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Lévy processes

Llntvoduction

Lévy processes are closely related to Random walks
Let S,,n > 0 be a random walk

So=0, Sa=> Yi, n>1,
k=1

with (Y3)i>1 i.i.d. R%valued r.v.

m {S,,n > 0} has independent increments. For any n,k > 0, the r.v.
Sn+k — Sy is independent of (So, S1,...,Sx).
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Lévy processes are closely related to Random walks

Let S,,n > 0 be a random walk
So=0, Sa=> Yi, n>1,
k=1

with (Y3)i>1 i.i.d. R%valued r.v.
m {S,,n > 0} has independent increments. For any n,k > 0, the r.v.
Sn+k — Sy is independent of (So, S1,...,Sx).
m {S,,n > 0} has homogeneous increments. For any n,k > 0, the r.v.

Sntk — Sn = ;”:JF:H Y; has the same law as Zle Y: = Sk, that is

P (Spik — Sn € dy) = IP(Sk € dy),  on R%.

= S is Markov chain, its law is totally characterised by the law of Y3, central
in the theory of stochastic processes...
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Definition
A R%valued stochastic process { X;,t > 0} is called a Lévy process if
m it has right continuous left limited paths,
m it has independent increments, i.e. for any n > 1 and
0<t1 <t2 <---<tp < oo the random variables
Xito, Xt1 — Xtgr Xto — Xtgyo ooy Xty — Xty

are independent

m has stationary increment, i.e. for every s,t > 0 the law of X5 — X, is
equal to that of X.
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m Drift process: the deterministic process {X; = at, t > 0}, its characteristic
function given by

E(e"™"*>) = exp{—(—iXat)}, AeR.
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m Drift process: the deterministic process {X; = at, t > 0}, its characteristic
function given by

E(e"~M**”) = exp{—(—iXat)}, AeR.

m Poisson process: let {&;,i > 0} i.i.d.r.v. exponential r.v. ¢ > 0, and
Sn = Y1, ®,n > the random walk associated to it. The counting
process {N¢,t > 0} defined by

Ny =nif and only if S,, <t < Sp+1, t > 0.

The independence and loss of memory imply {N¢,t > 0} is a Lévy process
and N, follows a Poisson law with parameter tc for t > 0.
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m Drift process: the deterministic process {X; = at, t > 0}, its characteristic
function given by

E(e"~M**”) = exp{—(—iXat)}, AeR.

m Poisson process: let {&;,i > 0} i.i.d.r.v. exponential r.v. ¢ > 0, and
Sn = Y1, ®,n > the random walk associated to it. The counting
process {N¢,t > 0} defined by

Ny =nif and only if S,, <t < Sp+1, t > 0.

The independence and loss of memory imply {N¢,t > 0} is a Lévy process
and N, follows a Poisson law with parameter tc for t > 0. An useful fact.
For b # 0, the following processes

bN, —bet, >0,

and
(bN; — bet)® — bet, t>0,

are martingales. (Use IE(N;) = ct, Var(N:) = ct.)
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m Compound Poisson process: {Y;,i > 0} i.i.d. R%valued r.v. with common
distribution F', {Z,,n > 0} the random walk associated to it, and
{N¢,t > 0} an independent Poisson process. The process

Xt:ZNta tZOa

is a Lévy process called Compound Poisson process. The uni-dimensional
law of X is the so called compound Poisson law with parameters (tc, F).
The characteristic function of X} is given by

E(e"™M%>) = exp{ft/(l — "M eP(dx)}, AeR.
R
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m Compound Poisson process: {Y;,i > 0} i.i.d. R%valued r.v. with common
distribution F', {Z,,n > 0} the random walk associated to it, and
{N¢,t > 0} an independent Poisson process. The process

X = Zny,, t >0,
is a Lévy process called Compound Poisson process. The uni-dimensional

law of X is the so called compound Poisson law with parameters (tc, F).
The characteristic function of X} is given by

E(e"™M%>) = exp{ft/(l — "M eP(dx)}, AeR.
R

E i<, Xt> Z]P Nt —TL ( i<\, Sp> | N, :n)

n>0

_ Z (ct? e~ E(eFNYI> ) gt Z i' / <X 4 F(d)
. mn: Rd \{0}

n>0 n>0
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m Standard Brownian Motion: A real valued Lévy process {B;,t > 0} is
called a standard Brownian motion if for any ¢t > 0, B; follows a Normal
law with mean 0 variance ¢,

1 x>
IP(B; € dz) = \/?ﬂ't exp{—E}dx, z € R;

and its characteristic law is given by
2

B P) = exp{~t5 )},  A€ER.

Brownian Motion
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m Linear Brownian Motion Let B = (B, B?,..., BY)7 be d-independent
standard Brownian motions, a € R?, and o a d x d-matrix. The process
X: =at+ 0By, t >0, is a Lévy process. For each t > 0, X; is a Gaussian
vector with mean, IE(X}) = a'"t, and covariance matrix

E ((Xt(i) —a®(x9D a(j)t)> =ool,,  ije{l,... d}.
Its Fourier transform IE (exp{i < X, X; >}) = exp{—tT (M)}, is
U(\)=—<a > +%/\TE>\ =—<a > %HUAH?, A eRY.

With ¥ = go” the covariance matrix; it is positive definite (7 Xz > 0,
z € R%) and symmetric. X; ~ N(at,t%).
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Exercise

m Any linear transformations of a Lévy process is a Lévy process.
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Exercise

m Any linear transformations of a Lévy process is a Lévy process.

m Any linear combination of independent Lévy processes is a Lévy process.
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(== Examples

Lemma

The finite dimensional distributions of a Lévy process are totally characterised
by the one dimensional distributions.

Proof.
Letn>1,0<t <ty <---<tp,and A1,..., A € R? we have that

E(exp{i < A1, X¢; > +i < Ao, Xy >+ +1 < \p, Xy, >1)
=E (exp {’l < Xl,(th _Xto) >+ 41 <Xn7(th _th—l) >})

n

=JIE (exp {i <X, (Xe, — Xe;_,) > 1)

j=1

I

E (exp {i < Xj, (X¢;-¢;,_,) >})

j=1

with to = 0 and )\; = > h=; Ak This is true for all n > 1,
0<t; <ta<---<tpn, A,...,A\n € R. This is enough since the Fourier
transform characterises the law of the vectors (X3, ,..., X4,). O
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Lemma

For every t > 0 we have

E(exp{i < A\, X; >}) = E(exp{i < A, X; >})"

Proof.

If t is an integer n, by independence and stationarity of the increments
E(ei<>\,Xt>) _ (]E(eKA‘XQ))n? A eRY.
Now, if ¢ is a rational, say t = p/q, we get
E(e<M%p/a>) = E(e! < X1/a>)P, E(e'<**1/4>)1 = F(e!<*¥1>),
E(ei<,\,xp/q>) _ ]E(ei<A,X1>)p/q.
For t > 0, take {t,,n > 1} rationals | ¢, the right continuity of X imply

. t . t . .
(E(ez<>\,X1>)) = (E(61<A,X1>)) k — T E(61<A,X1,k>) _ ]E(ez<>\,Xt>)

tplt

O
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Recall that a R%valued r.v. Z, equivalently its law, is called infinitely divisible
is for every n > 1 there exists {Y1,n,Y2,n,..., Ynn} i.i.d. such that Z has the
same law as {Yi,n + Yoo + ...+ Yo u}.

Law

Z = Yl,n+)/2,n+---+yn,n.
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m Forr >0, pe€ (0,1), Z is negative binomial-(r, p) distributed if

P(Z=k) = <n+;_1>(1—p)ka, k=0,1,2,....

If r integer, X is the number of Bernoulli experiments necessary to make r

success. .
-z p
= +— A>0.
IE(e ) (17(171))6_)‘) ’ -

For n > 1 Z; ,, ~ negative binomial-(r/n, p).
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m Forr >0, pe€ (0,1), Z is negative binomial-(r, p) distributed if

P(Z=k) = <n+;_1>(1—p)ka, k=0,1,2,....

If r integer, X is the number of Bernoulli experiments necessary to make r

Success. "
E(e)=(—F0= A>0.
(e ) (1 —(1=pe>/) "’ -

For n > 1 Z; ,, ~ negative binomial-(r/n, p).
m Gamma r.v. Z, ¢ ~ Gamma(p, ), with p > 0, § > 0,

0r
P(Z,9 €dz) = 2P exp{—0z}dz,
( p,0 ) F(p) p{ }
0 g
E(exp{—XZ,,0}) = <m) = IE(exp{—AZy/n0})",
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m Gaussian, Z ~ N(a, X)), then Z; ,, ~ N( ).

a _1
n’\/n
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m Gaussian, Z ~ N(a,X), then Z; , ~ N (2, ﬁ ).

m It is not always so easy to verify that a r.v. is infinitely divisible. Student
t-distribution, Pareto distribution, F-distribution, Gumbel distribution,
Weibull, log-normal distribution, logistic distribution, half-Cauchy
distribution, are all i.d. See Sato's book on Lévy processes and infinitely
divisible distributions or Van Harn and Steutel Infinite divisibility on the
real line. This an active topic of research.
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Infinitely divisible laws as limits

A double sequence of r.v. (Zn i,k € {1,...,7.},n > 1) on R is a null array if
for each n the r.v.
(Zng,ke{l,...,rn})

are independent, and

lim max IP(|Znx| >€) =0, e>0.

n—oo1<j<rn
Fact Let S,, = 221 Zn iy 1 > 1. If for some b, € RY, S, — by converges in
distribution towards a r.v. with law p, then w is an infinitely divisible law.
(Khintchine)
Fact The class of infinitely divisible laws is closed under linear transformations,
convolutions and weak convergence. Every infinitely divisible law can be
obtained as a weak limit of infinitely divisible laws.
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Lemma
Let X be a Lévy process. Fort > 0, X is an infinitely divisible distribution.

Proof.

The property of independent and stationary increments implies that for n > 1
the random variables (X ¢, X2t — X4 ,..., X0t — X(n—1)i)a are independent
and identically distributed. The claim follows from the observation:

n

Xe=> (Xu — X@-1yt)

1 n
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Theorem (Lévy—Khintchine’s formula)

Let {X;,t > 0} be a R? valued Lévy process. Fort > 0, the law of X, is
infinitely divisible. Furthermore

E(ei < Xt>) = ) AeR?
where ¥ : R* — C is the characteristic exponent of X and
T(A) = —i< a, A > + [|QAT|)?/2

+/ (1 — &M 44 < A,z >)[I(dx)
{z€R4, |z|€(~1,1)\{0}}

+/ (1 _ €i<>\,x>)H(dx)
{z€R4,|z|€(—1,1)¢}

with a € R%, Q a d x d matrix, and I1 is a measure on R%\{0} such that
fR\{O}(l Al|lz|P)TT(dx) < oo. a, @, 11 are the linear term, Gaussian term and T

is the Lévy measure, respectively. The matrix ¥ = QT Q is the covariance
matrix. The triplet (a,X,I1) characterizes the law of X under IP.
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Remark

IT is only required to be o-finite, nevertheless it is necessarily finite over any set
that does not contain a ball of radius » > 0 around 0.
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Remark
IT is only required to be o-finite, nevertheless it is necessarily finite over any set
that does not contain a ball of radius » > 0 around 0.

. 2 . S
Indeed, the fact that the function = +— T4o7 IS increasing implies that

A

I R (d
(ZE H2H>T)7 T2 /]Rdl ||ZH2 ( Z)

1+72
2 / 1A ||2][°TI(dz) < oo
Rd

IA
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Remark
The term < A,z > 1yjjz||<1} ensures

1— & 40 <Xz > Ly = O(lI211%),

and that it remains bounded for ||z|| > 1. Then the integral

/ (1—e~M 4i <\ >)(dz) < oo.
{z€R4,|z|>0}
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(== Lévy—Khintchine's formula

Remark
The term < A,z > 1yjjz||<1} ensures

1—e~M> 4i< Az > gz <1y = O(||ZH2),
and that it remains bounded for ||z|| > 1. Then the integral

/ (1—e~M 4i <\ >)(dz) < oo.
{z€R4,|z|>0}

Change h : R* — R?, so that
1—e<"" i< 1,h(2) >= O(||z]°) A 1.

Same IT and @, but a changes to @

— i <aA> +/ (1 — &M 10 < A\ h(z) >)(dz)
{z€R?, |z|>0}
with @ = a — f{$€]Rd,H$H<1}(x — h(z))I(dx).
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Some other choices for h are
1
mh(r) = ——
) = T3P

sin x

m When d =1, h(z) =

m h(z)=1e" — 1| A1
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(= Lévy—Khintchine's formula: examples

m Compound Poisson process

II(dz) = cF(dx),
E(e"~»%t>) = exp{—t /(1 — <M eF(dz)}, AeR.
Jr
m Lineal Brownian motion II = 0, IE (exp{i < A\, Xy >}) = exp{—t¥(\)},
) = — <a,A> %ATm ——<a)r> —%HUAHQ, AeRY,

With a € R? and & = oo” the covariance matrix, which is positive
definite and symmetric.
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Stable Lévy processes
Lévy processes with the scaling property: Ja > 0 such that Ve > 0
(cXpomay > 0) 2 (X4, t>0).

In this case we X is said a-stable. This is equivalent to require that the
characteristic exponent W, satisfy

W(kX) = kU (N),

for all k> 0 and for all A € R%. Then

W) = NP w (ﬁ) ., AeR’.

When d =1
a/ miua(L—p) —miuca(L—p)
\II(A) = |)\| (e 2 1()\>0) +e 2 1(>\<0)), AER.

for A € IR, where p = IP(X; > 0).
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p =1IP(X; > 0) and the Lévy measure

When a = 2, X is a Brownian motion and hence p = 1/2. When o = 1 the
self-similarity holds only when p = 1/2.

The parameter p is bound to 0 < ap, a(l — p) < 1.
ForO0<a<1,pef0,l]andforl<a<2,pe[l—2L L] andp=a',if the
process X has no positive jumps, and p =1 — 1/« if it has no negatlveJumps.
When 0 < o < 2, we have that @ = 0 and its Lévy measure is given by

49 ifr>0, a#l

I d

II(dz) = TliFe ifz<0, a#l
ljjl’g, ifa=1, p=1/2;
with
cr =T(1 +a) sm(onrp)7 c. =T(1+a) sin(am (1l — p))7
™ ™

for some p € [0, 1],
Necessarily 0 < a < 2 because of the integrability condition on II.
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L stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such

that
Ynt - tan

b’VL ’
converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

Yt = t >0,



Lévy processes
L infinite divisibility

L stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such

that
Ynt - tan

bn
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|—Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such
that

Ynt — tCLn

bn

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

m Then X is an a-stable process and b, = n®£(n), with £ a slowly varying
function, viz. £(tc)/4(t) — 1 as t — oo.

m In fact it is enough to verify the convergence of the one dimensional
distributions.

Yt = t >0,
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Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such

that
Ynt - tan

bn
converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

m Then X is an a-stable process and b, = n®£(n), with £ a slowly varying
function, viz. £(tc)/4(t) — 1 as t — oo.

m In fact it is enough to verify the convergence of the one dimensional
distributions.

m The convergence holds also in Skorohod's topology.

Yt = t >0,
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|—Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such

that
Ynt - tan

bn
converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

m Then X is an a-stable process and b, = n®£(n), with £ a slowly varying
function, viz. £(tc)/4(t) — 1 as t — oo.

m In fact it is enough to verify the convergence of the one dimensional
distributions.

m The convergence holds also in Skorohod's topology.

Yt = t >0,

m For 0 < a < 2aNASCis that 1 — F(z) + F(—=z) ~ 2= ax_aL(x), with
L an slowly varying function, and
1— F(x) . F(—x) S

1-F(z)+ F(—=x)

as r — OQ.
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Stable processes as limits of centered renormalized r.w.

m Assume (Sn,n > 0) is a r.w. for which there exists sequences an, b,, such

that
Ynt - tan

bn
converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

m Then X is an a-stable process and b, = n®£(n), with £ a slowly varying
function, viz. £(tc)/4(t) — 1 as t — oo.

m In fact it is enough to verify the convergence of the one dimensional
distributions.

m The convergence holds also in Skorohod's topology.

Yt = t >0,

m For 0 < a < 2aNASCis that 1 — F(z) + F(—=z) ~ 2= ax_aL(x), with
L an slowly varying function, and
1— F(x) o F(—x) g
1—F(z)+ F(—x) ’ 1—F(z)+ F(-x) ’

as r — OQ.

m For a =2, a NASC is that / y’F(dy) ~ L(x) as  — oo, with L slowly
varying. -
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Subordinators

Definition

A Lévy process is a subordinator if it has non-decreasing paths.
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Lemma

If X is a subordinator the characteristic exponent ¥, can be extended
analytically to the semi-plan S(z) € [0, c0[. Then the law of a subordinator
characterized by the Laplace exponent ¢(\) : RT — R defined by

E(e 1) = e7*W), A >0,

where ¢(X\) = W(iX). Moreover Q = 0, II(—00,0) = 0, [;° 1 A zII(dz) < oo,
and there is a > 0 s.t.

S(N) = aX + /Owu _ eV I(dg), A > 0.
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(X¢,t > 0) is a Gamma(b, a) subordinator if its one dimensional law is
Gamma(at, b), that is

bat
I (at)

P(X; € dx) = e da, x > 0.

Its Laplace transform takes the form

B = (515) = e {—tlalog(G+ N/}, Ao

Frullani’s formula, establishes

og(a/y) = [ (€ =eE w0,
0
Then o
$(N) :/ (1—e™)%—ar,  r>0.
0
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Figure: A Gamma subordinator
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Let X be an a-stable subordinator with index a: € (0, 1). Its Laplace exponent
is

@ « ° gy dT
(ﬁ()\)—)\ —mA (1_6 )x1+a, )\ZO.

(Integration by parts)

Lemma
Fort > 0, IE(X;) = co. Furthermore,

E(X/]) < oo ifand only if 3 < a,

> Bdl’
) x mlJra<oo.

if and only if
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B(X

B
1

) =

_ {oo,

s ™ a-eg)

risg ), 0B

g ), 4 )
e D

%r(1—§), if 8<a,
if 3> a.
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([
o), OB

6 o —y< d
:m—m/o LR (1)

_ sr(1-2), fB<a
00, if 3> a.

Although the calculation is illustrative, this is a consequence of a more general
fact.
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A criteria for the moments under IE in term of II.

A function g : R — R* is sub-multiplicative if 3C > 0, s.t.

g(z+y) < Cg(x)g(y), x,yeR:.

The functions g(z) = |z|?, 3 > 0 g(z) = exp dz, are sub-multiplicative.



Lévy processes
l7Moments
A criteria for the moments under IE in term of II.
A function g : R — R* is sub-multiplicative if 3C > 0, s.t.
gz +y) < Cg(x)g(y),  w,yeR’.
The functions g(z) = |z|°, 3 > 0 g(x) = exp dz, are sub-multiplicative.

Theorem

Let g be a measurable function, sub-multiplicative, and bounded over compact
intervals. The following are equivalent

m [E(g(X})) < oo, for some t > 0,
m [E(g(X:)) < oo, forallt >0,

(] / g(x)II(dz) < oo.
{l=|>1}
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Three important martingales

m If [E(|X1]) < oo, then IE(X:) = t(a+ [|

le|>1 T zll(dz)), and the process

MY = X, —tIE(Xy), t>0,

is a Martingale.
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e Moments

Three important martingales

m If [E(|X1]) < oo, then IE(X:) = t(a+ [|

le|>1 T zll(dz)), and the process

MY = X, —tIE(Xy), t>0,

is a Martingale.
m If IE(|X1]?) < oo, then IE(|(X; — tTE(X1))|?) = t(o? + f\z\>0 z*TI(dx)),
and the process

MP = (6~ tBOG) ~ o+ [ (), 20,

|z|>0

is a Martingale.
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Three important martingales

m If [E(|X1]) < oo, then IE(X:) = t(a+ [|

le|>1 T zll(dz)), and the process

MY = X, —tIE(Xy), t>0,

is a Martingale.
m If IE(|X1]?) < oo, then IE(|(X; — tTE(X1))|?) = t(o? + f\z\>0 z*TI(dx)),

and the process

MP = (X, — tIE(X1))? — t(o? +/ 2’ 1(dz)), ¢t >0,
|z|>0

is a Martingale.

m If B € C is such that IE(e<?*1>) < co then the process
e<B,Xt>

(8) _
Mt - ]E(6<H’X1>)t’ t207

is a (complex)-Martingale. When § € R, this is the so-called Wald
Martingale.



Lévy processes
l7Lévy proceses as Markov processes

The strong Markov property

We will denote by F; = o(Xs,s < t) VN, for t > 0, with A the null-sets of IP.

Lemma
A Lévy process is a strong Markov process. We have that for every T finite
stopping time the pre-T-process (Xs,s < T') is independent of the

post-T-process, (Xs = Xsyr — X1,s > 0), and the latter has the same law as
(Xu,u > 0).

Remark

For x € R, we will denote by IP, the push forward measure of the transform
z + X. This is the law of X started at z¢9 = x.



Lévy processes
l7Lévy proceses as Markov processes

Idea of Proof.

For T deterministic, it is enough to show that for for m > 1, and
0<t1 <ta<---<t,<tand 0< s <---< s, the vectors

(Xt17"‘7th) y ()’5517"-7X5m)

are independent and the second has the same law as (X, , ..., Xs,,).



Lévy processes
l7Lévy proceses as Markov processes

Idea of Proof.

For T deterministic, it is enough to show that for for m > 1, and
0<t1 <ta<---<t,<tand 0< s <---< s, the vectors

(Xty,oo oy X)) Y (‘55517"'7X5m)

are independent and the second has the same law as (X, ,..., X5, ). For
consider the Fourier transforms and show that

o Eom £ )
(ol ) el )

for any (A1,...,An) €R", (B1,...,0m) ER™, n,m > 1.

(2)



Lévy processes
l7Lévy proceses as Markov processes

Idea of Proof.

For T deterministic, it is enough to show that for for m > 1, and
0<t1 <ta<---<t,<tand 0< s <---< s, the vectors

(Xty,oo oy X)) Y (‘55517"'7X5m)

are independent and the second has the same law as (X, ,..., X5, ). For
consider the Fourier transforms and show that

(ol (B -Ean)
(o) ol (00

for any (A1,...,An) €R", (B1,...,0m) ER™, n,m > 1.
The argument for T' taking countably many values is done by considering the
events {1 = a;}. General T by approximation. O

(2)



Lévy processes
l7Poisson measures

Definition

Let (©, B, p) a space of o-finite measure. A family of NU{co}-valued random

variables (N (B), B € B) is called a Poisson measure with intensity measure p,

if

(i) N(B) ~Poisson p(B), with the assumption that p(B) = 0 iff N(B) =0
a.s. and p(B) = o iff N(B) = oc.

(ii) if B; € B, j € {1,...,n} are disjoint sets then N(By),..., N(By) are
independent.

(iii) For w € © the set function B +— N(B)(w) is a measure on (©,B).



Lévy processes
l7Poisson measures

Definition
Let (©, B, p) a space of o-finite measure. A family of NU{co}-valued random
variables (N (B), B € B) is called a Poisson measure with intensity measure p,
if
(i) N(B) ~Poisson p(B), with the assumption that p(B) = 0 iff N(B) =0
a.s. and p(B) = o iff N(B) = oc.

(ii) if B; € B, j € {1,...,n} are disjoint sets then N(By),..., N(By) are
independent.

(iii) For w € © the set function B +— N(B)(w) is a measure on (©,B).

As a consequence:

E(N(B)) = p(B) = Var(N(B)), BeB.



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Main Theorem

For a ¢ > 0 we denote X;_ = lims1: X, which exists and is finite by the
assumption of having cadlag paths, and AX; = X; — X;_.
For B € B(RT) ® B(R*\{0}) we define

J(B,w) =#{s>0:(s,AX,) € B}, w € Q.

Theorem (Lévy-1té decomposition-1)
Let X be a R? valued Lévy process with characteristics (a, ¥, 1) and A denote
the Lebesgue measure on [0, 00). We have :

(i) The familly (J(B), B € B(RT) ® B(R*\{0}) is a Poisson random
measure with intensity measure A ® II.



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Main Theorem

Theorem (Lévy-1t6 decomposition-11)

(i) There is a set Q1, w.p.1, such that for w € Q; the limit
X7 (w) = lim 2 (J(dsdz, w) — A ® TI(dsdz))
€10 J(0,t)x D¢ 1

with De1 = {z : ||z|| € (¢,1)} and Dy = {x : ||z|| > 1}, is well defined,
and the convergence holds uniformly over bounded intervals. The process
X© s a Lévy process with characteristics (0,0,1M1{o<|z|<1}), and its
characteristic exponent is

O = / (1—e<M> i<\ >)(de), MeR?
o<|z|<1

This process is a martingale and has exponential moments of any order.



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Main Theorem

Theorem (Lévy-1t6 decomposition-111)

(iii) The process X} = f(O,t)xDl xJ(dsdz,w),t > 0, is a compound Poisson
process with intensity ¢ = II{z : ||z|| > 1} and jump distribution

1
F(dz) = ~I(dz)1{jjal21}-
Its characteristic exponent is

v = / (1-<***)I(dz), A eRC.
{z€eRY,|z|€(—1,1)c}

(iii) The process (X* = X, — X\ — X%, t > 0) has continuous paths a.s.
and its characteristic exponent is

AN =—i<a > +%/\TE)\, AeR?.

(iv) The processes X© XM and X@ are independent.



Lévy processes

l7Lévy-|téb decomposition for Lévy processes and Compensation formula

L Main Theorem

Corollary

Every Lévy process can be written as

linear Brownian motion + Compound Poisson with [jumps| > 1

+ Square integrable Martingale with [jumps| < 1.

Every Lévy process is a semi-martingale.



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Master formula

Corollary

m A Lévy process has countably many discontinuities a.s.

m When TI(RY\{0}) < oo, the first jump time, T1, follows and exponential
distribution of parameter TI(R*\{0}).

Proof.
Fort>0,n>1,

#s ¢ (5,]AX]) € (0,8] x (-, 00)} ~ Poisson(tT1{a : |lal| > n™"}) < oo.

IP(T) > t) = IP(J(0,#] x R = 0) = exp{—tII(R*\{0})}.



Lévy processes

LLévy—Itﬁ decomposition for Lévy processes and Compensation formula

L Master formula

For w € Q the measure J()(w) can be written as

J(B)(@) = 1(t,a0(@)eB)s

t>0

where A;(w) are the spatial coordinates in R%\{0} of the points ¢ for which
J({t} x R4\{0})(w) = 1, that is those ¢ for which
Ai(w) = Xy (w) — Xe—(w) # 0. We will call

((t1 At)vt > 0)

the Poisson point process of jumps of X.



Lévy processes

LLévy—Itﬁ decomposition for Lévy processes and Compensation formula

L Master formula

For A C R*\{0} measurable and such that TI(4) < oo, the process
N:(A) = J((0,t] x A) is a Poisson process. Moreover,

J((0,4] x A) — £TI(A) = / el goeny (J(dsdz) — dsTi(da)), ¢
(0,t]xR4\{0}

is a Martingale.



Lévy processes

LLévy—Itﬁ decomposition for Lévy processes and Compensation formula

L Master formula

For A C R*\{0} measurable and such that TI(4) < oo, the process
N:(A) = J((0,t] x A) is a Poisson process. Moreover,

J((0,4] x A) — £TI(A) = / el goeny (J(dsdz) — dsTi(da)), ¢
(0,t]xR4\{0}

is a Martingale.
Assumed=1.Letn >1,1<j<n, A; C R\{0} measurable, such that
TI(A;) < oo, and disjoints; and ¢; € R the process

M :/ > cjxlisea,y (J(dsdz) — dsli(dz)),  t>0
0

Jt]XRE\{0} 1<j<n

is a Martingale. In fact, the process

(M{)? -t - > S’ pea, N(d),
1<j<n

is a Martingale. (Similar result for general d.)



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Master formula

Lemma (Campbell’s formula)

For f : R*\{0} — R we have that for t > 0

S (s, A,

s<t

is finite a.s. if and only if fot ds [oa 1A f(s,9)|II(dy) < oo. In that case

\{0}
t
B(Y fea)) = [ds [ feyn,
s<t 0 R4 \{0}
and the exponential formula holds
t .
IE exp{i)\Zf(s,As)} = exp{—/ ds/ (1 = er(S’y)) H(dy)}.
s<t 0 R4\ {0}

If f is positive the above formula remains valid if i\ is replaced by —\.



Lévy processes
LLévy—Itﬁ decomposition for Lévy processes and Compensation formula

L Master formula

A first consequence

If IT is a a Lévy measure on (0, co) such that

/ 1A zll(dz) < oo,
(0,00)
then for any a > 0 the process

Xt—at—|—ZAs, t207

s<t

is finite a.s., has independent and stationary increments, the paths are non
decreasing and according to the exponential formula its Laplace transform is
given by
oo
E(e ) = exp{—at — t/ (1 — e )(dx)}, A>0.
0

Every subordinator can be build in this way.



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Master formula

Lemma (Compensation or Master formula)

Let (t, A¢,t > 0) the Poisson point process of jumps of X. For H measurable,
left continuous and positive valued functional, the identity

E <Z H((Xu,u < t)7At))

t>0

" (/O dt /Rd\{o} T(dy) H((Xu, u < t),y)) ,

holds. IfTE (fot ds [oa vroy Ay H (X, u < s5), y)) < 00, Vt > 0, the process

/ / H((Xo,u < 8),9)(J(dsdy) — dsTI(dy)), >0,
€(0,t] JRI\ {0}

is a Martingale,



Lévy processes

l7Lévy-|téh decomposition for Lévy processes and Compensation formula

L Master formula

Lemma (Compensation or Master formula)

Let (t, A¢,t > 0) the Poisson point process of jumps of X. For H measurable,
left continuous and positive valued functional, the identity

E <Z H((Xu,u < t)7At))

>0
([ af @HX.u<0.w),
0 R4\ {0}
¢ 2
holds. IfTE (fo ds [oa \oy Ay H (X, u < ), y)) < 00, Vt > 0, the process

[ [ H(u< 9. dsdy) - dsti@y), e 0,
s€(0,t] JRI\ {0}

is a square integrable Martingale, with quadratic variation
Lo ooy HA(Xusu < 5),y)dsTI(dy)



Lévy processes
First passage of subordinators
An application to first passage

We will assume that X is a subordinator with characteristics (b, IT).

Let > 0 and 7,7 = inf{t > 0: X; > x}, the first passage time above level z
for X and (U, Oz) be the undershoot and overshoot of X at level z,

OxZXT+—CIZ', Ux:.r—XT+_.

We are interested by the distribution of the random variables (74, Uz, Oy).
The potential measure of X is defined as the measure

V(dy) :=E (/ dsl{Xsedy}> , y > 0.
0

This measure is characterised by its Laplace transform, which is given by

1
Vidy)e ™™ = —— A> 0.
/[o,oo) e =50 A0



Lévy processes
l7First passage of subordinators

Theorem

For any f : R> — R* measurable

E(f(Us, 0a)1 (01, 507) = / V(dy) /( )@y =)y

For every f : RT — RT

E(f (7)1, >0)) = /000 FO)IE(I(z — X:), X: < z).



Lévy processes
l7First passage of subordinators

Proof.
On X + >z, 727 is the unique instant where X;_ < t and X; > z, hence

E (f(TZ7 UZ7 Ol)l{Ul>0})

=1E <Z f(t,.T — Xt77 (Xt — Xt,) + Xt, — -T)l{Xf,>:c>Xt}>

t>0

Now, we apply the compensation formula to get

=1E (/ dt/ H(dy)f(t,l’ - Xt*a Y + Xt* - m)l{y>z—Xt>0}> .
0 (0,00)

The set of discontinuities has zero Lebesgue measure

=1E (/ dt/ I(dy)f(t,z — X¢,y + Xt — m)l{y>w_xt>0}> .
0 (0,00)

Specialize to time or space. O



Lévy processes
l7First passage of subordinators

The creeping case

Theorem

X creeps, viz. P(X_+ = x) > 0 for some, and hence for all, z > 0, if and only
ifb> 0. In that case, for any 0 < t < oo, the occupation measure

t
Ui(dy) =E (/ d51{xs€dy}> ) ) 2 07
0
has a continuous and bounded density on (0, 00), ut(y),y > 0. The formula

]P)(T;r €(tt+ ALXTw =z)=b P(X: € dy)uA(m -9), (3)
[0,2)

holds for x > 0,t > 0, A > 0.



Lévy processes
l7First passage of subordinators

Corollary

Assume b= 0. The r.v. .
/ ’ ﬁ(.f — Xt)dt
0

follows an exponential distribution of parameter 1.

Proof.
Recall that

1= ]E(l{Uz>0}) = / IE (ﬁ(l‘ - Xt),Xt < :C) .
0

Also, for y > 0, IEy(1{y,>03) = ]E(l{U,,y>0}) =1, Vy > 0, and thus that

x
/
0

By iteration, the following expression equals n!

IE </0 ﬁ(m = Xt)> =nllE </ 1{0<51..4<sn<‘r;} Hﬁ(l’ = Xsi)d81 .. dsn) ,
=1

H(x—Xt)> :/OOOIE(ﬁ((;t—y)—Xt),Xt <z-—y).



Lévy processes
l7First passage of subordinators
L The stable case

If X is a-stable subordinator
P(N) = A%,
the Lévy measure is II(dz) = I{i%. The renewal measure has Laplace

transform

o
I'(l—a)

Vidge ™ = L - L Y =Ly,
/[o,w> (y)e™ = 5 r(a)/o ¢y dy

Thus V(dy) = w(yy®~ Ydy, y > 0.

Corollary

For any x > 0 the random variables U, /x and O, /U, are independent, its law
do not depend of x, the former has a Beta(l — o, o) distribution and the latter
has a Pareto distribution on (0, c0) of parameter .

B (5 () s 0.0) o [[dw-wr ) [T o),

the normalising constant is c, = m



Lévy processes
thﬁ's formula for Lévy processes

6's formula
We know that X is a semi-martingale.

Theorem (1t6’s formula for Lévy processes)

Let F:RxRT =R, F e C?', F(Xy,t) t >0 is a semi-martingale and

¢
F(X¢,t) = F(Xo,0) / i X ,s)ds+/ a—F(XS,,s)dXS
o Oz

82
+7 ) ﬁ(Xsf,S)dS

+> (F(XS, s)— F(X._,s) — %(Xs,, s)AXS) .

s<t



Lévy processes
thﬁ's formula for Lévy processes

F(X:,t) = F(Xo,0) + M; + V4,

where M is a local martingale and V' is a bounded variation process, given by

Mt_a/ 8F Xs—,8)dBs

/ /| P ) = PO ) (dsdy) — dsTI(d),
and

t
Vi = Z(F(XS,S) — F(Xs_,s)) 1{\AX5|21} +/ EF(XS,S)dS,
0

s<t

with £ the infinitesimal generator of (¢, X),

oF

oF
+f (F(az +108) = F(0,9) ~ yly<an S (2,5) ) 1)
R\{0} v

LF(z,s) =



Lévy processes
l7Ki|led Lévy processes

Killed Lévy processes

Let X be Lévy process and &4 an independent exponential time of parameter
q > 0, where we understand ey = co a.s. We consider the killed Lévy process
as the R% U{—oo}-valued process defined as

Xt: Xt, !ft<@q tZO
—o0, ift>eq,

—o0 is a cemetery state and we denote ( the lifetime of X,
¢=inf{t >0: X; = —o0}.

Lemma
The process X, while alive, has independent and stationary increments. The
lifetime ¢ follows an exponential distribution of parameter q.



Lévy processes
LKiIIed Lévy processes

For, it suffices to verify that for any t,s > 0,0 < t;1 < ... <t, <t

n
E <|: ei/\jX‘j:| ei/\(xt+3_X‘>,t+ s < ()
j=1

§ @)
=1E <|:H eMthj:| 7t < C) efs(qﬁ»\ll()\)).
j=1

We have
E (e“(XHS’X“,tJr s<(t< C) = 2@H¥N) 4 >0, AeR.
The Lévy-Khinthchine formula can be written as
g+ TN =—i<a, x> +||QN|?/2

—|—/ (1 ="M 4 i < Az >)(de)
{z€R?, |z|€]-1,1[\{0}}

+/ (1 — e M%) (I1(dz) + g0 oo (da)) .
{z€R?,|z|€]—1,1[c}U{—o0}



Lévy processes
LStvong law of large numbers

Strong law of large numbers

Theorem

Let X be a Lévy process on R¢, which is no equal to zero everywhere. If
IE (| X1]|) < o0, and IE(X1) = v, then

1
lim Xt =1, a.s.

t—oo

IfIE(|X1|) = oo, then

lim sup 7|Xt| = 00, a.s.

t—oo

When d = 1, if IE(X1) = oo, then

lim Xt = 00, a.s.

t—oo

while, if IE(X;1) = —oo, then

lim Xt—— 00, a.s.



Lévy processes
LStvong law of large numbers

Proof.

It is essentially a consequence of the Strong law of large numbers for sums of
i.i.d.r.v. This implies the result along ¢ integer. Then consider

Yn = SUPye(n,nt1) [ Xt — Xnl, n > 1. The result will follow from the discrete
version if 2Y;, — 0, a.s. For this end, notice these are i.i.d. and it can be
verified that IE(Y1) < co. The SLLN applied to Y imply

1 n
b = L)
i=1

It follows %Yn — 0 a.s. O



Lévy processes

LStvong law of large numbers

Corollary
For d = 1, we have one and only one of the following

m limsup X; = oo and liminf X; = —oc0 a.s.

t—00 t—oo

m lim X; = a.s.

t— oo

m lim X; = —c0 a.s.
t—oo



Lévy processes
LStvong law of large numbers

m There are many other results that describe the asymptotic behaviour of a
Lévy process at infinity that can be inferred from its analogue for random
walks.
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LStvong law of large numbers

m There are many other results that describe the asymptotic behaviour of a

Lévy process at infinity that can be inferred from its analogue for random
walks.

m It is not always the case that they are obtained by a direct application of
its analogue for random walks. The main complication comes from the
infinitely many small jumps.



Lévy processes
LStvong law of large numbers

m There are many other results that describe the asymptotic behaviour of a

Lévy process at infinity that can be inferred from its analogue for random
walks.

m It is not always the case that they are obtained by a direct application of
its analogue for random walks. The main complication comes from the
infinitely many small jumps.

m The behaviour of a Lévy process at 0 has no analogue in random walks.
This is an active area of research.



Lévy processes
LFrom nowond = 1

From nowon d =1



Lévy processes
l7Dua|lity and time reversal

For x € R, we denote by IP; the push forward measure of the transformation
x + X under IP. Let X be the dual Lévy process, defined by

X, = -X;, t>0, under IP.
The process Xisa Lévy process with characteristic exponent
T(A) = W¥(=A), AER.
Lemma

For each t > 0, fixed, the time reversed process {X_s— — X;, 0 < s < t},
has the same law as the dual process { X, s <t} under IP.

Proof.

The time reversed process has independent increments, has cadlag paths. The
law of {X(;_s— — X; equals that of — X, for any 0 < s < ¢, under IP. O



Lévy processes

LDuality and time reversal
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Figure: Seen from right to left the jumps change of sign, the increments are still
independent and stationary.



Lévy processes
l7Dua|lity and time reversal

For t > 0, denote the running supremum by S; = sup{0V X, s < ¢} and the
running infimum by I; = inf{0 A X,,s < t}, for t > 0.

Lemma
For each t > 0 fixed, the pairs of variables (S;, Sy — X¢) and (X; — I+, —1I;)

Proof.

Take X¢ = X, and X, = X, — X(t—s)— 0 < s < t. Notice

(S, St — X)) = (X — I, — 1) a.s. By the duality lemma X and X have the
same law. O



Lévy processes

LDuality and time reversal

Path decomposition at the infimum
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Lévy processes

[ Fluctuation theory
=

the Wiener-Hopf factorization

The Wiener-Hopf factorisation-I

Let 7 = @ be an exponential time of parameter ¢, and independent of X. Recall
St =sup{0V X,,s <t} and I; = inf{O A X,,s < ¢},

gt =sup{s < t: Xs =S5}, t> 0.
The Wiener-Hopf factorisation states
7XT S T~ST - T?XT_ST7
(r,Xr) =(9-,5-) + (1—g )
independent
(r = g, Xr — 57) & (G-, -50),

and provides a characterisation of the law of these r.v.



Lévy processes

l7Fluctuation theory

L

the Wiener-Hopf factorization

Theorem
The joint law of (9., — g-,S+,S: — X-) is determined by
(i) The pairs (g-,S-) and (T — g-,S- — X;) are independent and infinitely
divisible
(i) Forall a, 8 > 0,

IE (exp{—ag- — 3S-})

— exp / ﬁ/ (€5 _ 1)~ IP(X, € dz) |,
o t Jio,e0l

IE (exp{—a(r — g-) — B(S- — X7)})

= exp (/ %/ (7P _ 1) IP(X; € dx)) .
0 ]—00,0]

and
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l7Fluctuation theory

L

the Wiener-Hopf factorization

Theorem
The joint law of (9., — g-,S+,S: — X-) is determined by
(i) The pairs (g-,S-) and (T — g-,S- — X;) are independent and infinitely
divisible
(i) Forall a, 8 > 0,

IE (exp{—ag- — 3S-})

— exp / ﬁ/ (€5 _ 1)~ IP(X, € dz) |,
o t Jio,e0l

IE (exp{—a(r — g-) — B(S- — X7)})
= exp (/000 % /]_ ) (7P _ 1) IP(X; € dx)) .

The proof is based in excursion theory

and



Lévy processes

[ Fluctuation theory
=

the Wiener-Hopf factorization
The characteristic function of X, can be written as

E(exp{iAX,}) = q%\l’(k) =T (A\)T_(N),

where

W, () = E(exp{i\S-}), P_(A) = E(exp{—iA(S- — X:)}), AeR.

m If X is a Brownian motion

a  _ V4 V4
g+ 2 VI iAJg+iN

m In Kyprianou's course other explicit factorisations will be given for
particular values of gq.




Lévy processes

l7Fluctuation theory

(== Reflected process

Lemma

Assume X is a real valued Lévy process. The process X reflected in the
supremum Ry = Sy — X, t > 0, is a Markov process in the filtration Fi,t > 0
and it has the Feller property.

Proof.
Let T be a finite stopping time and s > 0. We have the identity

St4+s = ST Vsup{Xr4.,0 < u < s} 5)
= X7+ (ST — XT) Vv sup{XTJru —Xr,0<u< S}.

We can write

ST+S = XTJ,_S = (ST = XT) Vv sup{XT+u = XT, 0<u< S} = (XT+S — XT).

The Markov property of X implies that the conditional law of S71s — X745
given Fr is the same as that of (z V Ss) — X under IP with
x = St — X1 > 0, which is the law of S — X under IP_,. . O
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Local time

For simplicity we will assume that 0 is regular upwards and downwards i.e.
7" = inf{t > 0: X; > 0} is such that IP(r;" > 0) = 0 = P(r;" > 0).
Equivalently the first return to 0 for R is zero a.s.
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|—Lm:al time for R at zero

Local time

For simplicity we will assume that 0 is regular upwards and downwards i.e.

7" = inf{t > 0: X; > 0} is such that IP(r;" > 0) = 0 = P(r;" > 0).
Equivalently the first return to 0 for R is zero a.s.

General theory on Markov processes establishes that there exists a local time at
0 for R, i.e. a non-decreasing adapted process (L, ¢ > 0) such that:

m Lo =0 when Ry = 0;

| Lt+5 = Lt +L5 09t7 for 57t 2 07
——
shift at ¢

m L is the unique, up to multiplicative constants, functional that grows at
the times where R = 0;

/ 1{RS;&0}dLs = 0, a.s.
0

m if T is a random time such that on {T' < oo}, Ry =0, a.s. and the
conditional law of {(L74+: — L1, R:),t > 0}, given {T' < oo}, is the same
as that of {(L, R¢),t > 0} under P(|Ro = 0).
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L Local time for R at zero

m If X is a Brownian motion

1 G
Ly = lim — ls.— >
t €i%1+ z /0 {Ss nge}dsv t = 0>

the limit holds uniformly over bounded intervals in probability.
m The same holds if X has no-negative jumps.

m In general there exists a function ‘A/, s.t.

1 t
L:=li — lrg. d t>0
t 5—13(1)14- V(e)/o {Ss—Xs<e} a8, =Y,

the limit holds uniformly over bounded intervals in probability.

m There exists a constant § > 0 such that

t
Lt = (5/ 1{R5:0}d3, t Z 0.
0
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L

excursion theory

Theorem (1t6’s excursion theory for R)
m The process of excursions (e, t > 0)

X=X, 0<s<Ly'—L;' ifL;y'-L;7'>0
e = - B=
! A, ifL;' — L7t =0,

is a Poisson point process with values in D, and characteristic measure 7.
(Its, 1971)
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L

excursion theory

Theorem (1t6’s excursion theory for R)

m The process of excursions (e, t > 0)

t—

X=X, 0<s<Ly'—L;' ifL;y'-L;7'>0
e = b=
A, ifL;' — L7t =0,

is a Poisson point process with values in D, and characteristic measure 7.
(Its, 1971)

m Under v the process of coordinates has lifetime ¢, bears the Markov
property with the same semigroup as X killed at the time
7o = inf{t > 0: X; <0}, that is

n(F(ew,u < t)f(etts),t+s < ()

:ﬁ(F(eu,ugzt)I/I;]et (f(Xs),s < 7'0_) ,t <C)7

for any F, f measurable bounded functionals.
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|—Exp|i:it construction of the excursion process

Chaumont’s construction of the Normalized excursion

Assume X is a stable process, and define di = inf{¢t > 1: S; — Xy = 0}, and
g1 =sup{t < 1:Ss = X,}. The scaling property implies that the process

1

W391+u1—g1)s, 0<s<1,

has the same law as the excursion process under 7 (-|¢ = 1), and this is
independent of d; — g1. This is the normalised stable excursion.
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|—Explicit construction of the excursion process

For a Brownian motion the normalized excursion (length one) is obtained from
the brownian bridge using the Vervaat transform.
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|—Exp|i:it construction of the excursion process

For a Brownian motion the normalized excursion (length one) is obtained from
the brownian bridge using the Vervaat transform.
Let B be a standard Brownian motion and X;,0 <t < 1, the process

X,=B,—tB;, 0<t<]I,

is the Brownian Bridge. Let p = inf{t > 0: X; = m =: mingo<s<1} Xs}. The
Vervaat transform inverts the path of X after and before the time p. The
resulting process is the normalised excursion.

X(p)=X¢pr—m sip—¢<t<O0,
X (p)=X,—m si0<t<p,
Xi(p)=38 sit¢lp—2¢, pl

A
S~

X

~
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|—Explicit construction of the excursion process

This holds if X is a bridge from 0 to 0 of length 1 of a stable process.
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|—Exp|i:it construction of the excursion process

This holds if X is a bridge from 0 to 0 of length 1 of a stable process.

For a stable process we have P, (X, € dy) = ps(y — z)dy, with s > 0

x,y € R, can be constructed by taking the time inhomogeneous process with
semigroup

P20, dy) = L= x()plgs(_y) dy, O0<u<s<lazueR,
P1—u(—2

under IP. (Fitzsimmons-Pitman-Yor, 1995).
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L Master formula

Theorem (Master formula)

Let G denote the left extrema of the excursion intervals, and for g € G,
dg = inf{t > 0: R, = 0}

E ZF(XSaS < 9)H (Sg — Xgtu,u < dg — g)
g€eg

excursion at time g
—E (/ dLiF(Xs,s < t)71 (H(€u,u < C))) ;
0

and

1) (/Ooo dtF(Xs,s < t)f(Xt)l{Xt:St}> =4E (/Ooo dL,F (X, s < t)f(Xt)> 7

where F, G, f are test functionals, and the stochastic process
(w,t) — F(Xs(w),s < t), is adapted and left continuous.
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Lemma

The processes (X:,0 <t < g-) and (Xg,+¢+ — X4.,0<t <7 —g,) are
independent.

Proof.
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L Master formula

Lemma

The processes (X:,0 <t < g-) and (Xg,+¢+ — X4.,0<t <7 —g,) are
independent.

Proof.

By the compensation formula, for s > 0,

IE(F (X:,0 <t <gs) HXg,+t — Xg,,0 <t < 5~ gs))

= <ZF(Xt,0 <t <g)H(Xg4t — Xg,0 <t <5 — g)l{ogg<s<dg}> =
g€eG

E (/ dL.F (X, 0 <t < u)/ﬁ(de)H(—e(t%O <t<s-— u)l{s_u<c}) )
0 D

Notice that for s fixed there is no independence. O
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Integrate w.r.t. ge” %ds to get

E(F(Xt,ogt<G7—)H(XGT+t—XGT,OS'L‘ST—GT)):

E (/Ooo dLy,e  ™F (X:,0 <t < u)) (/Dﬁ(de)H(fe(t),O <t< 7)1{T<C}> ,

Conclude by normalising to get probability measures.
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L Master formula

(L¢,t > 0), the local time at 0 of the reflected process
S — &= (St — X¢, t >0). We define the right continuous inverse of L by

Li'=inf{s>0:Ls>t}, t>0.

m upward ladder time process (L; !, ¢ > 0),
m upward ladder height process (H; =S, -1,t > 0).
t

The ladder process (L ™!, H) is a bivariate subordinator (possibly killed),
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L Master formula

(L¢,t > 0), the local time at 0 of the reflected process
S — &= (St — X¢, t >0). We define the right continuous inverse of L by

Li'=inf{s>0:Ls>t}, t>0.

m upward ladder time process (L; ', t > 0),

m upward ladder height process (H; =S, -1,t > 0).
t

The ladder process (L', H) is a bivariate subordinator (possibly killed), whose
Laplace exponent k is given by

Fristedt's formula
for A\, u >0,

k(A 1) = —log B(exp{—ALT" — uH1})

_ o g —t _ _—At—px
= cexp (/0 ; /[o,oo[(e e FOYP(& € dac)) )
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L Master formula

Draw the ladder height process
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L Master formula

Lemma

The r.v. (gr,S7) is infinitely divisible and its Laplace transform is

IE (exp{—ag, — 8S-}) = k(q,0)/x(a + g, B), a,B>0.

Proof.
Master Formula! O
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m II will be the Lévy measure and for = > 0, ﬁ+(x) = I(z, 00).
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m II will be the Lévy measure and for = > 0, ﬁ+(x) = I(z, 00).
m The potential measure of (L™, H) is denoted by

V(ds,dz) = / dt -P(L;" € ds, H; € dx)
0
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m II will be the Lévy measure and for = > 0, ﬁ+(x) = I(z, 00).
m The potential measure of (L™, H) is denoted by

V(ds,dz) = / dt -P(L;" € ds, H; € dx)
0
m The same construction can be done for —X giving us the descending

ladder height process (E_l,ﬁ) and associated potential measure
V(ds,dx).
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m II will be the Lévy measure and for = > 0, ﬁ+(x) = I(z, 00).
m The potential measure of (L™, H) is denoted by

V(ds,dz) = / dt - P(Ly' € ds, H; € dx)
0

m The same construction can be done for —X giving us the descending
ladder height process (L~!, H) and associated potential measure

V(ds, dz).
m The ladder processes has (amongst other things) hidden information about
the distribution of X, 77 and

g =sup{s <t:X,=X,}.
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The quintuple law at first passage




Lévy processes
The quintuple law at first passage
Theorem (Doney and Kyprianou 2006)
For each z > 0 we have onu >0, v >y, y € [0,z], s,t > 0,
P(ry — g.+_ €dt, g + €ds, , , T — T L €dy)
= V(ds,z — dy)V (dt, dv — y)II(du + v)

where the equality holds up to a normalising multiplicative constant.
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Suppose that X is a two-sided strictly stable process with index « € (1,2) and
positivity parameter p = IP(X; > 0) € (0, 1), then the following facts are
known:

m Its jump measure is given by

H(dx) - 1(z>0) dZE S 1(z<0) | ‘1+a

m Its renewal measures V (dz) := V(R,,dz) and V (z) := V(R dz) are
known
ap—1 :Eoz(lfp)fl

"E o~
— dz and V(dz) = ———dz.
() (dz)

Vide) = ol — 7))

Corollary
The random variables r=* (U (r), O(r)) have a joint p.d.f.

apsin apm an— l—a
Pap(u,v) = LR (1 — ) wt0) T,

for0 <u < 1,0 >0, ifap € (0,1); and is the Dirac mass at (0,0) if ap = 1.
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Lemma (Vigon 2002, Equations amicales)
Let V(dy) = V ([0, 00) x dy)

u(z) = / " VT (o + 1),

T () = /] Mo (@)Thg ) + ) + Rl 0),

where D(x) is the density of the measure Iy, which exists if d>o0.
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Proof.

Notice that -
Mg (z) =n(ec < —z,( < 00).

In the event where the excursion ends by a jump, ¢ is the unique time where
€i— > 0 > ¢, this equals

n <Z 1{6t>0>z>et+etet}> 5

o<t

By the Poissonian structure of the jumps and the compensation formula

n (/OC dtlg., oI (z + et,)) = /OOO V()T (z +y).
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Lévy processes conditioned to stay positive

m Assume that X does not drift to —oo under P.
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Lévy processes conditioned to stay positive

m Assume that X does not drift to —oo under P.
m Define V(z) = V(R4 [0, z]), for z > 0. This function is invariant

/V Po(X: € 2379 >t)=V(z), a>0.



Lévy processes
LLévy processes conditioned to stay positive

Lévy processes conditioned to stay positive

m Assume that X does not drift to —oo under P.
m Define V(z) = V(R4 [0, z]), for z > 0. This function is invariant

/V Po(X: € 2379 >t)=V(z), a>0.

m We can define a new law P on the space of non-negative cadlag paths
initalized at « > 0 via the semi-group

PL(X; € dz2) = P.(X; € z;75 > t),

the h-transform of P, (X, € z;7, > t) via the invariant function V()
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Lévy processes conditioned to stay positive

m Assume that X does not drift to —oo under P.
m Define V(z) = V(R4 [0, z]), for z > 0. This function is invariant

/V Po(X: € 2379 >t)=V(z), a>0.

m We can define a new law P on the space of non-negative cadlag paths
initalized at « > 0 via the semi-group

PL(X; € dz2) = P.(X; € z;75 > t),
the h-transform of P, (X, € z;7, > t) via the invariant function V()

m Work of Bertoin, Chaumont, Doney and others help us justify the claim
that (X,Pl) as a Doob h-transform is the result of "conditioning" X to
stay non-negative. Their final conclusion is

lim IP; (F(Xs,5 <t),t <eqleg <79) = P (F(Xs,s <))
P
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Lévy processes conditioned to stay positive

m Assume that X does not drift to —oo under P.
m Define V(z) = V(R4 [0, z]), for z > 0. This function is invariant

/V Po(X: € 2379 >t)=V(z), a>0.

m We can define a new law P on the space of non-negative cadlag paths
initalized at « > 0 via the semi-group

PL(X; € dz2) = P.(X; € z;75 > t),
the h-transform of P, (X, € z;7, > t) via the invariant function V()

m Work of Bertoin, Chaumont, Doney and others help us justify the claim
that (X,Pl) as a Doob h-transform is the result of "conditioning" X to
stay non-negative. Their final conclusion is

lim IP; (F(Xs,5 <t),t <eqleg <79) = P (F(Xs,s <))
P

m Moreover, in the sense of weak convergence with respect to the Skorohod
topology, they have also shown that P' := lim, o P, is well defined.
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m The Tanaka-Doney pathwise construction of (X, PT) from (X,P) replaces
excursions of X from X by their time-reversed dual.

R

| W

m We have also that

1
]P)T|.7:t = ﬁﬂ|]‘-t7 t>0.

Xt)

Where n is the excursion measure for X reflected in the infimum.
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The quintuple law at last passage

Let
)_()t =inf{X,:s>t}

be the future infimum of X,
D =inf{s>t: X, — X =0}
—t —t

is the right end point of the excursion of X from its future infimum straddling
time ¢. Now define the last passage time

U, =sup{s >0: Xy <z}
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|—A quintuple law

Theorem
Suppose that X is a Lévy process which does not drift to —oco. For s,t > 0,

O<y<z, w>u>0,
P(D —U, edt, , Xu, —x € du, © — Xy, - € dy, )

U,

=V (ds,z — dy)V (dt,w — du)II(dw + y)

where the equality hold up to a multiplicative constant.

—=Aal s ooo
e .
-

| VW
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Spectrally negative LP

We will assume II(0, c0) = 0, and that X is not monotone.
m E(e’*1) < 0o because / ¥ M(dz) + [~ eP*II(dz) < oo
1

—_———
=0

m U is well defined and analytical on {S(2) < 0}, IE(exp{AX1}) = ¥,

2
P(A) = —¥(—id) = ad + %AQ +/ N — 1 = Ale_ny1(da).

(=00,0)
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Spectrally negative LP

We will assume II(0, c0) = 0, and that X is not monotone.
m E(e’*1) < 0o because / ¥ M(dz) + [~ eP*II(dz) < oo
1

—_———
=0

m U is well defined and analytical on {S(2) < 0}, IE(exp{AX1}) = ¥,

2
P(A) = —¥(—id) = ad + %AQ +/ N — 1 = Ale_ny1(da).

(—00,0)
m By Holder's inequality 1) is convex on [0, 00), ¥(0) = 0, ¥(c0) = oo and
Eo(X1) = ¢'(0+).

Figure: Typical shape of 9. Black ¢/(0+) < 0, Red ¥/40+) > 0.
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Lemma

For ¢ > 0, let ®(q) be the largest solution to 1{)(\) = q. The continuous
increasing process Sy = sup{Xs, s < t} is the local time at O for the process
reflected R. Its right continuous inverse

i =inf{t > 0: X; >z}, x>0,
is subordinator with Laplace exponent ®,
E (exp{—f7}) = exp{—2®(0)}, B 20.
If X drifts towards —co, T is killed with rate ®(0).

Proof.

The process My = exp{®(3)X: — t(} is a Martingale (the Wald martingale of
®(B)). So is the process th;v and it is bounded by e®(®? By a Dominated
convergence argument we get

1:E(eﬁr6757;), xz > 0.
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When X is Brownian motion it is a consequence of the reflection principle that
71 is an 1/2-stable subordinator.
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m The absence of positive jumps implies that the upward ladder height

processHy = S; 1 =1, 1 > 0.
t
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m The absence of positive jumps implies that the upward ladder height
processHy = S; 1 =1, 1 > 0.
t

m The Laplace exponent k(-, ) is
—logE (exp{~aL; ' — BH.}) = x(a, f) = &(a) + 5,

for all o, 3 > 0.
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m The absence of positive jumps implies that the upward ladder height
processHy = S; 1 =1, 1 > 0.
t

m The Laplace exponent k(-, ) is
—logE (exp{~aL; ' — BH.}) = x(a, f) = &(a) + 5,
for all o, 3 > 0.

m The downward ladder heigh process has Laplace exponent

a—V(3)

R(a,ﬁ):m, Oé,ﬂ>0
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Scale functions

For each ¢ > 0, the, so-called, g-scale function W@ : R — [0, 00) is defined by
W@ () =0 for z < 0 and elsewhere continuous and increasing satisfying

® _Beyr() _ 1
/o eTWElee = Sy

for all 8 sufficiently large (¢(8) > q).
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Scale functions

For each ¢ > 0, the, so-called, g-scale function W@ : R — [0, 00) is defined by
W@ () =0 for z < 0 and elsewhere continuous and increasing satisfying

® _Beyr() _ 1
/o eTWElee = Sy

for all 8 sufficiently large (¢(8) > q).
Scale functions are fundamental to virtually all fluctuation identities concerning

spectrally negative Lévy processes.
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Scale functions

For each ¢ > 0, the, so-called, g-scale function W@ : R — [0, 00) is defined by
W@ () =0 for z < 0 and elsewhere continuous and increasing satisfying

* —Bayy (@) _ 1
e "W\ (z)dr = ————

/0 YV(B) —q
for all 8 sufficiently large (¢(8) > q).
Scale functions are fundamental to virtually all fluctuation identities concerning
spectrally negative Lévy processes.
Let 7, =inf{t > 0: X; < a}, 7,7 =inf{t > 0: X; > b}, a,b € R. We have
the classical identity
W(‘”(x)

.
Bole™ 1t o)) = Wi ()

forq>0,0<z<a.
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Applications in:
m ruin theory (first appearance in Tackacs (1966), Zolotarev (1964)),

W(z)
W(o0)’

P.(ry <o0)=1-— W (o) = 1/9'(0+) € (0, 00).
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Applications in:
m ruin theory (first appearance in Tackacs (1966), Zolotarev (1964)),

W(z)
W(o0)’

P.(ry <o0)=1-— W (o) = 1/9'(0+) € (0, 00).

fluctuation theory of Lévy processes,
optimal stopping,

optimal control,

queuing and storage models,
branching processes,

insurance risk and ruin,

credit risk,

fragmentation.
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Proof of the two sided exit formula ¢ = 0 and X; — o a.s.
W(x)

W(a)

For y >0 let hy =sup{(S — X)7,” +t,0<t<7f -7l },

]PI(T;L <7 )=

P(ry o <75,) =P #{hy >y+z, yc[0,a—2z]}=0),

By the Poissonnian structure of the excursions this is equal to

exp{—/[ )dyl{ye[o,ax]}/n(de)l{h<e>>y+x>}
0,00 D

a+x
= exp{—/ dyn(h > y)}.
Make a — oo, to get that
P(~L, < 0) = P(r7, = 00) =exp{— [ dym(h> )},

and verify that this has the right Laplace transform.
For a general X and a use a chance of measure. ]
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