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The growth-fragmentation equation describes a system of growing and di-
viding particles, and arises in models of cell division, protein polymerisation
and even telecommunications protocols. Several important questions about
the equation concern the asymptotic behaviour of solutions at large times: at
what rate do they converge to zero or infinity, and what does the asymptotic
profile of the solutions look like? Does the rescaled solution converge to its
asymptotic profile at an exponential speed? These questions have tradition-
ally been studied using analytic techniques such as entropy methods or split-
ting of operators. In this work, we present a probabilistic approach: we use
a Feynman–Kac formula to relate the solution of the growth-fragmentation
equation to the semigroup of a Markov process, and characterise the rate of
decay or growth in terms of this process. We then identify the Malthus ex-
ponent and the asymptotic profile in terms of a related Markov process, and
give a spectral interpretation in terms of the growth-fragmentation operator
and its dual.
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1 Introduction

This work studies the asymptotic behaviour of solutions to the growth-fragmentation
equation using probabilistic methods. The growth-fragmentation arises from mathem-
atical models of biological phenomena such as cell division [37, §4] and protein polymer-
ization [21], as well as in telecommunications [28]. The equation describes the evolution
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of the density ut(x) of particles of mass x > 0 at time t ≥ 0, in a system whose dynamics
are given as follows. Each particle grows at a certain rate depending on its mass and
experiences ‘dislocation events’, again at a rate depending on its mass. At each such
event, it splits into smaller particles in such a way that the total mass is conserved.
The growth-fragmentation equation is a partial integro-differential equation and can be
expressed in the form

∂tut(x) + ∂x(c(x)ut(x)) =
∫ ∞
x

ut(y)k(y, x)dy −K(x)ut(x), (1)

where c : (0,∞) → (0,∞) is a continuous positive function specifying the growth rate,
k : (0,∞) × (0,∞) → R+ is a so-called fragmentation kernel, and the initial condition
u0 is prescribed. In words, k(y, x) represents the rate at which a particle with size x
appears as the result of the dislocation of a particle with mass y > x. More precisely,
the fragmentation kernel fulfills

k(x, y) = 0 for y > x, and
∫ x

0
yk(x, y)dy = xK(x). (2)

The first requirement stipulates that after the dislocation of a particle, only particles
with smaller masses can arise. The second reflects the conservation of mass at dislocation
events, and gives the interpretation of K(x) as the total rate of dislocation of particles
with size x.

This equation has been studied extensively over many years. A good introduction to
growth-fragmentation equations and related equations in biology can be found in the
monographs of Perthame [37] and Engel and Nagel [17], and a major issue concerns the
asymptotic behaviour of solutions ut. Besides being interesting from the perspective of
the differential equation, this asymptotic behaviour tells us something about the fitness
of a related stochastic cell model [11, 12]. Typically, one wishes to find a constant λ ∈ R,
the Malthus exponent, for which e−λtut converges, in some suitable space, to a so-called
asymptotic profile v. Ideally, we would also like to have some information about the rate
of convergence; that is, we would like to ensure the existence of some β > 0 with the
property that eβt(e−λtut − v) converges to zero.

For such questions, a key step in finding λ is the spectral analysis of the growth-
fragmentation operator

Af(x) = c(x)f ′(x) +
∫ x

0
f(y)k(x, y)dy −K(x)f(x), x > 0, (3)

which is defined for smooth compactly supported f , say.
Indeed, observe first that the weak form of the growth-fragmentation equation (1) is

given by
d
dt〈ut, f〉 = 〈ut,Af〉, (4)

where we use the notation 〈µ, g〉 :=
∫
g(x)µ(dx) for any measure µ and function g on

the same space, and 〈f, g〉 := 〈µ, g〉 with µ(dx) = f(x)dx when f ≥ 0 is a measurable
function.
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Several authors have shown, under certain assumptions on c and k, the existence of
positive eigenfunctions associated to the first eigenvalue of the operator A and its dual
A∗, and established convergence of the solution to an asymptotic profile. In particular,
in the presence of self-similarity assumptions on the fragmentation kernel, Michel et al.
[32] showed convergence, and later Mischler and Scher [33] found results including ex-
ponential rate. Doumic and Gabriel [16] obtained quite general criteria for existence of
positive eigenfunctions. Assuming existence of positive eigenfunctions, Balagué et al. [2]
and Cáceres et al. [9] proved convergence at exponential rate in a weighted L2 norm for
coefficients similar to those in [16]. These works have assumptions quite close to ours,
and after stating our results we will offer a more detailed comparison with them. In
the literature, one also finds studies of the cell-division equation, in which c is constant
(for instance, [31, 33]) and of equations in which cell sizes are bounded [3]; these cases
are not covered by our work, though, as we remark below, the former equation can be
studied using similar methods. Other authors, such as Bouguet [8], Chafaï et al. [13]
and Bardet et al. [4], have studied conservative versions of the equation (1) using prob-
abilistic techniques; their methods can be useful in combination with the approach we
outline, but the equation they study is of a different nature.

The purpose of this work is to show the usefulness of stochastic methods (more
specifically: the Feynman-Kac transformation, the change of probability measures based
on martingales, and the ergodic theory for Markov processes) in this setting. We have not
attempted to find the most general conditions, but rather to demonstrate the benefits of
the probabilistic approach. Our main assumption is that the growth rate c is continuous
and bounded above by a linear function; that is,

‖c‖∞ := sup
x>0

c(x)/x <∞. (5)

We shall shortly make some further technical assumptions on the fragmentation kernel k.
Assumption (5) leads the choice of the Markov process X, below, which is fundamental
to our analysis. We stress that the general techniques developed in this work can likely
be adapted to deal with other types of growth and fragmentation rates (for instance,
bounded growth rates, as in the cell division equation), but one may need to substantially
modify the arguments, since the Markov processes which arise may have quite different
properties from the ones appearing in this work. We remark that our condition (5) is
quite close to the assumption (20) in Calvez et al. [10], under which prion aggregation
was studied.

In short, we will obtain probabilistic representations of the main quantities of interest
(solutions ut, the Malthus exponent λ, the asymptotic profile v, and so on) in terms of a
certain Markov process with values in (0,∞). Under assumption (5) and a boundedness
condition on k (assumption (11), to appear shortly), we may show that solutions ut of
(4) have the representation

〈ut, f〉 = 〈u0, Ttf〉,

where (Tt)t≥0 is a semigroup defined on a certain Banach space of functions on (0,∞),
and whose infinitesimal generator extends A. Even though (Tt)t≥0 is not a Markovian
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(i.e., contraction) semigroup, it is connected to the operator

Gf(x) := c(x)f ′(x) +
∫ x

0
(f(y)− f(x))y

x
k(x, y) dy

which is the generator of a Markovian semigroup.
To be precise, comparing A and G allows us to express the semigroup Tt through a

so-called Feynman–Kac formula:

Ttf(x) = xEx
(
Et
f(Xt)
Xt

)
, t ≥ 0, x > 0, (6)

where X is the Markov process with infinitesimal generator G, Px and Ex represent
respectively the probability measure and expectation under which X starts at X0 = x,
and

Et := exp
(∫ t

0

c(Xs)
Xs

ds
)
, t ≥ 0.

When c(x) = ax for some a > 0, the identity function is automatically an eigenfunction
of A; in this case, which we look at in more detail in section 6, equation (6) simplifies
considerably. On the other hand, when c is not linear, we do not have any candidate
eigenfunction of A, and yet the formula (6) still gives a connection with a Markov
process. Note that, contrary to most works relying on a Feynman-Kac formula, the
density Et is given by the exponential of a positive functional, and this is know to yield
difficulties related to the possible lack of integrability when E is evaluated at random
times. In this direction, we stress that the assumption (5) is also crucial for the validity
of (6).

Even though the formula (6) is not very explicit in general, we can use it to say quite
a lot about the behaviour of Tt as t→∞. In this direction, a fundamental role is played
by the convex function Lx,y : R→ (0,∞], defined as the Laplace transform

Lx,y(q) := Ex
(
e−qH(y)EH(y), H(y) <∞

)
, (7)

where H(y) denotes the first hitting time of y by X. The main contribution of this work
can be stated as follows.

Theorem 1.1. Assume that (5) and the forthcoming assumptions (11) and (14) all hold.
Fix x0 > 0, and suppose that Lx0,x0(q) ∈ (1,∞) for some q ∈ R. Then:
(i) There exists a unique λ ∈ R, called the Malthus exponent, such that Lx0,x0(λ) = 1.
(ii) Define the function

¯̀(x) = xLx,x0(λ), x > 0,

and the absolutely continuous measure

ν(dx) := dx
¯̀(x)c(x)|L′x,x(λ)|

, x > 0. (8)
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There exists β > 0 such that for every continuous function f with compact support
and every x > 0:

e−λtTtf(x) = ¯̀(x)〈ν, f〉+ o(e−βt) as t→∞. (9)

We will formulate this result more generally, and give a proof, in Theorem 5.3. Under
further assumptions (see Corollary 4.5 and Proposition 5.5, below), the function ¯̀ and
measure ν are, respectively, an eigenfunction of A and an eigenmeasure of the dual
operator A∗, each corresponding to eigenvalue λ.

We discuss now some common cases where we can replace the condition in The-
orem 1.1 with an explicit condition on the coefficients. We also mention a case where
exponential convergence does not hold.

Example 1.2. (i) Linear growth rate: c(x) = ax. This case in considered in detail in
section 6. When convergence of solutions takes place, it is simple to see that the
Malthus coefficient is λ = a and the corresponding eigenfunction of A is ¯̀(x) = x.
Assuming power law tails of K and finiteness of certain moments of k(x, y)/K(x),
we give in Proposition 6.2 sufficient conditions for the solution to (4) to exhibit
exponential convergence to equilibrium in total variation norm.
If limx→∞K(x) = ∞ (which implies faster fragmentation than we assume), then
the results of Doumic and Gabriel [16] can be used to prove the existence of
eigenelements in this case, even under fairly weak asymptotic conditions. In the
case where the fragmentation kernel is self-similar, together with some higher order
assumptions on asymptotics of K, Balagué et al. [2] strengthen this to exponential
convergence in a weighted L2 norm.

(ii) Homogeneous fragmentation kernel: k(x, y) = x−1ρ(y/x), with ρ ∈ L1([0, 1]) a
positive function. In this case, which we consider in section 7, the rate K(x) = b :=∫ 1

0 uρ(u) du is constant. In Proposition 7.1, we show, under a moment assumption
on ρ and a balance condition between c and ρ, that λ = b is the Malthus exponent
and has corresponding eigenfunction ¯̀= 1, and prove exponential convergence in
the sense of (9).
In this case, convergence results from the literature appear hard to apply. The
results of [16] apply only to growth rates c satisfying

∫
0

1
c
< ∞, which does not

hold for us. [33, 32] offer conditions for convergence in the special case where
c(x) = ax also, whereas [31, 9] examine the case where c is constant.

(iii) We now briefly discuss a situation in which our theorem does not apply. Let
c(x) = ax and write formally k(x, y) dy = 2bδx/2(dy); this implies K(x) = b for all
x > 0. It is well-known that in this case convergence to equilibrium does not hold
[16, section 2.2]. The coefficients c, k do not fulfil our assumptions, since k(x, y) dy
is not absolutely continuous, but the methods we have developed can be applied
formally, and indeed we find ourselves in the setting of section 6. In that section,
we show that, although the Malthus exponent λ < a exists, the measure ν from
(8) cannot be defined, since the derivative appearing in the denominator is infinite.
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Technically, periodicity issues aside, the point which leads to this failure is that
the process Y defined in section 5 turns out to be null recurrent.

We now wish to discuss in more detail the relationship with the literature. As we
mentioned, the question of the existence of eigenelements for growth-fragmentation op-
erators has been previously studied in depth by Doumic and Gabriel [16]. They oper-
ate under more explicit assumptions than ours on the coefficients, and prove conver-
gence results (without exponential rate); however, they do not provide representations
of these eigenelements. Provided that the fragmentation kernel is self-similar, in the
sense that k(x, y) = K(x)ρ(y/x), for some ρ, Balagué et al. [2] offer an exponential rate
of convergence, at least under higher order (but still explicit) asymptotic assumptions.
Theorem 1.1 of Mischler and Scher [33] generalises and unifies earlier results in the
literature on convergence with exponential rate for the exponentially damped growth-
fragmentation semi-group; again the assumptions in [33] are more explicit than ours,
but they are restricted to the case when the growth coefficient c is either constant or
linear and the fragmentation kernel self-similar.

Once Theorem 1.1 has been established, it is straightforward to show that the solution
semigroup (Tt)t≥0 has the simple representation

Ttf(x) = eλt ¯̀(x)Ex
[
f(Yt)
¯̀(Yt)

]
, (10)

where Y is a Markov process whose generator can be found explicitly. One might
think that this observation could be used in reverse to prove Theorem 1.1 by standard
techniques. However, to do this requires a priori the knowledge of the Malthus exponent
λ and corresponding positive eigenfunction ¯̀, and we do not want to take this for granted.
Instead, we use the existence of the solution λ to equation Lx0,x0(λ) = 1 in order to find
a remarkable martingale M for the process X. We use this martingale to construct a
process Y , which is recurrent and satisfies (10), and thereby prove Theorem 1.1 through
techniques of ergodic theory. In other words, it is the construction of the martingaleM
and the process Y , rather than the (comparatively standard) construction of X itself,
which is the cornerstone of our method. We will discuss this point further at the end of
section 5.

Let us finally remark on applications. Although the formulae in Theorem 1.1 may
appear somewhat cryptic, they may prove useful as the basis of a Monte Carlo method
for computing the Malthus exponent and its corresponding eigenfunction and dual ei-
genmeasure. There are well-established algorithms for efficiently simulating Markov
processes, and the process X which appears here falls within the even nicer class of
‘piecewise deterministic’ Markov processes. This simulation is probably less costly than
numerical estimation of the leading eigenvalue and corresponding eigenfunctions of A
and its dual, at least when the spectral gap is small or even absent.

The remainder of this article is organised as follows. In section 2, we make precise
the relationship between the operators A and G, and derive the Feynman–Kac formula
(6). This establishes the existence and uniqueness of solutions to (4). In section 3, we
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characterise the Malthus exponent λ. We identify in section 4 a special martingale for the
process X, and apply it in order to find an eigenfunction for the growth-fragmentation
operator A. In section 5, we use a change of measure argument to define a new process
Y . The key point is that the process Y is always recurrent, and this leads to our main
result, Theorem 5.3, which encompasses Theorem 1.1 and comes from the ergodic theory
of Markov processes. Finally, in sections 6 and 7, we specialise our results to, respectively,
the case where the growth rate is linear and the case when the fragmentatino kernel is
homogeneous. These are situations where the eigenproblem for A possesses an explicit
solution, in the sense that we can find a function h > 0 and a real number λ′ > 0 such
that Ah = λ′h. We prove more specific results, and study in some detail a special case
where the strongest form of convergence does not hold.

2 Feynman-Kac representation of the semigroup

Our main task in this section is to derive a representation of the semigroup Tt solving the
growth-fragmentation equation, using a Feynman–Kac formula. We begin by introducing
some notation and listing the assumptions which will be required for our results.

We write Cb for the Banach space of continuous and bounded functions
f : (0,∞) → R, endowed with the supremum norm ‖ · ‖∞. It will be further con-
venient to set f̄(x) = xf(x) for every f ∈ Cb and x > 0, and define C̄b = {f̄ : f ∈ Cb}.
Analogously, we set f(x) = x−1f(x).

Recall our assumption (5) that the growth rate c is continuous and is bounded from
above by a linear function, that is, in our notation, c ∈ Cb. We further set

k̄(x, y) := y

x
k(x, y),

and assume that

the map x 7→ k̄(x, ·) from (0,∞) to L1(dy) is continuous and remains bounded. (11)

Recall furthermore that the operator A is defined by (3); in fact, it will be more
convenient for us to consider

Āf(x) = 1
x
Af̄(x),

which can be written as

Āf(x) = c(x)f ′(x) +
∫ x

0
(f(y)− f(x)) k̄(x, y)dy + c(x)f(x). (12)

We view Ā as an operator on Cb whose domain D(Ā) contains the space of bounded con-
tinuously differentiable functions f such that cf ′ is bounded. Equivalently, A is seen as
an operator on C̄b with domain D(A) = {f̄ : f ∈ D(Ā)}. The following lemma, ensuring
the existence and uniqueness of semigroups T̄t and Tt with infinitesimal generators Ā
and A respectively, relies on standard arguments.
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Lemma 2.1. Under the assumptions above, we have:
(i) There exists a unique positive strongly continuous semigroup (T̄t)t≥0 on Cb whose

infinitesimal generator coincides with Ā on the space of bounded continuously dif-
ferentiable functions f with cf ′ bounded.

(ii) As a consequence, the identity

Ttf̄(x) = xT̄tf(x), f ∈ Cb and x > 0

defines the unique positive strongly continuous semigroup (Tt)t≥0 on C̄b with infin-
itesimal generator A.

Proof. Recall that c ∈ Cb and consider first the operator Ãf := Āf − ‖c‖∞f , that is,

Ãf(x) = c(x)f ′(x) +
∫ x

0
(f(y)− f(x)) k̄(x, y)dy − (‖c‖∞ − c(x))f(x),

which is defined for f bounded and continuously differentiable with cf ′ bounded. Plainly
‖c‖∞ − c ≥ 0, and we may view Ã as the infinitesimal generator of a (sub-stochastic,
i.e., killed) Markov process X̃ on (0,∞). More precisely, it follows from our assumptions
(in particular, recall that by (11), the jump kernel k̄ is bounded on finite intervals)
that the martingale problem for Ã is well-posed; this can be shown quite simply using
[19, Theorem 8.3.3], for instance. The transition probabilities of X̃ yield a positive
contraction semigroup on Cb, say (T̃t)t≥0, that has infinitesimal generator Ã. Then T̄tf :=
exp(t‖c‖∞)T̃tf defines a positive strongly continuous semigroup on Cb with infinitesimal
generator Ā.

Conversely, if (T̄t)t≥0 is a positive strongly continuous semigroup on Cb with infinites-
imal generator Ā, then

d
dt T̄t1 = T̄tĀ1 ≤ ‖c‖∞T̄t1,

where 1 is the constant function with value 1. It follows that ‖T̄tf‖∞ ≤ exp(t‖c‖∞)‖f‖∞
for all t ≥ 0 and f ∈ Cb, and T̃t := exp(−t‖c‖∞)T̄t defines a positive strongly continuous
semigroup on Cb with infinitesimal generator Ã. The well-posedness of the martingale
problem for Ã ensures the uniqueness of (T̃t)t≥0, and thus of (T̄t)t≥0.

The second assertion follows from a well-known and easy to check formula for multi-
plicative transformation of semigroups.

Although neither (Tt)t≥0 or (T̄t)t≥0 is a contraction semigroup, they both bear a simple
relation to a certain Markov process with state space (0,∞), which we now introduce.
The operator

Gf(x) := Āf(x)− c(x)f(x) = c(x)f ′(x) +
∫ x

0
(f(y)− f(x))k̄(x, y) dy, (13)

with domain D(G) = D(Ā) is indeed the infinitesimal generator of a conservative (un-
killed) Markov process X = (Xt)t≥0, and in fact, it is easy to check, again using [19,
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Theorem 8.3.3], that the martingale problem

f(Xt)−
∫ t

0
Gf(Xs)ds is a martingale for every C1 function f with compact support

is well-posed. In particular, the law of X is characterized by G. We write Px for the law
of X started from x > 0, and Ex for the corresponding mathematical expectation.

The process X belongs to the class of piecewise deterministic Markov processes in-
troduced by Davis [14], meaning that any path t 7→ Xt follows the deterministic flow
dx(t) = c(x(t))dt, up to a random time at which it makes its first (random) jump. Note
further that, since ∫ 1

0

dx
c(x) =

∫ ∞
1

dx
c(x) =∞,

X can neither enter from 0 nor reach ∞ in finite time. Finally, it is readily checked
that X has the Feller property, in the sense that its transition probabilities depend
continuously on the starting point.

For the sake of simplicity, we will assume from now on that

the Markov process X is irreducible. (14)

This means that, for every starting point x > 0, the probability that the Markov process
started from x hits a given target point y > 0 is strictly positive. Because X is piecewise
deterministic and has only downwards jumps, this can be ensured by a simple non-
degeneracy assumption on the fragmentation kernel k.

Lemma 2.1(ii) and equation (13) prompt us to consider the exponential functional

Et := exp
(∫ t

0
c(Xs)ds

)
, t ≥ 0.

We note the uniform bound Et ≤ exp(t‖c‖∞), and also observe, from the decomposition
of the trajectory of X at its jump times, that there is the identity

Et = Xt

X0

∏
0<s≤t

Xs−

Xs

. (15)

The point in introducing the elementary transformation and notation above is that
it yields a Feynman-Kac representation of the growth-fragmentation semigroup, which
appeared as equation (6) in the introduction:

Lemma 2.2. The growth-fragmentation semigroup (Tt)t≥0 can be expressed in the form

Ttf(x) = xEx
(
Etf(Xt)

)
= xEx

(
Et
f(Xt)
Xt

)
, f ∈ C̄b.
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Proof. Recall from Dynkin’s formula that for every f ∈ D(Ā),

f(Xt)−
∫ t

0
Gf(Xs)ds , t ≥ 0

is a Px-martingale for every x > 0. Since (Et)t≥0 is a process of bounded variation with
dEt = c(Xt)Etdt, the integration by parts formula of stochastic calculus [38, Corollary 2
to Theorem II.22] shows that

Etf(Xt)−
∫ t

0
EsGf(Xs)ds−

∫ t

0
c(Xs)Esf(Xs)ds = Etf(Xt)−

∫ t

0
EsĀf(Xs)ds

is a local martingale. Plainly, this local martingale remains bounded on any finite time
interval, and is therefore a true martingale, by [38, Theorem I.51]. We deduce, by taking
expectations and using Fubini’s theorem, that

Ex(Etf(Xt))− f(x) =
∫ t

0
Ex(EsĀf(Xs)) ds

holds. Recalling Lemma 2.1(i), this yields the identity T̄tf(x) = Ex(Etf(Xt)), and we
conclude the proof with Lemma 2.1(ii).

We mention that the Feynman-Kac representation of the growth-fragmentation
semigroup given in Lemma 2.2 can also be viewed as a ‘many-to-one formula’ in the
setting of branching particle systems (see, for instance, section 1.3 in [43]). Informally,
the growth-fragmentation equation describes the evolution of the intensity of a stochastic
system of branching particles that grow at rate c and split randomly according to k. In
this setting, the Markov process (Xt)t≥0 with generator G arises by following the tra-
jectory of a distinguished particle in the system, such that after each dislocation event
involving the distinguished particle, the new distinguished particle is selected amongst
the new particles according to a size-biased sampling. This particle is referred to as the
‘tagged fragment’ in certain cases of the growth-fragmentation equation, and we will
make this connection more explicit in section 6.

In order to study the long time asymptotic behaviour of the growth-fragmentation
semigroup, we seek to understand how Ex[Etf(Xt)/Xt] behaves as t → ∞. We shall
tackle this issue in the rest of this work by adapting ideas and techniques of ergodicity
for general nonnegative operators, which have been developed mainly in the discrete
time setting in the literature; see Nummelin [35] and Seneta [41] for a comprehensive
introduction, as well as Niemi and Nummelin [34] for some analogous results in con-
tinuous time. We shall rely heavily on the fact that the piecewise deterministic Markov
process X has no positive jumps, and as a consequence, the probability that the process
hits any given single point is positive (points are ‘non-polar’). This enables us to apply
the regenerative property of the process at the sequence of times when it returns to its
starting point.
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3 The Malthus exponent

Our goal now is to use our knowledge of the Markov process X in order to find the
parameter λ which governs the decay or growth of solutions to the growth-fragmentation
equations.

We introduce
H(x) := inf {t > 0 : Xt = x} ,

the first hitting time of x > 0 by X. We stress that, when X starts from X0 = x, H(x)
is the first instant (possibly infinite) at which X returns for the first time to x. Given
x, y > 0, the Laplace transform

Lx,y(q) := Ex
(
e−qH(y)EH(y), H(y) <∞

)
, q ∈ R,

will play a crucial role in our analysis. We first state a few elementary facts which will
be useful in the sequel.

Since X is irreducible, we have Px(H(y) <∞) > 0. Moreover, EH(y) > 0 on the event
H(y) < ∞, from which it follows that Lx,y(q) ∈ (0,∞]. The function Lx,y : R → (0,∞]
is convex, non-increasing, and right-continuous at the boundary point of its domain (by
monotone convergence). Furthermore, we have e−qtEt ≤ 1 for every q > ‖c‖∞, and then
Lx,y(q) < 1; indeed,

lim
q→−∞

Lx,y(q) =∞ and lim
q→+∞

Lx,y(q) = 0.

The next result is crucial for the identification of the Malthus exponent.

Proposition 3.1. Let q ∈ R with Lx0,x0(q) < 1 for some x0 > 0. Then Lx,x(q) < 1 for
all x > 0.

Proof. Let x 6= x0 and observe first from the strong Markov property applied at the first
hitting time H(x), that

1 > Ex0(EH(x0)e−qH(x0), H(x0) <∞)
≥ Ex0(EH(x0)e−qH(x0), H(x) < H(x0) <∞)
= Ex0(EH(x)e−qH(x), H(x) < H(x0))Ex(EH(x0)e−qH(x0), H(x0) <∞)
= Ex0(EH(x)e−qH(x), H(x) < H(x0))Lx,x0(q).

Since Px0(H(x) < H(x0)) > 0, because X is irreductible, this entails that

0 < Ex0(EH(x)e−qH(x), H(x) < H(x0)) <∞ and 0 < Lx,x0(q) <∞.

Next, we work under Px0 and write 0 = R0 < H(x0) = R1 < · · · for the sequence of
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return times at x0. Using the regeneration at those times, we get

Lx0,x(q) =
∞∑
n=0

Ex0(EH(x)e−qH(x), Rn < H(x) < Rn+1)

=
∞∑
n=0

Ex0(ERne−qRn , Rn < H(x))Ex0(EH(x)e−qH(x), H(x) < R1)

= Ex0(EH(x)e−qH(x), H(x) < H(x0))
∞∑
n=0

Ex0(EH(x0)e−qH(x0), H(x0) < H(x))n

Plainly,

Ex0(EH(x0)e−qH(x0), H(x0) < H(x)) ≤ Ex0(EH(x0)e−qH(x0), H(x0) <∞) < 1,

and summing the geometric series, we get

Lx0,x(q) = Ex0(EH(x)e−qH(x), H(x) < H(x0))
1− Ex0(EH(x0)e−qH(x0), H(x0) < H(x))

<
Ex0(EH(x)e−qH(x), H(x) < H(x0))

Ex0(EH(x0)e−qH(x0), H(x) < H(x0) <∞) = 1
Lx,x0(q) ,

where the last equality follows from the strong Markov property applied at time H(x)
(and we stress that the ratio in the middle is positive and finite.) Hence, we have

Lx0,x(q)Lx,x0(q) < 1. (16)

We next perform a similar calculation, but now under Px. Using regeneration at
return times at x as above, we see that

Lx,x0(q) = Ex(EH(x0)e−qH(x0), H(x0) < H(x))
∞∑
n=0

Ex(EH(x)e−qH(x), H(x) < H(x0))n.

Since we know that Lx,x0(q) <∞, the geometric series above converges, so

Ex(EH(x)e−qH(x), H(x) < H(x0)) < 1,

and
Lx,x0(q) = Ex(EH(x0)e−qH(x0), H(x0) < H(x))

1− Ex(EH(x)e−qH(x), H(x) < H(x0)) .

Multiplying by Lx0,x(q) and using (16), we deduce that

1− Ex(EH(x)e−qH(x), H(x) < H(x0)) > Ex(EH(x0)e−qH(x0), H(x0) < H(x))Lx0,x(q)
= Ex(EH(x)e−qH(x), H(x0) < H(x) <∞),

where again the last equality is seen from the strong Markov property. It follows that
Ex(EH(x)e−qH(x), H(x) <∞) = Lx,x(q) < 1.
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We next fix some arbitrary point x0 > 0, and introduce a fundamental quantity.

Definition 3.2. We call

λ := inf{q ∈ R : Lx0,x0(q) < 1}

the Malthus exponent of the growth-fragmentation operator A.

We stress that Proposition 3.1 shows in particular that the Malthus exponent λ does
not depend on the choice of x0. We next justify the terminology by observing that, if
q < λ, then ∫ ∞

0
e−qtTtf(x)dt =∞

for all x > 0 and all continuous functions f : (0,∞)→ R+ with f 6≡ 0, whereas, if q > λ,
then there exists a function f which is everywhere positive, and such that∫ ∞

0
e−qtTtf(x)dt <∞

for all x > 0. The following result actually provides a slightly stronger statement.

Proposition 3.3. Let q ∈ R.
(i) If Lx,x(q) ≥ 1, then for every f : (0,∞)→ [0,∞) continuous with f 6≡ 0, we have∫ ∞

0
e−qtTtf(x)dt =∞.

(ii) If Lx,x(q) < 1, then there exists a function f : (0,∞)→ (0,∞] with

lim
t→0

e−qtTtf(x) = 0.

Proof. (i) Recall from Lemma 2.2 that∫ ∞
0

e−qtTtf(x)dt = xEx
(∫ ∞

0
e−qtEtf(Xt)dt

)
.

Decomposing [0,∞) according to the return times of X at its starting point and applying
the regeneration property just as in the proof of Proposition 3.1, we easily find that the
quantity above equals

xEx
(∫ H(x)

0
e−qtEtf(Xt)dt

) ∞∑
n=0

Ex
(
e−qH(x)EH(x), H(x) <∞

)n
.

Now the first term above is positive since f ≥ 0, f 6≡ 0 and X is irreducible, and the
series diverges because Ex

(
e−qH(x)EH(x), H(x) <∞

)
= Lx,x(q) ≥ 1.

(ii) We take f(y) = yLy,x(q) and observe from the Markov property and Lemma 2.2
that then

e−qtTtf(x) = xEx
(
e−qR(t)ER(t), R(t) <∞

)
,
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where R(t) denotes the first return time of X to x after time t. We use the notation θ·
for the usual shift operator; that is, (Xs, s ≥ 0)◦θt = (Xs+t, s ≥ 0). As before, we denote
the sequence of return times of X to its starting point by R0 = 0 < R1 < · · · . With
this notation, we have that R(t) = Rn+1 if and only if Rn ≤ t and H(x) ◦ θRn > t−Rn.
Regeneration at the return times then enables us to express e−qtTtf(x) as

x
∞∑
n=0

∫
[0,t]

Ex
(
e−qRnERn , Rn ∈ ds

)
Ex
(
e−qH(x)EH(x), t− s < H(x) <∞

)
=: x

∫
[0,t]

U q(x, ds)ϕx(t− s),

On the one hand, we observe, again by regeneration, that the total mass of the
measure U q(x, ·) is given by

U q(x, [0,∞)) =
∞∑
n=0

Ex
(
e−qRnERn , Rn <∞

)
=
∞∑
n=0

Lx,x(q)n <∞,

On the other hand, since

Ex
(
e−qH(x)EH(x), H(x) <∞

)
= Lx,x(q) <∞,

we know that limt→∞ ϕx(t) = 0. Hence, for every s ≥ 0, we have limt→∞ ϕx(t− s) = 0,
and since 0 ≤ ϕx(t− s) ≤ Lx,x(q) and the measure U q(x, ·) is finite, we can conclude the
proof by dominated convergence.

We conclude this section by describing the following elementary bounds for the
Malthus exponent.

Proposition 3.4. (i) It always holds that λ ≤ ‖c‖∞.
(ii) Suppose that X is recurrent. Then λ ≥ infx>0 c(x), and the strict inequality holds

except when c is linear (i.e. except when c ≡ λ).
(iii) Suppose that X is positive recurrent with stationary law π, then

λ ≥ 〈π, c〉.

Proof. (i) This follows from the elementary observations preceding Definition 3.2.
(ii) Note that for qc = infx>0 c(x), we have plainly Ete−qct ≥ 1 for all t ≥ 0. Since

Px(H(x) < ∞) = 1 when X is recurrent, Lx,x(qc) ≥ 1 and therefore λ ≥ qc. When
c 6≡ λ, Px(EH(x)e−qcH(x) > 1) > 0, so actually Lx,x(qc) > 1 and therefore λ > qc.

(iii) We apply the regeneration property at the n-th return time of X to x0, say Rn,
and observe that

Ex0

(
e−qRnERn

)
= Lx0,x0(q)n

converges to 0 as n→∞ for every q > λ. By the ergodic theorem for positive recurrent
Markov processes [26, Theorem 20.20],

ln ERn =
∫ Rn

0
c(Xs)ds ∼ 〈π, c〉Rn as n→∞, Px0-a.s.,
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1

λ

∞ Lx0,x0(q)

q

(a) A case in which condition (17) holds, as
does the even stronger condition (18).

1

λ

∞
Lx0,x0(q)

q

(b) A case in which condition (17) does not
hold. The Malthus exponent λ can be
defined, but we have Lx0,x0(λ) < 1.

Figure 1: An illustration of two cases which can occur in connection with the Malthus
exponent λ and assumption (17). In each case, we show the positive convex
function Lx0,x0(q) against q; the crucial difference between the two cases is the
behaviour of the function as it crosses the dashed red line at level 1.

and we then see from Fatou’s Lemma that limn→∞ Ex0

(
e−qRnERn

)
= ∞, as long as

q < 〈π, c〉. This entails our last claim.

4 A martingale multiplicative functional

In short, the purpose of this section is to construct a remarkable martingale which we
will then use to transform the Markov process X. We shall obtain a recurrent Markov
process Y which in turn will enable us to reduce the analysis of the asymptotic behaviour
of Tt to results from ergodic theory. This requires the following assumption to hold:

Lx0,x0(λ) = 1 for some x0 > 0. (17)

Note that, by the right-continuity of Lx,x, we always have Lx0,x0(λ) ≤ 1. We also consider
the requirement

there exists q ∈ R with Lx0,x0(q) ∈ (1,∞). (18)

We start with some simple observations relating the assumptions (17) and (18) to the
value of Lx0,x0 at the left endpoint of its domain.

Lemma 4.1. Define q∗ := inf{q ∈ R : Lx0,x0(q) <∞}. Then:
(i) Condition (17) holds if and only if Lx0,x0(q∗) ∈ [1,∞].
(ii) Condition (18) holds if and only if Lx0,x0(q∗) ∈ (1,∞]. Then (17) also holds and

Lx0,x0 possesses a finite right-derivative at λ with

Ex0

(
H(x0)e−λH(x0)EH(x0), H(x0) <∞

)
= −L′x0,x0(λ) <∞.
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Proof. Recall that q∗ ≤ ‖c‖∞ and that Lx0,x0 is convex and decreasing. We have

lim
q→∞

Lx0,x0(q) = 0 and lim
q→q∗+

Lx0,x0(q) = Lx0,x0(q∗)

by dominated convergence for the first limit, and by monotone convergence for the
second. This yields our first claim. For the second, it suffices to observe that Lx0,x0(q∗) >
1 if and only if λ > q∗ and then, by convexity, the right derivative of Lx0,x0 at λ is
finite.

We assume throughout the rest of this section that (17) holds, and describe some re-
markable properties of the function (x, y) 7→ Lx,y(λ) which follow from this assumption.

Lemma 4.2. Assume that (17) holds for some x0 > 0. Then
(i) Lx,x(λ) = 1 for all x > 0, i.e., (17) actually holds with x0 replaced by any x > 0.
(ii) For all x, y > 0, we have

Lx,y(λ)Ly,x(λ) = 1.

(iii) For all x, y, z > 0, there is the identity

Lx,y(λ)Ly,z(λ) = Lx,z(λ).

Proof. (i) Indeed, the strict inequality Lx,x(λ) < 1 is ruled out by Proposition 3.1. On
the other hand, we always have Lx,x(λ) ≤ 1 by the right-continuity of Lx,x, since, again
by Proposition 3.1, λ = inf{q ∈ R : Lx,x(q) < 1}.

(ii) Using the regeneration at return times at x just as in the proof of Proposition
3.1, we easily get

Lx,y(λ) = Ex(EH(y)e−λH(y), H(y) < H(x))
1− Ex(EH(x)e−λH(x), H(x) < H(y))

= Ex(EH(y)e−λH(y), H(y) < H(x))
Ex(EH(x)e−λH(x), H(y) < H(x) <∞) = 1

Ly,x(λ) ,

where the last equality follows from the strong Markov property applied at time H(y).
(iii) Finally, recall that X has no positive jumps, so for every x < y < z, we have

H(y) < H(z), Px-a.s. on the event H(z) <∞, and the strong Markov property readily
yields (iii) in that case. Using (ii), it is then easy to deduce that (iii) holds in full
generality, no matter the relative positions of x, y and z.

Corollary 4.3. The function (x, y) 7→ Lx,y(λ) is continuous on (0,∞) in each of the
variables x and y.

Proof. We only need to check that limy→x Lx,y(λ) = 1. If this holds, then Lemma 4.2(iii)
then entails the continuity of z 7→ Lx,z(λ) and we can conclude from Lemma 4.2(ii) that
x 7→ Lx,y(λ) is also continuous.
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In this direction, observe first that X has no positive jumps and follows a positive
flow velocity between its jump times. Thus, Px-a.s., on the event H(x) < ∞, there
exists a unique instant J ∈ (0, H(x)) such that Xt > x for 0 < t < J and Xt < x
for J < t < H(x). Further, X is continuous at times 0 and H(x). In particular, we
have Px-a.s. that limy→x+H(y) = 0 whereas limy→x−H(y) = H(x), and actually, the
following limits

lim
y→x+

e−λH(y)EH(y)1{H(y)<∞} = 1,

lim
y→x−

e−λH(y)EH(y)1{H(y)<∞} = e−λH(x)EH(x)1{H(x)<∞},

hold Px-a.s. We observe that the Px-expectation of the last quantity is Lx,x(λ) = 1 (by
Lemma 4.2(i)), and deduce from Fatou’s lemma that

lim inf
y→x

Lx,y(λ) ≥ 1.

On the other hand, recall that K(x) =
∫ x

0 k̄(x, y)dy is the total rate of jumps at
location x. An easy consequence of the fact that X follows the flow velocity given by
dx(t) = c(x(t))dt between its jumps, is that the probability under Py of the event Λx

that X has no jump before hitting x > y is given by

Py(Λx) = exp
(
−
∫ x

y

K(z)
c(z) dz

)
, (19)

a quantity which converges to 1 as y → x−. Moreover, the time h(x) at which the flow
velocity started from y reaches the point x is given by

h(y, x) =
∫ x

y

1
c(s) ds,

a quantity which converges to 0 as y → x−. Using Ly,x(λ) ≥ e−λh(y,x)Py(Λx), we deduce
that lim infy→x− Ly,x(λ) ≥ 1, and then, thanks to Lemma 4.2(ii) that

lim sup
y→x−

Lx,y(λ) ≤ 1,

from which it follows that limy→x− Lx,y(λ) = 1 and, by the Lemma 4.2(iii), that also
limy→x− Ly,x(λ) = 1.

Finally, working now under Px and, just as above, denoting by Λy the event that X
makes no jumps before hitting y, we obtain by monotone convergence that

lim
y→x+

Ex
[
e−λH(x)EH(x)1Λy 1{H(x)<∞}

]
= Lx,x(λ) = 1.

If we write h(x, y) for the hitting time of y by the flow velocity x(·) started from x,
and observe that

∫ h(x,y)
0 c(x(s))ds = ln(y/x), we obtain by the Markov property at time

h(x, y) that
Ex
[
e−λH(x)EH(x)1Λy1{H(x)<∞}

]
= e−λh(x,y) y

x
Ly,x(λ).
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Since limy→x+ h(x, y) = 0, we conclude, using again Lemma 4.2(ii) for the second equality
below, that

lim
y→x+

Ly,x(λ) = 1 = lim
y→x+

Lx,y(λ),

and the proof is complete.

Once again, we recall our standing assumption that (17) holds. The following function
will be crucial for our analysis:

`(x) = Lx,x0(λ) , x > 0.

Note from Lemma 4.2(iii) that, for any y0 > 0 and x > 0, Lx,y0(λ) = `(x)Lx0,y0(λ), and
so replacing x0 by y0 would only affect the function ` by a constant factor. Further, we
know from Corollary 4.3 that ` is continuous and positive on (0,∞); in particular, it
remains bounded away from 0 and from ∞ on compact subsets of (0,∞).

We then introduce the multiplicative functional

Mt := e−λtEt
`(Xt)
`(X0) , t ≥ 0.

The qualifier multiplicative stems from the identity Mt+s = Ms ◦ θt ×Mt, where θt
denotes the usual shift operator. Our strategy in the sequel shall be to make a change of
measure with respect to this multiplicative functional. The following result is therefore
very important for our goal.

Theorem 4.4. For every x > 0, the multiplicative functional (Mt)t≥0 is a Px-martingale
with respect to the natural filtration (Ft)t≥0 of X.

Proof. Without loss of generality, we shall work under Px0 . We also define the random
variables R0 = 0 < R1 := H(x0) < R2 < · · · to be the sequence of return times to the
point x0, and recall from the regenerative property at these return times that for every
n ≥ 0, conditionally on Rn <∞, the ratio

e−λRn+1ERn+1

e−λRnERn

= exp
(∫ Rn+1

Rn

(c(Xs)− λ)ds
)

is independent of FRn and has the same law as EH(x0)e−λH(x0) under Px0 . We see from
(17) that Ex0

(
ERne−λRn , Rn <∞

)
= 1 for every n ≥ 0, and it then follows from the

Markov property that there is the identity

Ex0 (MRn , Rn <∞ | Ft) = Ex0

(
e−λRnERn , Rn <∞ | Ft

)
= e−λ(t∧Rn)Et∧Rn`(Xt∧Rn)
= Mt∧Rn .

As a consequence, the stopped process (Mt∧Rn)t≥0 is a martingale.
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Further, if we introduce the tilted probability measure

Qn = 1Rn<∞e−λRnERnPx0 = 1Rn<∞MRnPx0 ,

then we see by the regeneration property at the return times and the fact thatM is a
multiplicative functional, that under Qn, the variables R1, R2 − R1, . . . , Rn − Rn−1 are
i.i.d. with law

Qn(H(x0) ∈ ds) = Px0(e−λH(x0)EH(x0), H(x0) ∈ ds) , s ∈ (0,∞).

We stress that this distribution does not depend on n, and in particular, for every t > 0,
we have

Ex0 (MRn , Rn ≤ t) = Qn(Rn ≤ t) −→ 0 as n→∞.

To complete the proof, it now suffices to write for every t ≥ s ≥ 0

Ms∧Rn = Ex0(Mt∧Rn | Fs)
= Ex0(Mt, Rn > t | Fs) + Ex0(MRn , Rn ≤ t | Fs),

and we conclude by letting n→∞ thatMs = Ex0(Mt | Fs).

We point out that the continuity of ` (which is a special case of Corollary 4.3) could
also be established from Theorem 4.4 and classical regularity properties of martingales.

The preceding theorem, though it appears technical, is the main step in identifying ¯̀
as an eigenfunction of A corresponding to eigenvalue λ. We will use this eigenfunction
(or, more precisely, the martingaleM) in the next section in order to identify an eigen-
measure, which will eventually appear as the asymptotic profile to which the rescaled
solutions of the growth-fragmentation equation converge.

To this end, in the following result, we give conditions under which we can identify
the function ¯̀(x) = x`(x) as an eigenfunction of the growth-fragmentation operator A,
with eigenvalue given by the Malthus exponent λ.

Corollary 4.5. (i) The function ` belongs to the extended domain of the infinitesimal
generator G of X with G` = (λ− c)`, in the sense that the process

`(Xt)−
∫ t

0
(λ− c(Xs)) `(Xs)ds (20)

is a martingale under Px for every x > 0.
(ii) If ` is bounded on (0,∞), then ¯̀∈ D(A) and A¯̀= λ¯̀.

Proof of Corollary 4.5. (i) Indeed, it suffices to write

`(Xt) = `(x)Mteλt exp
(
−
∫ t

0
c(Xs)ds

)
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and apply stochastic integration by parts. We obtain

`(Xt) = `(x) + `(x)
∫ t

0
eλsE−1

s dMs +
∫ t

0
(λ− c(Xs)) `(Xs)ds.

On the time interval [0, t], the integrand eλsE−1
s in the stochastic integral is bounded by a

constant, and this entails that the process in (20) is a martingale, by [38, Theorem I.51].
(ii) Recall that we already know that ` is continuous, so if further ` is bounded,

then ` ∈ Cb. Then also (λ − c)` ∈ Cb, and, by taking expectations in (20) and using
the Feller property of X, (i) entails that ` belongs to the domain of the infinitesimal
generator G, that is ` ∈ D(Ā) or equivalently ¯̀ ∈ D(A), with G` = (λ − c)`. Since
Gf(x) = x−1Af̄(x)− c(x)f(x), we conclude that A(¯̀) = λ¯̀.

In order to apply Corollary 4.5(ii), we need explicit conditions ensuring that ` is
bounded, and in this direction we record the following result.

Lemma 4.6. Assume that

lim sup
x→0+

c(x) < λ and lim sup
x→∞

c(x) < λ.

Then ` ∈ Cb.

Proof. Under the assumptions of the statement, there exists λ′ < λ such that the set
{x > 0 : c(x) ≥ λ′} is a compact subset of (0,∞); assume that it is contained in [a, b],
for some 0 < a < x0 < b. Now, since ` is continuous, it is certainly bounded on [a, b].
Moreover, if 0 < x < a, then e−λH(a)EH(a) ≤ e−(λ−λ′)H(a) ≤ 1. So Lx,a(λ) ≤ 1, and by
Lemma 4.2(iii), ` remains bounded on (0, a).

Similarly, if now x > b and H(a, b) := inf{t > 0 : Xt ∈ [a, b]} denotes the first
entrance time in [a, b], then again e−λH(a,b)EH(a,b) ≤ e−(λ−λ′)H(a) ≤ 1. By the strong
Markov property applied at time H(a, b), we conclude that `(x) ≤ max[a,b] `, so ` remains
bounded on (b,∞).

5 Applying ergodic theory for Markov processes

We still assume that (17) holds throughout this section. Having established the existence
of the martingale multiplicative functionalM, we use this to ‘tilt’ the initial probability
measure Px. In other words, we introduce a new probability measure Qx, defined by the
following formula for every A ∈ Ft:

Qx(A) = Ex[1AMt].

Since Px is a probability law on the space of càdlàg paths, the same holds for Qx;
and it is convenient to denote by Y = (Yt)t≥0 a process with distribution Qx. For
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clarity, let us point out that its finite-dimensional distributions are given as follows. Let
0 ≤ t1 < · · · < tn ≤ t, and F : Rn → R. Then

Qx[F (Yt1 , . . . , Ytn)] = Ex[MtF (Xt1 , . . . , Xtn)], x > 0.

(Note that, whenever it will not cause confusion, we will use Qx not just for the prob-
ability measure, but also for expectations under this measure.) In fact, Y is not just a
stochastic process, but a Markov process, and we can specify its distribution in detail,
as follows.

Lemma 5.1. Let x > 0.
(i) Under the measure Qx, Y = (Yt)t≥0 is a strong Markov process. The domain of its

extended infinitesimal generator GY contains D`(G) := {g : g` ∈ D(G)}, and GY is
given by

GY g(x) = 1
`(x)G(g`)(x) + (c(x)− λ)g(x) (21)

in the sense that, for every x > 0 and g ∈ D`(G),

g(Yt)−
∫ t

0
GY g(Ys) ds is a local martingale under Qx. (22)

Its semigroup (T Yt )t≥0, defined on the Banach space

C`b := {g : (0,∞)→ (0,∞) : g` ∈ Cb}

with norm ‖g‖ = ‖g`‖∞, is given by

T Yt g(x) := Qx[g(Yt)] = Ex(Mtg(Xt)) = 1
`(x)Ex

(
e−λtEt`(Xt)g(Xt)

)
.

(ii) Y is point recurrent and aperiodic.

Proof. (i) It is well-known that transformations based on multiplicative functionals pre-
serve the (strong) Markov property; we refer to [39, §III.19] for a readable account of a
slightly simpler case, or [42, §62] for a technical discussion. We can thus view Qx as the
law of a Markov process (Yt)t≥0 with values in (0,∞), whose semigroup is given by T Yt .

We now prove (22) for every x > 0. Indeed, for f ∈ D(G) and g = f/`, we know that
f(Xt)−

∫ t
0 Gf(Xs)ds is a Px-martingale, so by stochastic calculus,

e−λtEtf(Xt)−
∫ t

0
e−λsEs (Gf(Xs) + (c(Xs)− λ)f(Xs)) ds

is a Px-local martingale. Dividing by `(x), this shows that

Mtg(Xt)−
∫ t

0

Ms

`(Xs)
(Gf(Xs) + (c(Xs)− λ)f(Xs)) ds
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is a Px-local martingale. Further, sinceM is a Px-martingale, stochastic integration by
parts shows that for every locally bounded function h,

Mt

∫ t

0
h(Xs)ds−

∫ t

0
Msh(Xs)ds

is again Px-local martingale. Putting the pieces together, we get that

Mt

(
g(Xt)−

∫ t

0

Gf(Xs) + (c(Xs)− λ)f(Xs)
`(Xs)

ds
)

is a Px-local martingale, that is, equivalently, (22) holds.
(ii) Write HY (x) = inf{t > 0 : Yt = x} for first hitting time of x by the process Y .

Then:

Qx(HY (x) <∞) = lim
t→∞

Qx(HY (x) ≤ t)
= lim

t→∞
Ex (Mt, H(x) ≤ t)

= lim
t→∞

Ex
(
MH(x), H(x) ≤ t

)
= Ex

(
MH(x), H(x) <∞

)
= 1,

where at the third equality, we used the optional sampling theorem [39, Theorem II.77.5]
for the martingaleM.

Hence Y is point recurrent, and aperiodicity, that is that the distribution of the
hitting time HY (x) is not concentrated on a lattice rN for some r > 0, is a consequence
of the absolute continuity of the jump kernel k̄ of X. More precisely, it is easily checked
that the distribution of HY (x) has even an absolutely continuous component.

We next specify classical formulas for invariant measures and stationary distributions
of point-recurrent Markov processes, in the case of the process Y . Recall also that (18)
refers to the assumption that the Laplace transform Lx0,x0 may take values in (1,∞),
and from Lemma 4.1(ii) that this entails the finiteness of the derivative L′x0,x0(λ) > −∞.

Lemma 5.2. (i) The occupation measure m0 of the excursion of Y away from x0
defined by

〈m0, f〉 := Qx0

(∫ HY (x0)

0
f(Ys)ds

)
, f ∈ Cc,

where HY (x) = inf{t > 0 : Yt = x} denotes the first hitting time of x by the process
Y , is the unique (up on a constant factor) invariant measure for Y . Further m0 is
absolutely continuous with respect to the Lebesgue measure, with a locally integrable
and everywhere positive density given by

q(x0, y)
c(y)q(y, x0) , y > 0,

where q(x, y) := Qx(HY (y) < HY (x)).
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(ii) (Yt)t≥0 is positive recurrent if and only if the function Lx,x has a finite right-
derivative at λ, that is,

−L′x,x(λ) = Ex
(
H(x)e−λH(x)EH(x), H(x) <∞

)
<∞ (23)

for some (and then all) x > 0. In that case, its stationary law, that is m0 normal-
ized to be a probability measure, has the density

1
c(y)|L′y,y(λ)| , y > 0.

(iii) If (18) holds, then (Yt)t≥0 is exponentially recurrent, that is

Qx[exp(εHY (x))] <∞

for some ε > 0 and all x > 0.

Proof. (i) Indeed, it is well-known that the mean occupation measure of an excursion of
Y yields an invariant measure of Y ; see, for instance, Getoor [20, §7]. Moreover, since
Y is irreducible and recurrent, its invariant measure is unique up to multiplication by a
constant; see [25, Theorem 1].

The absolute continuity assertion is deduced from the fact that Y is piecewise de-
terministic, and more precisely follows the deterministic flow dy(t) = c(y(t))dt between
its jump times. Specifically, one has then∫ HY (x0)

0
f(Ys)ds =

∫ ∞
0

f(y)N(y)
c(y) dy,

where N(y) = Card{t ∈ [0, HY (x0)) : Yt = y} is the number of visits to y of the
excursion of Y away from x0. In the notation of the statement, it is readily checked that
Qx0(N(y)) = q(x0, y)/q(y, x0), and this yields the expression for the density.

(ii) Using the formula for m0, the probability tilting, and the martingale property of
M, we have

〈m0,1〉 =
∫ ∞

0
(1−Qx0(HY (x0) ≤ t))dt

=
∫ ∞

0
(1− Ex0 (Mt, H(x0) ≤ t))dt

=
∫ ∞

0

(
1− Ex0

(
MH(x0), H(x0) ≤ t

))
dt

=
∫ ∞

0
Ex0

(
MH(x0), t < H(x0) <∞

)
dt

= Ex0

(
H(x0)MH(x0), H(x0) <∞

)
.

This proves the first assertion (eventually replacing x0 by x, which only affects the
invariant measure by a constant factor).
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The second assertion follows then from uniqueness of the stationary distribution and
the fact that the maps y 7→ q(x0, y) and y 7→ q(y, x0) both have limit 1 as y tends to x0.
This claim can be proved much in the same way as Corollary 4.3, and the full details
are left to the reader.

(iii) Since HY (x) <∞ a.s., we have from the martingale property ofM that

Qx[exp(εHY (x))] = lim
t→∞

Qx[exp(εHY (x)), HY (x) < t]
= lim

t→∞
Ex[MH(x) exp(εH(x)), H(x) < t]

= lim
t→∞

Ex[EH(x) exp((ε− λ)H(x)), H(x) < t]
= Ex[EH(x) exp((ε− λ)H(x)), H(x) <∞]).

Assumption (18) ensures that the latter quantity is finite for ε > 0 small enough and
x = x0, and the case of a general x > 0 follows straightforwardly.

We also point at the following alternative expressions for the occupation measure m0:

〈m0, f〉 = Ex0

(
e−λH(x0)EH(x0)

∫ H(x0)

0
f(Xs)ds,H(x0) <∞

)

= Ex0

(∫ H(x0)

0
e−λsEs`(Xs)f(Xs)ds,H(x0) <∞

)
,

which follow readily from the probability tilting and the martingale property ofM.
We now state our main result about the asymptotic behaviour of growth-fragmentation

semigroups, which encompasses Theorem 1.1 given in the introduction.

Theorem 5.3. Assume that (17) and (23) hold, so that Y is positive recurrent. Let

ν(dy) := m0(dy)
¯̀(y)〈m0,1〉

= dy
c(y)¯̀(y)|L′y,y(λ)|

, y > 0. (24)

Then for every continuous function f with compact support, we have

lim
t→∞

e−λtTtf(x) = ¯̀(x)〈ν, f〉. (25)

If the stronger condition (18) holds, then the above convergence takes place exponentially
fast, i.e. there exists β > 0 such that

e−λtTtf(x) = ¯̀(x)〈ν, f〉+ o(e−βt) as t→∞. (26)

Proof. The Feynman-Kac solution to the growth-fragmentation equation given in Lemma
2.2 can be now expressed in terms of (Yt)t≥0 as

Ttf(x) = eλt ¯̀(x)Qx

(
f(Yt)/¯̀(Yt)

)
.
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Recall from Lemma 5.2(ii) that Y is positive recurrent whenever (23) holds, and we
conclude that

lim
t→∞

e−λtTtf(x) = ¯̀(x)
∫ ∞

0

f(y)
¯̀(y)

× 1
c(y)|L′y,y(λ)| dy = ¯̀(x)〈ν, f〉.

Finally, when (18) holds, Lemma 5.2(iii) shows that Y is exponentially recurrent.
Using Kendall’s renewal theorem, it is well-known that this entails that the above con-
vergence is exponentially fast; see Chapter 15 in [29].

Remark 5.4. (i) By the Riesz representation theorem, for x > 0, there exist meas-
ures (µxt )t≥0 such that Ttf(x) = 〈µxt , f〉 for continuous, compactly supported f .
The measures (µxt )t≥0 form the solution of the growth-fragmentation equation (4),
and Theorem 5.3 shows that, when suitably rescaled, the solution converges to a
multiple of the asymptotic profile ν. This convergence takes place in the sense of
vague convergence of measures and, under (18), at exponential rate β.
We stress that the mode of convergence in this theorem can often be significantly
strengthened. More precisely, when Y is positive recurrent, it is often possible to
show, by a classical coupling argument, that the weak convergence of measures

Qx0(Yt ∈ dy) =⇒ dy
c(y)|L′y,y(λ)|

actually holds in the total variation sense. We will go into more detail on this
topic in the next section, in the special case when the growth rate c is linear.

(ii) In the same vein, it might be interesting to point at a similar application of the
ratio limit theorem for point recurrent Markov processes (see, for instance, [26,
Corollary 20.8] for a statement of this theorem in discrete time) which holds also
in the null recurrent case. Specifically, assume only (17) holds. Then, for every
f, g ∈ Cc with g ≥ 0 and g 6≡ 0, and every x > 0, we have

lim
t→∞

∫ t
0 e−λsTsf(x) ds∫ t
0 e−λsTsg(x) ds

= 〈m0, f/¯̀〉
〈m0, g/¯̀〉

.

We next point out that the asymptotic profile ν is an eigenmeasure with eigenvalue
λ of the dual A∗ of the growth-fragmentation operator, at least under some mild as-
sumptions. In this direction, recall from Corollary 4.5(ii) that ¯̀ is an eigenfunction
with eigenvalue λ of some extended version of A, and that Af̄(x) = xĀf(x), where
f̄(x) = xf(x) and f ∈ D(Ā).

Proposition 5.5. Assume that Y is positive recurrent; that is, (23) holds. Suppose
further that ` is bounded away from 0 on (0,∞). Then, ν is an eigenmeasure of the dual
operator A∗ of A, with eigenvalue λ, meaning that 〈ν,Af〉 = λ〈ν, f〉 for every f ∈ D(A).
Moreover, 〈ν, ¯̀〉 = 1.
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Proof. First set ν̄(dy) = yν(dy). We need to show that 〈ν̄, Āg〉 = λ〈ν̄, g〉 for every
function g ∈ D(Ā). Then, setting f(x) = ḡ(x) = xg(x), we obtain f ∈ D(A) and the
identity in the statement is proved.

Because ν is proportional tom0/¯̀, it suffices to prove the identity withm0/` replacing
ν̄. Further, Āg = Gg + cg, where G is the infinitesimal generator of X. So we have to
verify that

〈m0/`,Gg + cg − λg〉 = 0 for every g ∈ D(G) = D(Ā).

That is, using the notation GY , defined in (21), for the generator of Y , we must show

〈m0,GY (g/`)〉 = 0 for every f ∈ D(G). (27)

If we set h = g/`, then the process t 7→ h(Yt) −
∫ t
0 GY h(Ys) ds, which appeared

previously in (22), is a Qx-local martingale. Moreover, it remains so when stopped at
HY (x). If we assume that ` is bounded away from 0 on (0,∞), then both h and GY h
are bounded. Recall further that the occupation measure m0 of the excursion of Y away
from 0 is finite, since Y is positive recurrent. We deduce from the optional sampling
theorem that

Qx0

(∫ HY (x0)

0
GY h(Ys)ds

)
= 0,

and it follows, by definition of m0, that (27) holds.
Finally, we observe from (24) that 〈ν, ¯̀〉 = 〈m0, 1〉/〈m0, 1〉 = 1, and this completes

the proof.

For the sake of completeness, we mention the following simple condition which en-
sures that ` remains bounded away from 0 on (0,∞). We omit the proof, since it is a
straightforward modification of that of Lemma 4.6.

Lemma 5.6. Assume that

lim inf
x→0+

c(x) > λ and lim inf
x→∞

c(x) > λ.

Then inf(0,∞) ` > 0.

We conclude the section by summarising our probabilistic approach, and making a
comparison with earlier results which have been obtained by analytic methods. For the
sake of simplicity, this discussion will be only informal as we do not want to dwell on
technical issues (which are nonetheless essential) and rather focus on some general ideas.

To start with, we introduced a Markov process X related to the growth-fragmentation
semigroup (Tt)t≥0 via the Feynman-Kac formula. Under appropriate assumptions which
are given in terms of the Laplace transform of first hitting times of X, we determined
the Malthus exponent λ ∈ R and constructed an eigenfunction ¯̀ with eigenvalue λ of
(some extension of) the growth-fragmentation generator A. Probability tilting using
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the remarkable martingaleM, defined in terms of this eigenvalue and its eigenfunction,
leads to another Markov process Y , which bears much simpler connections to (Tt)t≥0
than X. In particular, Y is always recurrent, and when it is actually positive recurrent,
a simple transformation of its stationary law yields a measure ν which can be viewed, in
some sense, as an eigenmeasure with eigenvalue λ of dual operator A∗. Finally 〈ν, ¯̀〉 = 1,
and the convergence (25) holds, even exponentially fast (26) when (18) is fulfilled.

Turning our attention to analytic methods, we first recall that Doumic and Gabriel
[16] obtained explicit criteria ensuring the existence of eigenelements for the growth-
fragmentation generator. Namely, they showed that, under certain assumptions on the
growth coefficient c and the fragmentation kernel k, there exist a unique λ > 0, a
function h > 0 and a (positive) measure µ with Ah = λh and A∗µ = λµ, and further
that 〈µ, h〉 = 1. This step being achieved, one may then use the so-called General
Relative Entropy method (see Perthame [37, chapter 6] and Michel et al. [32]) to show
that

lim
t→∞

e−λtTtf(x) = h(x)〈µ, f〉, (28)

which is precisely (25) in our setting (although this method does not appear to yield
exponential convergence as in (26).)

Let us briefly examine this from a probabilistic perspective. One readily deduces from
the identity Ah = λh that

Hf(x) := h(x)−1A(hf)(x)− λf(x) (29)

defines the infinitesimal generator of a Markov process, say Z (again, for the sake of
simplicity, we do not discuss the issue of the domain, nor whether H actually determines
Z). The significance of this process Z is that, by (29), the semigroup (Tt) giving solutions
to the growth-fragmentation equation can be represented by

Ttf(x) = eλth(x)Ex(f(Zt)/h(Zt)). (30)

We introduce the probability measure, m(dx) := h(x)µ(dx). Again informally, we see
that, for smooth test functions f , 〈H∗m, f〉 = 〈m,Hf〉 is given by

〈hµ, h−1A(hf)− λf〉 = 〈µ,A(hf)〉 − λ〈µ, hf〉 = 〈A∗µ− λµ, hf〉 = 0.

HenceH∗m = 0, and sincem is a probability measure, this shows thatm is the stationary
distribution of Z, and in particular, Z is a positive recurrent process.

Thus, convergence of the distribution of Zt to the stationary distribution m implies
that, as t→∞,

e−λtTtf(x) = h(x)Ex(f(Zt)/h(Zt)) −→ h(x)〈m, f/h〉 = h(x)〈µ, f〉.

This is precisely (28).
By uniqueness of the solution to the eigenproblem for A, or by comparison with

Theorem 5.3, we see a posteriori that h is proportional to ¯̀ and µ to ν, and also that
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H = GY , so the Markov processes Y and Z are identical. However, our approach does not
depend on the a priori solvability of the eigenproblem for A, and furthermore provides
probabilistic expressions for the solutions, which we exploit in the following sections. We
also remark that Doumic and Gabriel [16] consider only situations where the Malthus
exponent is positive, whereas the present approach allows general λ ∈ R.

6 The case of linear growth rate

We shall now discuss in detail the simple case when the function c is linear, namely

c(x) = ax , x > 0,

for some a > 0, which is equivalent to requesting that the identity function is an eigen-
function of A with eigenvalue a. We recall that when further the fragmentation kernel
k is self-similar, in the sense that k(x, y) = xγ−1ρ(y/x) with ρ some probability density
on [0, 1], the growth-fragmentation equation can be reduced to the so-called self-similar
fragmentation equation; see, for instance, [18].

We first consider the case in which X is recurrent. Then, Px0(H(x0) <∞) = 1, and
we see that (17) holds with λ = a. Hence Et ≡ eat and the semigroup Tt representing
the solution to the growth-fragmentation equation (4) is simply given by

Ttf(x) = xeatEx[f(Xt)/Xt], f ∈ C̄b, x > 0.

Even more, `(x) ≡ 1, and the martingale multiplicative functional is trivial, namely
Mt ≡ 1, and so we have Y = X. As a consequence, if X is also positive recurrent and
thus possesses a (unique) stationary distribution, say σ, then we have the convergence

lim
t→∞

e−atTtf(x) = x〈ν, f〉, with ν(dy) = y−1σ(dy) (31)

for all continuous f with compact support, as we showed in Theorem 5.3.
In this case, the main difficulty is therefore to provide explicit criteria, in terms

of k, to ensure that X is positive recurrent, or even exponentially ergodic. There is
a wealth of literature concerning such conditions, with the main technique being the
application of so-called Foster–Lyapunov criteria. A good introduction to the field may
be found in Hairer [23], and the classic monograph of Meyn and Tweedie [29] gives a
thorough grounding in the discrete-time setting. The basic notions have been applied
and extended many times; as a sample, [30] discusses storage models and queues, [1]
looks at the example of kinetic Fokker-Planck equations, and [24] studies stochastic delay
equations and the stochastic Navier–Stokes equations.

Recently, Bouguet [8] made a study of the conservative growth-fragmentation equa-
tion, which is closely related to our equation (1). Among several interesting results, he
studied the asymptotic behaviour of solutions by means of Foster–Lyapunov techniques.
Some of the key assumptions in [8] are as follows:
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Assumption 6.1. (i) There exist constants β0, β∞, γ0, γ∞ such that

K(x) ∼ β0x
γ0 as x→ 0 and K(x) ∼ β∞x

γ∞ as x→∞. (32)

(ii) If we define

Mx(s) := 1
K(x)

∫ x

0
(y/x)s k̄(x, y) dy and M(s) := sup

x>0
Mx(s),

then there exist A > 0 such that M(A) < 1, and B > 0 such that M(−B) < ∞.
(Note that, since M is decreasing, this condition is equivalent to the finiteness of
M on some neighbourhood of 0.)

Of course, some restrictions on the exponents in point (i) are imposed by our assump-
tions (5) and (11), and these will be made explicit below.

The methods of Bouguet are natural to apply in our situation, and the arguments
carry over with minimal modifications. We therefore present in the following result a
sufficient criterion for exponential ergodicity, which is the strongest case; weaker as-
sumptions can be made in order to show only ergodicity, and we refer to [8] for more
details.

For the result below, recall that by the Riesz representation theorem, for every x > 0,
there exists a family of measures (µxt )t≥0 with the property that 〈µxt , f〉 = Ttf(x) for
any continuous, compactly supported function f : (0,∞)→ R. Moreover, the measures
yx−1e−atµxt (dy) are probability measures. Finally, we recall the definition of the total
variation distance between two probability measures P and Q on (0,∞) as being given
by

dTV(P,Q) = 1
2 sup{|P (B)−Q(B)| : B ⊂ (0,∞), B Borel set}.

This discussion permits us to state the following result:

Proposition 6.2. Suppose c(x) = ax for some a > 0 and that Assumption 6.1 is in
place. Furthermore, assume that γ∞ = 0 and a/β∞ < (1 −M(A))/A, and that either
γ0 > 0 or else γ0 = 0 and a/β0 < (M(−B)−1)/B. Let V : (0,∞)→ (0,∞) be a smooth
function such that V (x) = x−B for x ≤ 1 and V (x) = xA for x ≥ 2.

Then, the Markov process X has a unique stationary distribution σ. There exist two
constants ε > 0 and C < ∞ such that, for every x > 0, the semigroup Tt giving the
solution of the growth-fragmentation (4) has the following asymptotic behaviour:

dTV

(
e−at y

x
µxt (dy), σ(dy)

)
≤ C(1 + V (x))e−εt .

Proof. We summarise the main points of the proof, which Bouguet [8] gives in greater
detail. The idea is to show that the Markov process X is exponentially ergodic, using
the results of [30, Theorem 6.1]. Thus, in the terminology of that work, we need to show
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that compact subsets of (0,∞) are petite for X, that V is a norm-like function, and that
there exist α, δ > 0 such that

GV (x) ≤ −αV (x) + δ. (33)

The petiteness of compact sets is shown in [8, p. 6], and requires nothing more than
the fact that, on compact subsets of (0,∞), c is bounded away from zero and infinity
and K is bounded away from infinity. The condition that V be norm-like entails that
V (x)→∞ as x→ 0 or x→∞, which is plainly true, as well as that it is in the domain
of the generator.

The condition (33) requires the more stringent conditions on the asymptotic exponents
and the existence of values A and B. We briefly describe the argument. For x ≥ 2, we
have

GV (x) ≤
{
aA−K(x)

(
1−Mx(A)−Mx(−B)x−(A+B) −Rx−A

)}
V (x),

where R = minx∈[1,2] V (x) > 0; and for x ≤ 1, we have

GV (x) ≤
{
−aB +K(x)

(
Mx(−B)− 1

)}
V (x)

In the case x ≥ 2, the term within braces is equal to aA−K(x)(1−M(A)+o(1)), and
as x→∞, this converges to a negative constant precisely when a/β∞ < (1−M(A))/A.
Similarly, in the case x ≤ 1, the term in braces is bounded by a negative constant
when x is close enough to zero, provided the conditions of the theorem hold. Since
V is bounded on compact subsets of (0,∞), this implies that (33) holds, and so [30,
Theorem 6.1] completes the proof.

Remark 6.3. The result above offers convergence at exponential rate to an asymptotic
profile, in a norm which is much stronger than that offered by Theorem 5.3; the as-
sumptions are also more explicit. However, the assumption c(x) = ax is crucial to the
argument we have given.

The reader who compares our result to [8] will notice that many cases in the latter
work are not accommodated by our assumptions. The most significant difference is that,
in [8], the fragmentation rate K may be unbounded. Giving a version of Proposition 6.2
in this case would involve only a minor adaptation of the proof, but several earlier results
of this work, such as the identification of the eigenmeasure ν of A∗ in Proposition 5.5,
would become significantly more difficult. Since our main goal in this article is to point
out connections with spectral theory, we prefer not to stray too far from the situation
where such results may be proved.

We shall next discuss a further special case in which X is transient, in which we
observe the inequality λ < a for the Malthus exponent. We focus on the case where the
fragmentation kernel is homogeneous, in the sense that

k(x, y) = x−1ρ(y/x) for some function ρ such that
∫ 1

0
uρ(u) du <∞,
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and study in detail the asymptotic behaviour of solutions.
Then the operator G is given by

Gf(x) = axf ′(x) +
∫ x

0
(f(y)− f(x))y

x
ρ(y/x) dy

x
, f ∈ D(Ā).

Our analysis will hinge on the observation that G can be related to the generator of a
Lévy process, as we shall shortly make clear.

The growth-fragmentation equation given by the corresponding operator A was stud-
ied in [22, 15, 6], among others. Indeed, the process X corresponds to the so-called
‘tagged fragment’ in a random particle model, a situation we summarised in [6, §6]. Ho-
mogeneous growth-fragmentation equations are often studied via a ‘cumulant function’
κ, which is defined as follows. For θ ∈ R, we define hθ : (0,∞) → R by hθ(x) = xθ,
and then hθ is an eigenfunction of (an extension of) A with eigenvalue κ(θ); that is,
Ahθ = κ(θ)hθ. The function κ can be given explicitly as

κ(θ) = aθ +
∫ 1

0
(uθ−1 − 1)uρ(u) du, θ ∈ R,

and it is smooth and strictly convex. Our basic assumption, for the remainder of this
section, is that there exists some θ0 6= 1, lying in the interior of the domain of κ, with
the property that κ′(θ0) = 0. Observe that in particular, κ(θ0) = minθ∈R κ(θ).

We now look more closely at X, and introduce the following auxiliary process, which
is a Lévy process; for further background on this class of processes, we refer to [5, 27, 40].
Consider a Lévy process ξ composed of a compound Poisson process with only negative
jumps plus a drift a > 0, and such that ξ has an absolutely continuous Lévy measure
with density π(z) = e2zρ(ez) for z < 0. Let ψ represent the Laplace exponent of this
Lévy process, which means that E[eθξt | ξ0 = 0] = etψ(θ). This function is smooth and
strictly convex, with Lévy–Khintchine representation as follows:

ψ(θ) = aθ +
∫ 0

−∞
(eθz − 1)π(z) dz = aθ +

∫ 1

0
(uθ − 1)uρ(u) du, θ ∈ R.

It is related to κ via the equation ψ(θ) = κ(θ + 1) − κ(1), from which we see that θ0
satisfies ψ′(θ0−1) = 0. The existence of θ0 implies that ψ′(0) = E[ξ1 | ξ0 = 0] 6= 0, which
means that either limt→∞ ξt = ∞ or limt→∞ ξt = −∞. In particular, ξ is a transient
process.

By comparing G with the generator of a Lévy process [40, Theorem 31.5], X may be
identified as

Xt = eξt , t ≥ 0,
and so X is also transient.

A natural component of our analysis in this situation is the inverse function Φ of ψ,
defined by Φ(q) = sup{θ ∈ R : ψ(θ) = q}. It appears in the following expression, in
which τ(0) = inf{t > 0 : ξt = 0}:

E[e−qτ(0); τ(0) <∞ | ξ0 = 0] = 1− 1
aΦ′(q) .
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This formula can be found, for instance, in Lemma 2(i) of Pardo et al. [36].
From this, we can calculate the Malthus exponent of the growth-fragmentation equa-

tion associated with G. Since the return time of ξ to its starting point is equal to that
of X, we calculate, using the inverse function theorem,

Lx0,x0(q) = 1− 1
aΦ′(q − a) = 1− ψ′(Φ(q − a))/a.

This implies that λ = κ(θ0) = a+ψ(θ0− 1) < a, so that contrary to the situation where
X is recurrent, here the Malthus exponent is strictly less than the drift coefficient a.

Moreover,
−L′x0,x0(q) = ψ′′(Φ(q − a))

ψ′(Φ(q − a)) ,

and as q ↓ λ, we obtain, by the strict convexity of ψ, that −L′x0,x0(λ) = ∞. Thus, we
are in a situation where the process Y is null recurrent, and so Theorem 5.3 does not
apply.

We now study the function ` in more detail. In order to compute it explicitly, we re-
call (from [27, §3.3], for instance) that the process (e(θ0−1)ξt−tψ(θ0−1))t≥0 is a non-negative
martingale. Since limt→∞ ξt/t = ψ′(0) 6= 0 almost surely (see [27, Exercise 7.2]), the mar-
tingale converges almost surely to 0 as t→∞. We obtain the following explicit formula
for `, applying in the third equality the optional sampling theorem [39, Theorem II.77.5]
at the stopping time τ(ln x0) = inf{t > 0 : ξt = ln x0}.

`(x) = Lx,x0(λ) = E[e−(λ−a)τ(lnx0); τ(ln x0) <∞ | ξ0 = ln x]
= E[e(θ0−1) ln(x0)−ψ(θ0−1)τ(lnx0); τ(ln x0) <∞ | ξ0 = ln x]e−(θ0−1) ln(x0)

= e(θ0−1)(lnx−lnx0)

= (x/x0)θ0−1.

Furthermore, we can calculate directly from (21) that the generator of Y is given by

GY g(x) = axg′(x) +
∫ x

0

(
g(y)− g(x)

)
(y/x)θ0ρ(y/x) dy

x
.

In other words, we have the representation Yt = exp(ηt), where η is a Lévy process whose
Laplace exponent is given by θ 7→ ψ(θ + θ0 − 1)− ψ(θ0 − 1). This Lévy process has the
property that E[η1 | η0 = 0] = 0, which implies that η is recurrent (see, for instance, [40,
Remark 37.9].)

Finally, we wish to study the asymptotic behaviour of the semigroup Tt, or equival-
ently, the measures µxt introduced earlier. The semigroup can be identified explicitly in
terms of our Lévy process η as:

Ttf(x) = eλt ¯̀(x)Qx

[
f(Yt)/¯̀(Yt)

]
= eκ(θ0)txθ0E

[
f(eηt)e−θ0ηt | η0 = ln x

]
.
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The asymptotics of this semigroup could be studied using Remark 5.4. However, more
precise information can be obtained by applying instead a local central limit theorem
for η (see [7, Theorem 8.7.1].) In this way, one recovers the formula

Ttf(x) ∼ xθ0etκ(θ0)√
2πtκ′′(θ0))

∫ ∞
0

f(y)y−(θ0+1) dy, as t→∞,

for f continuous and compactly supported, which was stated as [6, Corollary 3.4], under
different assumptions.

7 The case of homogeneous dislocation rates

We now conclude this work by presenting another situation in which the general as-
sumptions and conclusions of Theorem 5.3 can be made fully explicit. We mention that
this could also be obtained more directly (see the remark at the end of this section);
however it may be interesting to discuss it in the framework of our approach.

We assume throughout this section that the fragmentation kernel k is homogeneous,
that is it has the form

k(x, y) = x−1ρ(y/x), 0 < y < x, (34)

where ρ ∈ L1
+([0, 1]). Roughly speaking, this means that particles dislocate at a constant

rate, independently of their size, and that on average, when a particle dislocates, the
repartition of the ratios of the sizes daughter/mother does not depend either of the size
of the mother. We shall further impose a mild integrability condition on ρ, namely∫ 1

0
u−1ρ(u)du <∞. (35)

The next statement provides simple conditions on ρ and the growth rate c under
which the normalised growth-fragmentation semigroup converges exponentially fast to
its asymptotic profile.

Proposition 7.1. Assume (34) and (35) and set

λ′ :=
∫ 1

0
(1− u)ρ(u)du.

(i) The Malthus exponent always fulfils λ ≤ λ′.
(ii) If further

lim inf
x→0+

c(x) >
∫ 1

0
(u−1 − 1)ρ(u)du and lim sup

x→∞
c(x) < λ′

then the exponential convergence (26) to the asymptotic profile ν holds with λ = λ′

and ¯̀= 1.
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We shall first establish a couple of lemmas. To start with, note that the infinitesimal
generator G of the Markov process X takes here the simpler form

Gf(x) = c(x)f ′(x) +
∫ 1

0
(f(ux)− f(x))uρ(u)du,

and equivalently, the piecewise deterministic process X can be constructed as follows.
We first consider the increasing sequence t1 < t2 < . . . of the times of a homogeneous
Poisson process with rate

a :=
∫ 1

0
uρ(u)du,

that is t1, t2−t1, t3−t2, ... are independent and identically distributed (i.i.d.) exponential
variables with parameter a. Let also η denote a random variable on (0, 1) with law

P(η ∈ du) = a−1uρ(u)du,

and introduce a sequence of i.i.d. copies (ηi)i∈N which is further independent of (ti)i∈N.
Then the Markov process X started at some point x > 0 follows the deterministic flow
dx(t) = c(x(t))dt until time t1 at which it jumps to η1x(t1) and then starts afresh (i.e.
after t1, it follows again the deterministic flow until time t2 at which is size is multiplied
by the factor η2, and so on).

We next make the following key observation.

Lemma 7.2. Introduce the inverse function ϕ(x) = 1/x. The process

M′
t := ϕ(Xt)

ϕ(X0)Et e−λ′t, t ≥ 0

is a martingale.

Proof. Indeed, we see from the above description of the evolution of X and (15) that
there is the identity

ϕ(Xt)
ϕ(X0)Et =

∏
ti≤t

η−1
i . (36)

It is convenient to introduce the random point measure

N (dt, du) :=
∞∑
i=1

δti,ηi
(dt, du), (t, u) ∈ R+ × (0, 1),

so N is a Poisson point process on R+ × (0, 1) with intensity uρ(u)dtdu, and by (36),

M′
t = exp

(
−
∫

[0,t]×(0,1)
ln uN (ds, du)− λ′t

)
.

Our claim now follows from elementary properties of Poisson point processes and the
identity ∫ 1

0
(e− lnu − 1)uρ(u)du = λ′.
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Recall that H(x) denotes the first hitting time of x by X, so an application of the
optional sampling theorem to the positive martingaleM′ entails

Lx,x(λ′) = Ex(EH(x) e−λ′H(x), H(x) <∞) ≤ 1.

Therefore, λ′ is always an upper-bound for the Malthus exponent λ and the first claim
in Proposition 7.1 is proven.

We next write X ′ for the Markov process whose law on the time-interval [0, t] is
absolutely continuous with respect to that of X, with densityM′

t.

Lemma 7.3. The infinitesimal generator G ′ of X ′ is given by

G ′f(x) = c(x)f ′(x) +
∫ 1

0
(f(ux)− f(x))ρ(u)du,

Proof. We use the same notation as in the proof of Lemma 7.2. A standard result on
Poisson point measures shows that under the probability measure tilted by the martin-
galeM′, N is again a Poisson point measure on R+×(0, 1), now with intensity ρ(u)dtdu.
The claim now follows readily from the description of the evolution of X in terms of N
given after Proposition 7.1.

We can now complete the proof of Proposition 7.1.

Proof of Proposition 7.1(ii). Consider the function V (x) = x+ 1/x, so

G ′V (x) = x(c(x)− λ′) + x−1
(∫ 1

0
(u−1 − 1)ρ(u)du− c(x)

)
.

Then observe that the assumptions of Proposition 7.1(ii) entail that there exist β > 0
and b > 1 such that

G ′V (x) ≤ −βV (x) provided x > b or x < 1/b.

It is readily checked that compact sets in (0,∞) are petite for X ′, so by (a continuous
time version of) the geometric ergodic theorem, we now see that X ′ is exponentially
recurrent, that is there exists β > 0 such that

Ex(eβH
′(x)) <∞,

where H ′(x) denotes the first hitting time of x by X ′.
We next deduce by probability tilting that

Ex(EH(x) e−(λ′−β)H(x), H(x) <∞) = Ex(eβH
′(x)) ∈ (1,∞),

and thus (18) holds. Similarly

Lx,x(λ′) = Ex(EH(x) e−λ′H(x), H(x) <∞) = Px(H ′(x) <∞) = 1,

which enables us to identify λ′ with the Malthus exponent λ. Further ` = ϕ, that is
¯̀ = 1, and also readily realize from Lemma 5.1 that the Markov processes X ′ and Y
coincide. We conclude the proof with an appeal to Theorem 5.3.
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Remark 7.4. Proposition 7.1(ii) could also be established more directly by observing
first that the growth-fragmentation operator can be expressed in the form Af(x) =
G ′f(x) +λ′f(x), with G ′ the infinitesimal generator of a Markov process X ′ (see Lemma
7.3). We then see that the constant function 1 is an eigenfunction of A with A1 = λ′1.
Afterwards, we may follows the proof of Proposition 7.1(ii) as above.
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