Probabilistic aspects of critical growth-fragmentation equations


The self-similar growth-fragmentation equation describes the evolution of a medium in which particles grow and divide as time proceeds, with the growth and splitting of each particle depending only upon its size. The critical case of the equation, in which the growth and division rates balance one another, was considered by Doumic and Escobedo in the homogeneous case where the rates do not depend on the particle size. Here, we study the general self-similar case, using a probabilistic approach based on Lévy processes and positive self-similar Markov processes which also permits us to analyse quite general splitting rates. Whereas existence and uniqueness of the solution are rather easy to establish in the homogeneous case, the equation in the non-homogeneous case has some surprising features. In particular, using the fact that certain self-similar Markov processes can enter (0,∞) continuously from either 0 or +∞, we exhibit unexpected spontaneous generation of mass in the solutions.

Advances in Applied Probability 48, no. A, 37–61
Manuscript link is Author Accepted Manuscript.