ2 < · · · .
To show that ξ belongs to the meromorphic class, apply [18, Theorem 1(v)] when ξ is killed, and
[18, Corollary 2] in the unkilled case. The proof is a routine calculation using the Weierstrass
representation [14, Formula 8.322] to expand κ and κ̂ as infinite products; we omit it for the
sake of brevity.
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We now calculate the Lévy density. For a process in the meromorphic class, it is known that
the Lévy measure has a density of the form

π(x) = 1{x>0}
∑
n≥1

anρne−ρnx + 1{x<0}
∑
n≥1

ânρ̂neρ̂nx (4)

for some coefficients (an)n≥1 and (ân)n≥1, where ρn and ρ̂n are as above. Furthermore, from
[18, Equation (8)] we see that

anρn = − Res(ψ(z) : z = ρn),

and correspondingly for ânρ̂n. (This remark is made in [18, p. 1111].) From here, it is simple
to compute

anρn = − (−1)n−1

(n− 1)!
1

	(1 − γ − n)

	(η + n− 1)

	(η − γ̂ + n− 1)
, n ≥ 1,

and similarly for ânρ̂n. Expression (2) follows by substituting in (4) and using the series
definition of the hypergeometric function.

Thus far we have been working under the assumption that (3) holds. Suppose now that this
fails and we have, say, 1 − β + β̂ + γ̂ = 0. Then ζ1 = ρ1, which is to say that the first zero-pole
pair to the right of the origin is removed. It is clear that ξ still falls into the meromorphic class,
and indeed, our expression for π remains valid: although the initial pole ρ1 no longer exists, the
corresponding coefficient a1ρ1 vanishes as well. Similarly, we may allow 1 − β + β̂ + γ = 0,
in which case the zero-pole pair to the left of the origin is removed; or we may allow both
expressions to be zero, in which case both pairs are removed. The proof carries through in all
cases.

The claim about the large-time behaviour of ξ follows from the Wiener–Hopf factorisation:
κ(0) = 0 if and only if the range of ξ is a.s. unbounded above, and κ̂(0) = 0 if and only if the
range of ξ is a.s. unbounded below, so we need to examine the values of κ(0) and κ̂(0) only in
each of the four parameter regimes.

Finally, we prove the claims about the Gaussian component and variation of ξ . This proof
proceeds along the same lines as that in [17]. Firstly, we observe using [14, Formula 8.328.1]
that

ψ(iθ) = O(|θ |γ+γ̂ ) as |θ | → ∞. (5)

Applying [1, Proposition I.2(i)] shows that ξ has no Gaussian component. Then, using [14,
Formulae 9.131.1 and 9.122.2], we see that

π(x) = O(|x|−(1+γ+γ̂ )) as x → 0,

and together with the necessary and sufficient condition
∫
R
(1 ∧ |x|)π(x) dx < ∞ for bounded

variation, this proves the claim about the variation. In the bounded variation case, applying [1,
Proposition I.2(ii)] with (5) shows that ξ has zero drift. This completes the proof.

Henceforth we use the phrase extended hypergeometric class of Lévy processes to describe
any process ξ satisfying Proposition 1.

Remark 1. If ξ is a process in the extended hypergeometric class, with parameters (β, γ, β̂, γ̂ ),
then the dual process −ξ also lies in this class, and has parameters (1 − β̂, γ̂ , 1 − β, γ ).
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Remark 2. Note that we may instead extend the parameter range AHG by moving only β, or
only β̂. To be precise, both

A
β
EHG = {β ∈ [1, 2], γ, γ̂ ∈ (0, 1), β̂ ≥ 0; 1 − β + β̂ + γ ≤ 0, 1 − β + β̂ + γ̂ ≥ 0}

and

A
β̂
EHG = {β ≤ 1, γ, γ̂ ∈ (0, 1), β̂ ∈ [−1, 0]; 1 − β + β̂ + γ ≥ 0, 1 − β + β̂ + γ̂ ≤ 0}

are suitable parameter regimes, and we can develop a similar theory for such processes; for
instance, for parameters in A

β
EHG, we have the Wiener–Hopf factors

κ(z) = 	(2 − β + γ + z)

	(2 − β + z)
, κ̂(z) = β − 1 + z

β − 1 − γ + z

	(β̂ + γ̂ + z)

	(β̂ + z)
.

However, we are not aware of any examples of processes in these classes.

3. The exponential functional

Suppose that ξ is a Lévy process in the extended hypergeometric class with β > 1, which
is to say that either ξ is killed or it drifts to +∞.

We are then interested in the exponential functional of the process, defined for any δ > 0 by

I (ξ/δ) =
∫ ∞

0
e−ξt /δ dt.

(Since ξ/δ is not in the extended hypergeometric class, we are in fact studying exponential
functionals of a slightly larger collection of processes.) This is an a.s. finite random variable
under the conditions we have just outlined.

It will emerge that the best way to characterise the distribution of I (ξ/δ) is via its Mellin
transform, M(s) = E[I (ξ/δ)s−1],whose domain of definition in the complex plane is a vertical
strip to be determined.

In the case of a hypergeometric Lévy process with β̂ > 0, it was shown in [17] that the
Mellin transform of the exponential functional is given for Re s ∈ (0, 1 + β̂δ) by

MHG(s) = C 	(s)
G((1 − β)δ + s; δ)

G((1 − β + γ )δ + s; δ)
G((β̂ + γ̂ )δ + 1 − s; δ)
G(β̂δ + 1 − s; δ) ,

whereC is a normalising constant such that MHG(1) = 1 andG is the double gamma function;
see [17] for a definition of this special function.

Our goal in this section is the following result; it characterises the law of the exponential
functional for the extended hypergeometric class.

Proposition 2. Let ξ be a Lévy process in the extended hypergeometric class with β > 1, and
set θ = δ(β − 1). Then the Mellin transform M of I (ξ/δ) is given by

M(s) = cM̃(s)
	(δ(1 − β + γ )+ s)

	(−δβ̂ + s)

	(δ(β − 1)+ 1 − s)

	(δ(β̂ + γ̂ )+ 1 − s)
, Re s ∈ (0, 1 + θ), (6)

where M̃ is the Mellin transform of I (ζ/δ), and ζ is an auxiliary Lévy process in the hypergeo-
metric class, with parameters (β − 1, γ, β̂ + 1, γ̂ ). The constant c is such that M(1) = 1.
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Proof. The process ξ/δ has Laplace exponentψδ given byψδ(z) = ψ(z/δ). The relationship
with ζ arises from the calculation

ψδ(z) = −β̂ − z/δ

1 − β + γ − z/δ

β − 1 + z/δ

β̂ + γ̂ + z/δ

	(2 − β + γ − z/δ)

	(2 − β − z/δ)

	(1 + β̂ + γ̂ + z/δ)

	(1 + β̂ + z/δ)

= −β̂ − z/δ

1 − β + γ − z/δ

β − 1 + z/δ

β̂ + γ̂ + z/δ
ψ̃δ(z), (7)

where ψ̃δ is the Laplace exponent of a Lévy process ζ/δ, with ζ as in the statement of the
theorem.

Let f (s) denote the right-hand side of (6). The proof now proceeds via the ‘verification
result’ [17, Proposition 2].

Recall that a Lévy process with Laplace exponent φ is said to satisfy the Cramér condition
with Cramér number θ if there exist z0 < 0 and θ ∈ (0,−z0) such that φ(z) is defined for all
z ∈ (z0, 0) and φ(−θ) = 0. Inspecting the Laplace exponent ψδ shows that ξ/δ satisfies the
Cramér condition with Cramér number θ = δ(β − 1).

Furthermore, ζ/δ satisfies the Cramér condition with Cramér number θ̃ = δ(β̂ + 1). It
follows from [32, Lemma 2] that M̃(s) is finite in the strip Re s ∈ (0, 1 + θ̃ ); and by the
properties of Mellin transforms of positive random variables, it is analytic and zero-free in
its domain of definition. The constraints in the parameter set AEHG ensure that θ̃ ≥ θ ; this,
together with inspecting the right-hand side of (6) and comparing again with the conditions in
AEHG, demonstrates that M(s) is analytic and zero-free in the strip Re s ∈ (0, 1 + θ).

We must then check the functional equation f (s + 1) = −sf (s)/ψδ(−s) for s ∈ (0, θ).
Apply (7) to write

− s

ψδ(−s) = − s

ψ̃δ(−s)
1 − β + γ + s/δ

−β̂ + s/δ

β̂ + γ̂ − s/δ

β − 1 − s/δ

= M̃(s + 1)

M̃(s)

δ(1 − β + γ )+ s

−δβ̂ + s

δ(β̂ + γ̂ )− s

δ(β − 1)− s

= M̃(s + 1)

M̃(s)

	(−δβ̂ + s)

	(−δβ̂ + s + 1)

	(δ(1 − β + γ )+ s + 1)

	(δ(1 − β + γ )+ s)

× 	(δ(β̂ + γ̂ )+ 1 − s)

	(δ(β̂ + γ̂ )− s)

	(δ(β − 1)− s)

	(δ(β − 1)+ 1 − s)
,

making use of the same functional equation for the Mellin transform M̃. It is then clear that
the right-hand side is equal to f (s + 1)/f (s).

Finally, it remains to check that |f (s)|−1 = o(exp(2π | Im(s)|)) as | Im s| → ∞, uniformly
in Re s ∈ (0, 1 + θ). The following asymptotic relation may be derived from Stirling’s
asymptotic formula for the gamma function:

log	(z) = z log z− z+O(log z). (8)

Since Stirling’s asymptotic formula is uniform in | arg(z)| < π −ω for any choice of ω > 0, it
follows that (8) holds uniformly in the strip Re s ∈ (0, 1 + θ); see [29, Chapter 8, Section 4].
We thus obtain

log

∣∣∣∣	(δ(1 − β + γ )+ s)

	(−δβ̂ + s)

	(δ(β − 1)+ 1 − s)

	(δ(β̂ + γ̂ )+ 1 − s)

∣∣∣∣−1

= O(log s) = o(| Im s|),
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and comparing this with the proof of [17, Theorem 2], where the asymptotic behaviour of
M̃(s) is given, we see that this is sufficient for our purposes. Hence, M(s) = f (s) when
Re s ∈ (0, 1 + θ). This completes the proof.

This Mellin transform may be inverted to give an expression for the density of I (ξ/δ) in
terms of a series whose terms are defined iteratively, but we do not pursue this here. For details
of this approach, see [17, Section 4].

4. Three examples

It is well known that hypergeometric Lévy processes appear as the Lamperti transforms of
stable processes killed passing below 0, conditioned to stay positive and conditioned to hit 0
continuously; see [17, Theorem 1]. In this section we briefly present three additional examples
in which the extended hypergeometric class comes into play. The examples may all be obtained
in the same way: begin with a stable process, modify its path in some way to obtain a pssMp,
and then apply the Lamperti transform to obtain a new Lévy process. We therefore start with a
short description of these concepts.

We work with the (strictly) stable processXwith scaling parameterα and positivity parameter
ρ, and which is defined as follows. For (α, ρ) in the set

Ast = {(α, ρ) : α ∈ (0, 1), ρ ∈ (0, 1)} ∪ {
(α, ρ) = (

1, 1
2

)}
∪

{
(α, ρ) : α ∈ (1, 2), ρ ∈

(
1 − 1

α
,

1

α

)}
,

let X, with probability laws (Px)x∈R, be the Lévy process with characteristic exponent

�(θ) =
{
c|θ |α(1 − iβ tan 1

2πα sgn θ
)
, α ∈ (0, 2) \ {1},

c|θ |, α = 1,
θ ∈ R,

where c = cos(πα(ρ − 1
2 )) and β = tan(πα(ρ − 1

2 ))/ tan( 1
2πα); by this we mean that

E0[eiθX1 ] = e−�(θ). This Lévy process has absolutely continuous Lévy measure with density

c+x−(α+1)1{x>0} + c−|x|−(α+1)1{x<0}, x ∈ R,

where

c+ = 	(α + 1)

	(αρ) 	(1 − αρ)
, c− = 	(α + 1)

	(αρ̂) 	(1 − αρ̂)
,

and ρ̂ = 1 − ρ.
The parameter set Ast and the characteristic exponent � represent, up to a multiplicative

constant in�, all (strictly) stable processes which jump in both directions, except for Brownian
motion and symmetric Cauchy processes with nonzero drift.

The choice of α and ρ as parameters is explained as follows. The process X satisfies the
α-scaling property, namely,

under Px , the law of (cXtc−α )t≥0 is Pcx for all x ∈ R and c > 0. (9)

The second parameter satisfies ρ = P0{Xt > 0}.
A pssMp with self-similarity index α > 0 is a standard Markov process Y = (Yt )t≥0 with

filtration (Gt )t≥0 and probability laws (Px)x>0, on [0,∞), which has 0 as an absorbing state
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and which satisfies the scaling property (9) (with Y in place of X). Here, we mean ‘standard’
in the sense of [4], which is to say, (Gt )t≥0 is a complete, right-continuous filtration, and Y has
càdlàg paths and is strong Markov and quasi-left-continuous.

In the seminal paper [27], Lamperti described a one-to-one correspondence between pssMps
and Lévy processes, as we now outline (but, it should be noted that our definition of a pssMp
differs slightly from Lamperti’s; for the connection, see [36, Section 0]).

Let S(t) = ∫ t
0 (Yu)

−α du.This process is continuous and strictly increasing until Y reaches 0.
Let (T (s))s≥0 be its inverse, and define

ξs = logYT (s), s ≥ 0.

Then ξ := (ξs)s≥0 is a Lévy process started at log x, possibly killed at an independent expo-
nential time; the law of the Lévy process and the rate of killing do not depend on the value of x.
The real-valued process ξ with probability laws (Py)y∈R is called the Lévy process associated
to Y , or the Lamperti transform of Y . (Our choice here of the symbol Py is an indication
that in the coming examples, the Lamperti transforms that arise will in fact be in the extended
hypergeometric class.)

Equivalent definitions of S and T , in terms of ξ instead of Y , are given by taking T (s) =∫ s
0 exp(αξu) du and S as its inverse. Then

Yt = exp(ξS(t)) for all t ≥ 0,

and this shows that the Lamperti transform is a bijection.

4.1. The path-censored stable process

Let X be the stable process defined in Section 4. In [26], the present authors considered a
‘path-censored’ version of the stable process, formed by erasing the time spent in the negative
half-line. To be precise, define

At =
∫ t

0
1{Xs>0} ds, t ≥ 0,

and let γ (t) = inf{s ≥ 0 : As > t} be its right-continuous inverse. Also, define

T0 = inf{t ≥ 0 : Xγ(t) = 0},
which is finite or infinite a.s. according to whether α > 1 or α ≤ 1. Then the process

Yt = Xγ(t)1{t<T0}, t ≥ 0,

is a pssMp, called the path-censored stable process.
In Theorems 5.3 and 5.5 of [26], it was shown that the Laplace exponentψY of the Lamperti

transform ξY associated with Y is given by

ψY (z) = 	(αρ − z)

	(−z)
	(1 − αρ + z)

	(1 − α + z)
,

and there it was remarked that, when α ≤ 1, this process is in the hypergeometric class with
parameters

(β, γ, β̂, γ̂ ) = (1, αρ, 1 − α, αρ̂).

It is readily seen from our definition that, when α > 1, the process ξY is in the extended
hypergeometric class, with the same set of parameters.
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From the Lamperti transform we know that

I (−αξY ) = inf{u ≥ 0 : Yu = 0} =
∫ T0

0
1{Xt>0} dt,

where the latter is the occupation time of (0,∞) up to first hitting 0 for the stable process. This
motivates the following proposition, whose proof is a direct application of Proposition 2.

Proposition 3. The Mellin transform of the random variable I (−αξY ) is given by

M(s) = c
G(2/α − 1 + s; 1/α)

G(2/α − ρ + s; 1/α)

G(1/α + ρ + 1 − s; 1/α)

G(1/α + 1 − s; 1/α)

	(1/α − ρ + s)

	(ρ + 1 − s)
	

(
2 − 1

α
− s

)
for Re s ∈ (ρ − 1/α, 2 − 1/α), where c is a normalising constant such that M(1) = 1.

Remark 3. When X is in the class Ck,l introduced by Doney [12], which is to say that

ρ + k = l

α

for k, l ∈ Z, equivalent expressions in terms of gamma and trigonometric functions may be
found via repeated application of certain identities of the double-gamma function; see, for
example, [17, Equations (19) and (20)].

For example, when k, l ≥ 0, we have

M(s) = c(−1)l(2π)l(1/α−1)
(

1

α

)l(1−2/α)
	((1 − l)/α + k + s)

	(l/α + 1 − k − s)

	(2 − 1/α − s)

	(2 − l − α − αs)

×
l∏

j=1

	

(
j

α
+ 1 − s

)
	

(
2

α
−

(
j

α
+ 1 − s

)) k−1∏
i=0

sin(πα(s + i))

π
,

and, when k < 0 and l ≥ 0,

M(s) = c(−1)l(2π)l(1/α−1)
(

1

α

)l(1−2/α)

× 	((1 − l)/α + k + s)	(2 − 1/α − s)	(l + 1 + α − αs)	(2 − l + αk + αs)

	(l/α + 1 − k − s)

×
l∏

j=1

	

(
j

α
+ 1 − s

)
	

(
2

α
−

(
j

α
+ 1 − s

)) −k−1∏
i=2

π

sin(πα(s − i))
.

Similar expressions may be obtained when k ≥ 0, l < 0, and k, l < 0.

4.2. The radial part of the symmetric stable process

If X is a symmetric stable process—that is, ρ = 1
2 —then the process

Rt = |Xt |, t ≥ 0,

is a pssMp, which we call the radial part of X. The Lamperti transform, ξR , of this process
was studied by Caballero et al. [7] in dimension d; these authors computed the Wiener–Hopf
factorisation of ξR under the assumption thatα < d, finding that the process is a hypergeometric
Lévy process. Using the extended hypergeometric class, we extend this result, in one dimension,
by finding the Wiener–Hopf factorisation when α > 1.

In Kuznetsov et al. [21], the following theorem was proved using the work of Caballero et
al. [7].
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Theorem 1. (Laplace exponent.) The Laplace exponent of the Lévy process 2ξR is given by

ψR(2z) = −2α
	(α/2 − z)

	(−z)
	(1/2 + z)

	((1 − α)/2 + z)
. (10)

We now identify the Wiener–Hopf factorisation of ξR; it depends on the value ofα. However,
note the factor 2α in (10). In the context of the Wiener–Hopf factorisation, we could ignore
this factor by picking an appropriate normalisation of local time; however, another approach is
as follows.

Write R′ = 1
2R, and denote by ξR

′
the Lamperti transform of R′. Then the scaling of space

on the level of the self-similar process is converted by the Lamperti transform into a scaling of
time, so that ξRs = log 2 + ξR

′
s2α . In particular, if we write ψ ′ for the characteristic exponent of

ξR
′
, it follows that ψ ′ = 2−αψR . This allows us to disregard the inconvenient constant factor

in (10), if we work with ξR
′

instead of ξR .
The following corollary is now simple when we bear in mind the hypergeometric class of

Lévy processes introduced in Section 2. We emphasise that this Wiener–Hopf factorisation was
derived by different methods in [7, Theorem 7] for α < 1, though not for α = 1.

Corollary 1. (Wiener–Hopf factorisation, α ∈ (0, 1].) The Wiener–Hopf factorisation of 2ξR
′

when α ∈ (0, 1] is given by

ψ ′(2z) = −	(α/2 − z)

	(−z)
	(1/2 + z)

	((1 − α)/2 + z)

and 2ξR
′

is a Lévy process of the hypergeometric class with parameters

(β, γ, β̂, γ̂ ) = (
1, 1

2α,
1
2 (1 − α), 1

2α
)
.

Proof. It suffices to compare the characteristic exponent with that of a hypergeometric Lévy
process.

When α > 1, the process ξR
′
is not a hypergeometric Lévy process, but it is in the extended

hypergeometric class, and we have the following result, which is new.

Theorem 2. (Wiener–Hopf factorisation, α ∈ (1, 2).) The Wiener–Hopf factorisation of 2ξR
′

when α ∈ (1, 2) is given by

ψ ′(2z) = −( 1
2 (α − 1)− z

)	(α/2 − z)

	(1 − z)
z

	(1/2 + z)

	((3 − α)/2 + z)
(11)

and 2ξR
′

is a Lévy process in the extended hypergeometric class, with parameters

(β, γ, β̂, γ̂ ) = (
1, 1

2α,
1
2 (1 − α), 1

2α
)
.

Proof. Simply use Theorem 1; using the formula x	(x) = 	(x + 1) yields (11). That this
is indeed the Wiener–Hopf factorisation follows once we recognise 2ξR

′
as a process in the

extended hypergeometric class, and apply Proposition 1.

As an illustration of the utility of the extended hypergeometric class, we now derive an
expression for the Mellin transform of the exponential functional for the dual process −ξR′

.
This quantity is linked by the Lamperti representation to the hitting time of 0 forX; see Section 4.
In particular, defining T0 = inf{t ≥ 0 : Xt = 0}, we have

T0 =
∫ ∞

0
eαξ

R
t dt =

∫ ∞

0
eαξ

R′
2αt dt = 2−α

∫ ∞

0
eαξ

R′
s ds = 2−αI (−αξR′

).
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Since −2ξR
′

is an extended hypergeometric Lévy process which drifts to +∞ and has
parameters ( 1

2 (α + 1), 1
2α, 0, 1

2α), we can apply the theory just developed to compute the
Mellin transform of I (−αξR′

). Denote this by M, that is,

M(s) = E[I (−αξR′
)s−1]

for some range of s ∈ C to be determined.

Proposition 4. For Re s ∈ (−1/α, 2 − 1/α),

E1[T s−1
0 ] = 2−α(s−1)M(s)

= 2−α(s−1)
√
π

	(1/α)	(1 − 1/α)

	(1 + α/2 − αs/2)

	((1 − α)/2 + αs/2)
	

(
1

α
− 1 + s

)
× 	(2 − 1/α − s)

	(2 − s)
. (12)

Proof. Let ζ be a hypergeometric Lévy process with parameters ( 1
2 (α − 1), 1

2α, 1, 1
2α), and

denote by M̃ the Mellin transform of the exponential functional I ( 1
2αζ), so we know M̃ to be

finite for Re s ∈ (0, 1 + 2/α) from the argument in the proof of Proposition 2.
We can now use Proposition 2 to carry out the calculation below, provided that Re s ∈

(0, 2 − 1/α). In it, G is the double-gamma function, as defined in [17, Section 3], and we use
[17, Equation (25)] in the third line and the identity x	(x) = 	(x + 1) in the final line. For
normalisation constants C (and C′) to be determined, we have

M(s) = CM̃(s)
	(1/α + s)

	(s)

	(2 − 1/α − s)

	(2 − s)

= C
G(3/α − 1 + s; 2/α)

G(3/α + s; 2/α)

G
(
2/α + 2 − s; 2/α)

G(2/α + 1 − s; 2/α)
	(s)

	(1/α + s)

	(s)

	(2 − 1/α − s)

	(2 − s)

= C
	(1 + α/2 − αs/2)

	((3 − α)/2 + α/2s)
	

(
1

α
+ s

)
	(2 − 1/α − s)

	(2 − s)

= C′ 	(1 + α/2 − αs/2)

	((1 − α)/2 + αs/2)
	

(
1

α
− 1 + s

)
	(2 − 1/α − s)

	(2 − s)
.

The condition M(1) = 1 means that we can calculate

C′ =
√
π

	(1/α)	(1 − 1/α)
,

and this gives the Mellin transform explicitly for Re s ∈ (0, 2 − 1/α).
We now expand the domain of M. Note that, in contrast to the general case of Proposition 2,

the right-hand side of (12) is well defined when Re s ∈ (−1/α, 2−1/α), and is indeed analytic
in this region. (The reason for this difference is the cancellation of a simple pole and zero at
the point 0.) Theorem 2 of [28] shows that, if the Mellin transform of a probability measure
is analytic in a neighbourhood of the point 1 ∈ C, then it is analytic in a strip Re s ∈ (a, b),
where −∞ ≤ a < 1 < b ≤ ∞; furthermore, the function has singularities at a and b, if they
are finite. It then follows that the right-hand side of (12) must actually be equal to M in all of
Re s ∈ (−1/α, 2 − 1/α), and this completes the proof.
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We remark that the distribution of T0 has been characterised previously by Yano et al. [37]
and Cordero [11], using rather different methods; and the Mellin transform above was also
obtained, again via the Lamperti transform but without the extended hypergeometric class, in
Kuznetsov et al. [21].

It is also fairly straightforward to produce the following hitting distribution. Define

σ 1−1 = inf{t ≥ 0 : Xt /∈ [−1, 1]},
the first exit time of [−1, 1] for X. We give the distribution of the position of the symmetric
stable process X at time σ 1−1, provided this occurs before X hits 0. Note that, when α ∈ (0, 1],
the process does not hit 0, so the distribution is simply that found by Rogozin [33].

Proposition 5. Let X be the symmetric stable process with α ∈ (1, 2). Then, for |x| < 1 and
y > 1,

Px{|Xσ 1−1
| ∈ dy; σ 1−1 < T0}

dy

= sin(πα/2)

π
|x|(1 − |x|)α/2y−1(y − 1)−α/2(y − |x|)−1

+ 1

2

sin(πα/2)

π
y−1(y − 1)−α/2|x|(α−1)/2

∫ 1−|x|

0
tα/2−1(1 − t)−(α−1)/2 dt.

Proof. The starting point of the proof is the ‘second factorisation identity’ [22, Exercise 6.7],∫ ∞

0
e−qz

E[e−β(ξ
S
+
z

−z); S+
z < ∞] dx = κ(q)− κ(β)

(q − β)κ(q)
, q, β > 0,

where S+
z = inf{t ≥ 0 : ξt > z}. We now invert in q and z, in that order; this is a lengthy

but routine calculation, and we omit it. We then apply the Lamperti transform: if g(z, ·) is the
density of the measure P{ξS+

z
− z ∈ ·; S+

z < ∞} then

Px{|Xσ 1−1
| ∈ dy; σ 1−1 < T0} = y−1g(log |x|−1, log y),

and this completes the proof.

The following hitting probability emerges after integrating in the above proposition.

Corollary 2. For |x| < 1,

Px{T0 < σ 1−1} = (1 − |x|)α/2 − 1

2
|x|(α−1)/2

∫ 1−|x|

0
tα/2−1(1 − t)−(α−1)/2 dt.

Finally, it is not difficult to produce the following slightly more general result. Applying the
Markov property at time T0 gives

Px{Xσ 1−1
∈ dy; σ 1−1 < T0} = Px{Xσ 1−1

∈ dy} − Px{Xσ 1−1
∈ dy; T0 < σ 1−1}

= Px{Xσ 1−1
∈ dy} − Px{T0 < σ 1−1} P0{Xσ 1−1

∈ dy}.
The hitting distributions on the right-hand side were found by Rogozin [33], and substituting
yields the following corollary.
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Corollary 3. For |x| < 1 and |y| > 1,

Px{Xσ 1−1
∈ dy; σ 1−1 < T0}

dy

= sin(πα/2)

π
(1 − x)α/2(1 + x)α/2(y − 1)−α/2(y + 1)−α/2(y − x)−1

−
[
(1 − |x|)α/2 − 1

2
|x|(α−1)/2

∫ 1−|x|

0
tα/2−1(1 − t)−(α−1)/2 dt

]
× sin(πα/2)

π
(y − 1)−α/2(y + 1)−α/2y−1.

4.3. The radial part of the symmetric stable process conditioned to avoid 0

We have just computed the Lamperti transform ξR
′

of the pssMp R′ = 1
2 |X|, where X is a

symmetric stable process. In this subsection we consider instead the symmetric stable process
conditioned to avoid 0, and obtain its Lamperti transform.

In [30], Pantí showed (among many other results) that the function

h(x) =

⎧⎪⎨⎪⎩
−	(1 − α)

sin(παρ̂)

π
xα−1, x > 0,

−	(1 − α)
sin(παρ)

π
xα−1, x < 0,

is invariant for the stable process killed upon hitting 0, and defines the family of measures
(P
x )x �=0 given via the Doob h-transform:

P
x (�) = 1

h(x)
Ex[h(Xt )1�; t < T0], x �= 0,

for � ∈ Ft = σ(Xs, s ≤ t). In [30] it was also shown that the laws P
x arise as limits of

the stable process conditioned not to have hit 0 up to an exponential time of rate q, as q ↓ 0.
The canonical process associated with the laws (P

x )x �=0 is therefore called the stable process
conditioned to avoid 0, and we shall denote it by X.

Consider now the process R = 1
2 |X|. This is a pssMp, and we may consider its Lamperti

transform, which we will denote by ξ. The characteristics of the generalised Lamperti
representation of X have been computed explicitly in [10], and the Laplace exponent, ψ, of
ξ could be computed from this information; however, the harmonic transform gives us the
following straightforward relationship between Laplace exponents:

ψ(z) = ψ ′(z+ α − 1).

This allows us to calculate

ψ(2z) = − 	(1/2 − z)

	((1 − α)/2 − z)

	(α/2 + z)

	(z)
,

which demonstrates that 2ξ is a process in the extended hypergeometric class with parameters

(β, γ, β̂, γ̂ ) =( 1
2 (α + 1), 1

2α, 0, 1
2α

)
.

The present authors and A. Kuznetsov previously computed ψ in [21], where we also
observed that the process ξ is the dual Lévy process to ξR

′
, and remarked that this implies a

certain time-reversal relation between R and R; see [8, Section 2].
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5. Concluding remarks

In this section we offer some comments on how our approach may be adapted in order to
offer new insight on an existing class of processes, the Lamperti-stable processes. These were
defined in general in the work of Caballero et al. [6]; the one-dimensional Lamperti-stable
processes are defined as follows. We say that a Lévy process ξ is in the Lamperti-stable class
if it has no Gaussian component and its Lévy measure has density

π(x) =
{

c+eβx(ex − 1)−(α+1) dx, x > 0,

c−e−δx(e−x − 1)−(α+1) dx, x < 0,

for some choice of parameters (α,β, δ, c+, c−) such that α ∈ (0, 2) and β, δ, c+, c− ≥ 0.
The one-dimensional Lamperti-stable processes form a proper subclass of theβ-class of Lévy

processes of Kuznetsov [15]. It was observed in [17] that there is an intersection between the
hypergeometric class and the Lamperti-stable class. In particular, the Lamperti representations
of killed and conditioned stable processes (see [5]) fall within the hypergeometric class; and
generally speaking, setting β = β̂ in the hypergeometric class and choosing γ and γ̂ as desired,
we obtain a Lamperti-stable process.

Not all Lamperti-stable processes, however, may be obtained in this way, and we now
outline how the ideas developed in this work can be used to characterise another subset of the
Lamperti-stable processes.

Define the set of parameters

AEHL = {β ∈ [1, 2], γ ∈ (1, 2), γ̂ ∈ (−1, 0)},
and, for (β, γ, γ̂ ) ∈ AEHL, let

ψ(z) = 	(1 − β + γ − z)

	(2 − β − z)

	(β + γ̂ + z)

	(β + z)
.

Note that this is the negative of the usual hypergeometric Laplace exponent, with β = β̂. We
claim that the following proposition holds.

Proposition 6. There exists a Lévy process ξ with Laplace exponent ψ . Its Wiener–Hopf
factorisation ψ(z) = −κ(−z)κ̂(z) is given by the components

κ(z) = 	(1 − β + γ + z)

	(2 − β + z)
, κ̂(z) = (β − 1 + z)

	(β + γ̂ + z)

	(β + z)
.

The ascending ladder height process is a Lamperti-stable subordinator, and the descending
factor satisfies

κ̂(z) = (Tβ−1υ)
∗(z), υ(z) = 	(1 + z)

	(1 + γ̂ + z)
.

Here υ is the Laplace exponent of a Lamperti-stable subordinator.
The process ξ has no Gaussian component and has a Lévy density given by

π(x) =

⎧⎪⎪⎨⎪⎪⎩
	(γ + γ̂ + 1)

	(1 + γ )	(−γ )e(β+γ̂ )x(ex − 1)−(γ+γ̂+1), x > 0,

	(γ + γ̂ + 1)

	(1 + γ̂ )	(−γ̂ )e−(1−β+γ )x(e−x − 1)−(γ+γ̂+1), x < 0.
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Thus, ξ falls within the Lamperti-stable class, and

(α,β, δ) = (γ + γ̂ , β + γ̂ , 1 − β + γ ).

The proposition may be proved in much the same way as Proposition 1, first using the theory
of philanthropy to prove existence, and then the theory of meromorphic Lévy processes to
deduce the Lévy measure.

We have thus provided an explicit spatial Wiener–Hopf factorisation of a subclass of
Lamperti-stable processes disjoint from that given by the hypergeometric processes.
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