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Lévy processes

Introduction

Lévy processes are closely related to Random walks

Let Sn, n ≥ 0 be a random walk

S0 = 0, Sn =

nX
k=1

Yk, n ≥ 1,

with (Yi)i≥1 i.i.d. Rd-valued r.v.

{Sn, n ≥ 0} has independent increments. For any n, k ≥ 0, the r.v.
Sn+k − Sn is independent of (S0, S1, . . . , Sn).

{Sn, n ≥ 0} has homogeneous increments. For any n, k ≥ 0, the r.v.
Sn+k − Sn =

Pn+k
i=n+1 Yi has the same law as

Pk
i=1 Yi = Sk, that is

IP (Sn+k − Sn ∈ dy) = IP(Sk ∈ dy), on Rd .

⇒ S is Markov chain, its law is totally characterised by the law of Y1, central
in the theory of stochastic processes...
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Definition
A Rd-valued stochastic process {Xt, t ≥ 0} is called a Lévy process if

it has right continuous left limited paths,

it has independent increments, i.e. for any n ≥ 1 and
0 ≤ t1 < t2 < · · · < tn <∞ the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent

has stationary increment, i.e. for every s, t ≥ 0 the law of Xt+s −Xt is
equal to that of Xs.
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Introduction

Examples

Drift process: the deterministic process {Xt = at, t ≥ 0}, its characteristic
function given by

E(ei<λ,Xt>) = exp{−(−iλat)}, λ ∈ R .

Poisson process: let {ei, i ≥ 0} i.i.d.r.v. exponential r.v. c > 0, and
Sn =

Pn
i=0 ei, n ≥ the random walk associated to it. The counting

process {Nt, t ≥ 0} defined by

Nt = n if and only if Sn ≤ t < Sn+1, t ≥ 0.

The independence and loss of memory imply {Nt, t ≥ 0} is a Lévy process
and Nt follows a Poisson law with parameter tc for t > 0.

An useful fact.
For b 6= 0, the following processes

bNt − bct, t ≥ 0,

and
(bNt − bct)2 − bct, t ≥ 0,

are martingales. (Use IE(Nt) = ct, V ar(Nt) = ct.)
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Compound Poisson process: {Yi, i ≥ 0} i.i.d. Rd-valued r.v. with common
distribution F , {Zn, n ≥ 0} the random walk associated to it, and
{Nt, t ≥ 0} an independent Poisson process. The process

Xt = ZNt , t ≥ 0,

is a Lévy process called Compound Poisson process. The uni-dimensional
law of X is the so called compound Poisson law with parameters (tc, F ).
The characteristic function of Xt is given by

E(ei<λ,Xt>) = exp{−t
Z

R
(1− ei<λ,x>)cF (dx)}, λ ∈ R .

E(ei<λ,Xt>) =
X
n≥0

IP(Nt = n) E(ei<λ,Sn> | Nt = n)

=
X
n≥0

(ct)n

n!
e−ctE(ei<λ,Y1>)n = e−ct

X
n≥0

1

n!

 Z
Rd \{0}

ei<λ,x>ctF (dx)

!n
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3.1. Caso 1:
R

R ⇧(dx) <1.

En este caso, la martingala desaparece y el proceso es simplemente un Browniano más un Poisson
compuesto y un drift. Los ejemplos anteriores muestran cómo generar el Browniano estándar y el proceso
de Poisson, el cual en este caso tiene intensidad ⇧(R) y ley de saltos ⇧(dx).
Una vez generado los procesos anteriores, Xt se genera como la suma. El ejemplo se ve en el siguiente
código.

#######################################
par(mfrow=c(3,1))
Xt<-3*ttb+Bt-SNt(ttb)
plot(ttb,Bt,type="l",xlab="Tiempo",ylab="",main="Browniano Estándar")
plot(SNt,verticals=FALSE,main="Proceso de Poisson Compuesto",xlab="Tiempo",

ylab="",pch=18,xlim=c(0,T))
#par(mfrow=c(1,1))
saltos<-match( floor(TT/h)*h,ttb)
ks<-length(TT)
plot(ttb[1:saltos[1]],Xt[1:saltos[1]],xlab="Tiempo",ylab="",main="Xt",type="l",

xlim=c(0,T),ylim=c(min(Xt),max(Xt)))
for(j in 2:ks)
{

lines(ttb[(saltos[j-1]+1):saltos[j]],Xt[(saltos[j-1]+1):saltos[j]])
}
lines(ttb[saltos[ks]+1:length(ttb)],Xt[saltos[ks]+1:length(ttb)])
########################################

Figure: Monotone Compound Poisson
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Figure: Non-monotone Compound Poisson
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Standard Brownian Motion: A real valued Lévy process {Bt, t ≥ 0} is
called a standard Brownian motion if for any t > 0, Bt follows a Normal
law with mean 0 variance t,

IP(Bt ∈ dx) =
1√
2πt

exp{−x
2

2t
}dx, x ∈ R;

and its characteristic law is given by

IE(eiλBt) = exp{−tλ
2

2
}, λ ∈ R .
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Linear Brownian Motion Let B = (B1, B2, . . . , Bd)T be d-independent
standard Brownian motions, a ∈ Rd, and σ a d× d-matrix. The process
Xt = at+ σBt, t ≥ 0, is a Lévy process. For each t ≥ 0, Xt is a Gaussian
vector with mean, IE(Xi

t) = a(i)t, and covariance matrix

IE
“

(X
(i)
t − a

(i)t)(X
(j)
t − a

(j)t)
”

= σσTi,j , i, j ∈ {1, . . . , d}.

Its Fourier transform IE (exp{i < λ,Xt >}) = exp{−tΨ(λ)}, is

Ψ(λ) = − < a, λ > +
1

2
λTΣλ = − < a, λ > +

1

2
||σλ||2, λ ∈ Rd .

With Σ = σσT the covariance matrix; it is positive definite (xTΣx ≥ 0,
x ∈ Rd) and symmetric. Xt ∼ N(at, tΣ).
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Exercise

Any linear transformations of a Lévy process is a Lévy process.

Any linear combination of independent Lévy processes is a Lévy process.
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Lemma
The finite dimensional distributions of a Lévy process are totally characterised
by the one dimensional distributions.

Proof.
Let n ≥ 1, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, and λ1, . . . , λn ∈ Rd we have that

E (exp {i < λ1, Xt1 > +i < λ2, Xt2 > + · · ·+ i < λn, Xtn >})

= E
`
exp

˘
i < λ1, (Xt1 −Xt0) > + · · ·+ i < λn, (Xtn −Xtn−1) >

¯´
=

nY
j=1

E
`
exp

˘
i < λj , (Xtj −Xtj−1) >

¯´
=

nY
j=1

E
`
exp

˘
i < λj , (Xtj−tj−1) >

¯´
with t0 = 0 and λj =

Pn
k=j λk. This is true for all n ≥ 1,

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, λ1, . . . , λn ∈ R . This is enough since the Fourier
transform characterises the law of the vectors (Xt1 , . . . , Xtn).
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One dimensional distributions

Lemma
For every t > 0 we have

IE(exp{i < λ,Xt >}) = IE(exp{i < λ,X1 >})t

Proof.
If t is an integer n, by independence and stationarity of the increments

IE(ei<λ,Xt>) =
“
IE(ei<λ,X1>)

”n
, λ ∈ Rd .

Now, if t is a rational, say t = p/q, we get

IE(ei<λ,Xp/q>) = IE(ei<λ,X1/q>)p, IE(ei<λ,X1/q>)q = IE(ei<λ,X1>),

IE(ei<λ,Xp/q>) = IE(ei<λ,X1>)p/q.

For t > 0, take {tn, n ≥ 1} rationals ↓ t, the right continuity of X imply“
IE(ei<λ,X1>)

”t
= lim
k→∞

“
IE(ei<λ,X1>)

”tk
= lim
tk↓t

IE(ei<λ,Xtk>) = IE(ei<λ,Xt>)

.
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Infinite divisibility

Recall that a Rd-valued r.v. Z, equivalently its law, is called infinitely divisible
is for every n ≥ 1 there exists {Y1,n, Y2,n, . . . , Yn,n} i.i.d. such that Z has the
same law as {Y1,n + Y2,n + . . .+ Yn,n}.

Z
Law
= Y1,n + Y2,n + . . .+ Yn,n.
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Examples

For r > 0, p ∈ (0, 1), Z is negative binomial-(r, p) distributed if

IP(Z = k) =

 
n+ r − 1

k

!
(1− p)kpr, k = 0, 1, 2, . . . .

If r integer, X is the number of Bernoulli experiments necessary to make r
success.

IE
“
e−λZ

”
=

„
p

1− (1− p)e−λ

«r
, λ ≥ 0.

For n ≥ 1 Zi,n ∼ negative binomial-(r/n, p).

Gamma r.v. Zp,θ ∼ Gamma(p, θ), with p > 0, θ > 0,

IP(Zp,θ ∈ dz) =
θp

Γ(p)
zp−1 exp{−θz}dz,

IE(exp{−λZp,θ}) =

„
θ

θ + λ

«p
= IE(exp{−λZp/n,θ})n,
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Examples

Gaussian, Z ∼ N(a,Σ), then Zi,n ∼ N( a
n
, 1√

n
Σ).

It is not always so easy to verify that a r.v. is infinitely divisible. Student
t-distribution, Pareto distribution, F -distribution, Gumbel distribution,
Weibull, log-normal distribution, logistic distribution, half-Cauchy
distribution, are all i.d. See Sato’s book on Lévy processes and infinitely
divisible distributions or Van Harn and Steutel Infinite divisibility on the
real line. This an active topic of research.
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Infinitely divisible laws as limits

A double sequence of r.v. (Zn,k, k ∈ {1, . . . , rn}, n ≥ 1) on Rd is a null array if
for each n the r.v.

(Zn,k, k ∈ {1, . . . , rn})

are independent, and

lim
n→∞

max
1≤j≤rn

IP(|Zn,k| > ε) = 0, ε > 0.

Fact Let Sn =
Prn
k=1 Zn,k, n ≥ 1. If for some bn ∈ Rd, Sn − bn converges in

distribution towards a r.v. with law µ, then µ is an infinitely divisible law.
(Khintchine)
Fact The class of infinitely divisible laws is closed under linear transformations,
convolutions and weak convergence. Every infinitely divisible law can be
obtained as a weak limit of infinitely divisible laws.
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Why infinite divisibility?

Lemma
Let X be a Lévy process. For t > 0, Xt is an infinitely divisible distribution.

Proof.
The property of independent and stationary increments implies that for n ≥ 1
the random variables (X t

n
, X 2t

n
−X t

n
, . . . , Xnt

n
−X(n−1) t

n
), are independent

and identically distributed. The claim follows from the observation:

Xt =
nX
k=1

(X kt
n
−X (k−1)t

n

)



17/ 97

Lévy processes

Infinite divisibility

Lévy–Khintchine’s formula

Theorem (Lévy–Khintchine’s formula)

Let {Xt, t ≥ 0} be a Rd valued Lévy process. For t > 0, the law of Xt is
infinitely divisible. Furthermore

IE(ei<λ,Xt>) = e−tΨ(λ), λ ∈ Rd,

where Ψ : Rd → C is the characteristic exponent of X and

Ψ(λ) = −i< a, λ >+ ||QλT ||2/2

+

Z
{x∈Rd,|x|∈(−1,1)\{0}}

(1− ei<λ,x> + i < λ, x >)Π(dx)

+

Z
{x∈Rd,|x|∈(−1,1)c}

(1− ei<λ,x>)Π(dx)

with a ∈ Rd, Q a d× d matrix, and Π is a measure on Rd \{0} such thatR
R \{0}(1 ∧ ||x||

2)Π(dx) <∞. a,Q,Π are the linear term, Gaussian term and Π

is the Lévy measure, respectively. The matrix Σ = QTQ is the covariance
matrix. The triplet (a,Σ,Π) characterizes the law of X under IP.
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Infinite divisibility

Lévy–Khintchine’s formula

Remark
Π is only required to be σ-finite, nevertheless it is necessarily finite over any set
that does not contain a ball of radius r > 0 around 0.

Indeed, the fact that the function x 7→ x2

1+x2 is increasing implies that

Π(z ∈ Rd : ||z|| > r) ≤ 1 + r2

r2

Z
Rd

||z||2

1 + ||z||2 Π(dz)

≤ 1 + r2

r2

Z
Rd

1 ∧ ||z||2Π(dz) <∞
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Lévy–Khintchine’s formula

Remark
The term < λ, z > 1{||z||<1} ensures

1− ei<λ,z> + i < λ, z > 1{||z||<1} = O(||z||2),

and that it remains bounded for ||z|| ≥ 1. Then the integralZ
{x∈Rd,|x|>0}

(1− ei<λ,x> + i < λ, x >)Π(dx) <∞.

Change h : Rd → Rd, so that

1− ei<1,z> + i < 1, h(z) >= O(||z||2) ∧ 1.

Same Π and Q, but a changes to ea
− i < ea, λ > +

Z
{x∈Rd,|x|>0}

(1− ei<λ,x> + i < λ, h(x) >)Π(dx)

with ea = a−
R
{x∈Rd,||x||<1}(x− h(x))Π(dx).
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Lévy–Khintchine’s formula

Some other choices for h are

h(x) =
1

1 + ||x||2

When d = 1, h(x) =
sinx

x
h(x) = |ex − 1| ∧ 1.
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Lévy–Khintchine’s formula: examples

Compound Poisson process

Π(dx) = cF (dx),

E(ei<λ,Xt>) = exp{−t
Z

R
(1− ei<λ,x>)cF (dx)}, λ ∈ R.

Lineal Brownian motion Π ≡ 0, IE (exp{i < λ,Xt >}) = exp{−tΨ(λ)},

Ψ(λ) = − < a, λ > +
1

2
λTΣλ = − < a, λ > +

1

2
||σλ||2, λ ∈ Rd .

With a ∈ Rd and Σ = σσT the covariance matrix, which is positive
definite and symmetric.
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Stable processes

Stable Lévy processes

Lévy processes with the scaling property: ∃α > 0 such that ∀c > 0

(cXtc−α , t ≥ 0)
Law
= (Xt, t ≥ 0).

In this case we X is said α-stable. This is equivalent to require that the
characteristic exponent Ψ, satisfy

Ψ(kλ) = kαΨ(λ),

for all k > 0 and for all λ ∈ Rd . Then

Ψ(λ) = ||λ||αΨ

„
λ

||λ||

«
, λ ∈ Rd .

When d = 1

Ψ(λ) = |λ|α(eπiuα( 1
2−ρ)1(λ>0) + e−πiuα( 1

2−ρ)1(λ<0)), λ ∈ R .

for λ ∈ IR, where ρ = IP(X1 > 0).
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Stable processes

ρ = IP(X1 > 0) and the Lévy measure

When α = 2, X is a Brownian motion and hence ρ = 1/2. When α = 1 the
self-similarity holds only when ρ = 1/2.
The parameter ρ is bound to 0 < αρ, α(1− ρ) ≤ 1.
For 0 < α < 1, ρ ∈ [0, 1] and for 1 < α < 2, ρ ∈ [1− 1

α
, 1
α

], and ρ = α−1, if the
process X has no positive jumps, and ρ = 1− 1/α if it has no negative jumps.
When 0 < α < 2, we have that Q = 0 and its Lévy measure is given by

Π(dx) =

8><>:
c+dx

x1+α if x > 0, α 6= 1
c−dx

|x|1+α if x < 0, α 6= 1
cdx
|x|2 , if α = 1, ρ = 1/2;

with

c+ = Γ(1 + α)
sin(απρ)

π
, c− = Γ(1 + α)

sin(απ(1− ρ))

π
,

for some ρ ∈ [0, 1],
Necessarily 0 < α < 2 because of the integrability condition on Π.
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Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.

Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.
In fact it is enough to verify the convergence of the one dimensional
distributions.
The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.
For α = 2, a NASC is that

Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



24/ 97

Lévy processes

Infinite divisibility

Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.
Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.

In fact it is enough to verify the convergence of the one dimensional
distributions.
The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.
For α = 2, a NASC is that

Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



24/ 97

Lévy processes

Infinite divisibility

Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.
Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.
In fact it is enough to verify the convergence of the one dimensional
distributions.

The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.
For α = 2, a NASC is that

Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



24/ 97

Lévy processes

Infinite divisibility

Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.
Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.
In fact it is enough to verify the convergence of the one dimensional
distributions.
The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.
For α = 2, a NASC is that

Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



24/ 97

Lévy processes

Infinite divisibility

Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.
Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.
In fact it is enough to verify the convergence of the one dimensional
distributions.
The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.

For α = 2, a NASC is that
Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



24/ 97

Lévy processes

Infinite divisibility

Stable processes and Domain of attraction

Stable processes as limits of centered renormalized r.w.

Assume (Sn, n ≥ 0) is a r.w. for which there exists sequences an, bn such
that

Y nt =
Ynt − tan

bn
, t ≥ 0,

converges weakly in the sense of finite dimensional distributions towards a
non-degenerated process X.
Then X is an α-stable process and bn = nα`(n), with ` a slowly varying
function, viz. `(tc)/`(t)→ 1 as t→∞.
In fact it is enough to verify the convergence of the one dimensional
distributions.
The convergence holds also in Skorohod’s topology.

For 0 < α < 2 a NASC is that 1− F (x) + F (−x) ∼ 2− α
α

x−αL(x), with
L an slowly varying function, and

1− F (x)

1− F (x) + F (−x)
→ p,

F (−x)

1− F (x) + F (−x)
→ q,

as x→∞.
For α = 2, a NASC is that

Z x

−x
y2F (dy) ∼ L(x) as x→∞, with L slowly

varying.



25/ 97

Lévy processes

Subordinators

Subordinators

Definition
A Lévy process is a subordinator if it has non-decreasing paths.



26/ 97

Lévy processes

Subordinators

Lemma
If X is a subordinator the characteristic exponent Ψ, can be extended
analytically to the semi-plan =(z) ∈ [0,∞[. Then the law of a subordinator
characterized by the Laplace exponent φ(λ) : R+ → R+ defined by

E(e−λX1) = e−φ(λ), λ ≥ 0,

where φ(λ) = Ψ(iλ). Moreover Q = 0, Π(−∞, 0) = 0,
R∞

0
1 ∧ xΠ(dx) <∞,

and there is a ≥ 0 s.t.

φ(λ) = aλ+

Z ∞
0

(1− e−λx)Π(dx), λ ≥ 0.
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Subordinators

Examples

Example (Gamma Subordinator)

(Xt, t ≥ 0) is a Gamma(b, a) subordinator if its one dimensional law is
Gamma(at, b), that is

IP(Xt ∈ dx) =
bat

Γ(at)
xate−bxdx, x ≥ 0.

Its Laplace transform takes the form

IE(e−λXt) =

„
b

b+ λ

«at
= exp {−t(a log((b+ λ)/b)} , λ ≥ 0.

Frullani’s formula, establishes

log(x/y) =

Z ∞
0

(e−yt − e−xt)dt
t
, x, y > 0.

Then

φ(λ) =

Z ∞
0

(1− e−λt)ae
−bt

t
dt, λ ≥ 0.
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Subordinators

Examples

###### Mediante el semigrupo #########
SimXt<-function(T,h)
{

m<-length(seq(0,T,h))
aux<-runif(m)
aux2<-c()
for(j in 1:m){
f<-function(x) Pt(x,h)-aux[j]
aux2[j]<-uniroot(f,c(0,1))$root

}
Aux3<-c(0,aux2[-1])
Xt<-cumsum(Aux3)
return(Xt)

}
######################################

El siguiente ejemplo es la simulación de un subordinador Gamma, en este caso, Ph es una ley Gamma(ah, b).

######################################
Pt<-function(x,h)
{

a<-3
b<-3
return(pgamma(x,shape=a*h,scale=1/b))

}

T<-10
h<-.005
Xt<-SimXt(T,h)
ttb<-seq(0,T,h)
plot(ttb,Xt,xlab="Tiempo",ylab="",main="Subordinador Gamma",pch=18, cex=.7)

0 2 4 6 8 10

0
2

4
6

Subordinador Gamma

Tiempo
Figure: A Gamma subordinator
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Subordinators

Examples

Example

Let X be an α-stable subordinator with index α ∈ (0, 1). Its Laplace exponent
is

φ(λ) = λα =
α

Γ(1− α)

Z ∞
0

(1− e−λx)
dx

x1+α
, λ ≥ 0.

(Integration by parts)

Lemma
For t > 0, IE(Xt) =∞. Furthermore,

IE(Xβ
t ) <∞ if and only if β < α,

if and only if Z ∞
1

xβ
dx

x1+α
<∞.
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Subordinators

Examples

IE(Xβ
1 ) =

β

Γ(1− β)
IE
„Z ∞

0

(1− e−yX1)
dy

y1+β

«
=

β

Γ(1− β)

Z ∞
0

(1− IE
“
e−yX1

”
)
dy

y1+β

=
β

Γ(1− β)

Z ∞
0

(1− e−y
α

)
dy

y1+β

=
β

αΓ(1− β)

Z ∞
0

(1− e−z) dz

z1+ β
α

=

(
α
β

Γ
`
1− β

α

´
, if β < α,

∞, if β ≥ α.

(1)

Although the calculation is illustrative, this is a consequence of a more general
fact.
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Moments

A criteria for the moments under IE in term of Π.

A function g : Rd → R+ is sub-multiplicative if ∃C > 0, s.t.

g(x+ y) ≤ Cg(x)g(y), x, y ∈ Rd .

The functions g(x) = |x|β , β > 0 g(x) = exp δx, are sub-multiplicative.

Theorem
Let g be a measurable function, sub-multiplicative, and bounded over compact
intervals. The following are equivalent

IE(g(Xt)) <∞, for some t > 0,

IE(g(Xt)) <∞, for all t > 0,Z
{|x|>1}

g(x)Π(dx) <∞.
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Moments

Three important martingales

If IE(|X1|) <∞, then IE(Xt) = t(a+
R
|x|>1

xΠ(dx)), and the process

M
(1)
t = Xt − t IE(X1), t ≥ 0,

is a Martingale.

If IE(|X1|2) <∞, then IE(|(Xt − t IE(X1))|2) = t(σ2 +
R
|x|>0

x2Π(dx)),

and the process

M
(2)
t = (Xt − t IE(X1))2 − t(σ2 +

Z
|x|>0

x2Π(dx)), t ≥ 0,

is a Martingale.

If β ∈ C is such that IE(e<β,X1>) <∞ then the process

M
(β)
t =

e<β,Xt>

IE(e<β,X1>)t
, t ≥ 0,

is a (complex)-Martingale. When β ∈ R, this is the so-called Wald
Martingale.
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Lévy proceses as Markov processes

The strong Markov property

We will denote by Ft = σ(Xs, s ≤ t)∨N , for t ≥ 0, with N the null-sets of IP .

Lemma
A Lévy process is a strong Markov process. We have that for every T finite
stopping time the pre-T -process (Xs, s ≤ T ) is independent of the
post-T -process, ( eXs = Xs+T −XT , s ≥ 0), and the latter has the same law as
(Xu, u ≥ 0).

Remark
For x ∈ R, we will denote by IPx the push forward measure of the transform
x+X. This is the law of X started at x0 = x.
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Lévy proceses as Markov processes

Idea of Proof.
For T deterministic, it is enough to show that for for m ≥ 1, and
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t and 0 ≤ s1 ≤ · · · ≤ sm the vectors

(Xt1 , . . . , Xtn) y ( eXs1 , . . . , eXsm)

are independent and the second has the same law as (Xs1 , . . . , Xsm).

For
consider the Fourier transforms and show that

IE

 
exp

(
i

 
nX
j=1

λjXtj +

mX
k=1

βk eXsk
!)!

= IE

 
exp

(
i

 
nX
j=1

λjXtj

!)!
IE

 
exp

(
i

 
mX
k=1

βkXsk

!)!
,

(2)

for any (λ1, . . . , λn) ∈ Rn, (β1, . . . , βm) ∈ Rm, n,m ≥ 1.
The argument for T taking countably many values is done by considering the
events {T = ai}. General T by approximation.
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Poisson measures

Definition
Let (Θ,B, ρ) a space of σ-finite measure. A family of N∪{∞}-valued random
variables (N(B), B ∈ B) is called a Poisson measure with intensity measure ρ,
if

(i) N(B) ∼Poisson ρ(B), with the assumption that ρ(B) = 0 iff N(B) = 0
a.s. and ρ(B) =∞ iff N(B) =∞.

(ii) if Bj ∈ B, j ∈ {1, . . . , n} are disjoint sets then N(B1), . . . , N(Bk) are
independent.

(iii) For ω ∈ Θ the set function B 7→ N(B)(ω) is a measure on (Θ,B).

As a consequence:

IE(N(B)) = ρ(B) = V ar(N(B)), B ∈ B.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Main Theorem

For a t > 0 we denote Xt− = lims↑tXs, which exists and is finite by the
assumption of having càdlàg paths, and ∆Xt = Xt −Xt−.
For B ∈ B(R+)⊗ B(Rd \{0}) we define

J(B,ω) = #{s > 0 : (s,∆Xs) ∈ B}, ω ∈ Ω.

Theorem (Lévy-Itô decomposition-I)

Let X be a Rd valued Lévy process with characteristics (a,Σ,Π) and Λ denote
the Lebesgue measure on [0,∞). We have :

(i) The familly (J(B), B ∈ B(R+)⊗ B(Rd \{0}) is a Poisson random
measure with intensity measure Λ⊗Π.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Main Theorem

Theorem (Lévy-Itô decomposition-II)

(ii) There is a set Ω1, w.p.1, such that for ω ∈ Ω1 the limit

X
(0)
t (ω) = lim

ε↓0

Z
(0,t)×Dε,1

x (J(dsdx, ω)− Λ⊗Π(dsdx))

with Dε,1 = {x : ||x|| ∈ (ε, 1)} and D1 = {x : ||x|| ≥ 1}, is well defined,
and the convergence holds uniformly over bounded intervals. The process
X(0) is a Lévy process with characteristics (0, 0,Π1{0<|x|<1}), and its
characteristic exponent is

Ψ(0)(λ) =

Z
0<|x|<1

(1− ei<λ,x> + i < λ, x >)Π(dx), λ ∈ Rd

This process is a martingale and has exponential moments of any order.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Main Theorem

Theorem (Lévy-Itô decomposition-III)

(iii) The process X1
t =

R
(0,t)×D1

xJ(dsdx, ω), t ≥ 0, is a compound Poisson
process with intensity c = Π{x : ||x|| > 1} and jump distribution

F (dx) =
1

c
Π(dx)1{||x||≥1}.

Its characteristic exponent is

Ψ(1)(λ) =

Z
{x∈Rd,|x|∈(−1,1)c}

(1− ei<λ,x>)Π(dx), λ ∈ Rd .

(iii) The process (X
(2)
t = Xt −X(1)

t −X
(0)
t , t ≥ 0) has continuous paths a.s.

and its characteristic exponent is

Ψ(2)(λ) = −i < a, λ > +
1

2
λTΣλ, λ ∈ Rd .

(iv) The processes X(0), X(1) and X(2) are independent.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Main Theorem

Corollary

Every Lévy process can be written as

linear Brownian motion + Compound Poisson with |jumps| ≥ 1

+ Square integrable Martingale with |jumps| < 1.

Every Lévy process is a semi-martingale.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

Corollary

A Lévy process has countably many discontinuities a.s.

When Π(Rd \{0}) <∞, the first jump time, T1, follows and exponential
distribution of parameter Π(Rd \{0}).

Proof.
For t > 0, n > 1,

#{s : (s, |∆Xs|) ∈ (0, t]× (
1

n
,∞)} ∼ Poisson(tΠ{x : ||x|| > n−1}) <∞.

IP(T1 > t) = IP(J(0, t]× Rd = 0) = exp{−tΠ(Rd \{0})}.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

For ω ∈ Ω the measure J()(ω) can be written as

J(B)(ω) =
X
t≥0

1{(t,∆t(ω))∈B},

where ∆t(ω) are the spatial coordinates in Rd \{0} of the points t for which
J({t} × Rd \{0})(ω) = 1, that is those t for which
∆t(ω) = Xt(ω)−Xt−(ω) 6= 0. We will call

((t,∆t), t ≥ 0)

the Poisson point process of jumps of X.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

For A ⊂ Rd \{0} measurable and such that Π(A) <∞, the process
Nt(A) = J((0, t]×A) is a Poisson process. Moreover,

J((0, t]×A)− tΠ(A) =

Z
(0,t]×Rd \{0}

x1{x∈A} (J(dsdx)− dsΠ(dx)) , t ≥

is a Martingale.

Assume d = 1. Let n ≥ 1, 1 ≤ j ≤ n, Aj ⊂ R \{0} measurable, such that
Π(Aj) <∞, and disjoints; and cj ∈ R the process

Mn
t =

Z
(0,t]×Rd \{0}

X
1≤j≤n

cjx1{x∈Aj} (J(dsdx)− dsΠ(dx)) , t ≥ 0

is a Martingale. In fact, the process

(Mn
t )2 − t

Z
R \{0}

X
1≤j≤n

c2jx
21{x∈Aj}Π(dx),

is a Martingale. (Similar result for general d.)
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

For A ⊂ Rd \{0} measurable and such that Π(A) <∞, the process
Nt(A) = J((0, t]×A) is a Poisson process. Moreover,

J((0, t]×A)− tΠ(A) =

Z
(0,t]×Rd \{0}

x1{x∈A} (J(dsdx)− dsΠ(dx)) , t ≥

is a Martingale.
Assume d = 1. Let n ≥ 1, 1 ≤ j ≤ n, Aj ⊂ R \{0} measurable, such that
Π(Aj) <∞, and disjoints; and cj ∈ R the process

Mn
t =

Z
(0,t]×Rd \{0}

X
1≤j≤n

cjx1{x∈Aj} (J(dsdx)− dsΠ(dx)) , t ≥ 0

is a Martingale. In fact, the process

(Mn
t )2 − t

Z
R \{0}

X
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c2jx
21{x∈Aj}Π(dx),
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

Lemma (Campbell’s formula)

For f : Rd \{0} → R we have that for t > 0X
s≤t

|f(s,∆s)|,

is finite a.s. if and only if
R t

0
ds
R

Rd \{0} 1 ∧ |f(s, y)|Π(dy) <∞. In that case

IE

0@X
s≤t

f(s,∆s)

1A =

Z t

0

ds

Z
Rd \{0}

f(s, y)Π(dy),

and the exponential formula holds

IE

0@exp{iλ
X
s≤t

f(s,∆s)}

1A = exp{−
Z t

0

ds

Z
Rd \{0}

“
1− eiλf(s,y)

”
Π(dy)}.

If f is positive the above formula remains valid if iλ is replaced by −λ.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

A first consequence

If Π is a a Lévy measure on (0,∞) such thatZ
(0,∞)

1 ∧ xΠ(dx) <∞,

then for any a ≥ 0 the process

Xt = at+
X
s≤t

∆s, t ≥ 0,

is finite a.s., has independent and stationary increments, the paths are non
decreasing and according to the exponential formula its Laplace transform is
given by

IE(e−λXt) = exp{−at− t
Z ∞

0

(1− e−λx)Π(dx)}, λ ≥ 0.

Every subordinator can be build in this way.
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Lévy-Itô decomposition for Lévy processes and Compensation formula

Master formula

Lemma (Compensation or Master formula)

Let (t,∆t, t ≥ 0) the Poisson point process of jumps of X. For H measurable,
left continuous and positive valued functional, the identity

IE

 X
t>0

H((Xu, u < t),∆t)

!

= IE

 Z ∞
0

dt

Z
Rd \{0}

Π(dy)H((Xu, u < t), y)

!
,

holds. If IE
“R t

0
ds
R

Rd \{0}Π(dy)H

2

((Xu, u < s), y)
”
<∞, ∀t > 0, the processZ

s∈(0,t]

Z
Rd \{0}

H((Xu, u < s), y)(J(dsdy)− dsΠ(dy)), t ≥ 0,

is a

square integrable

Martingale,

with quadratic variationR
s∈(0,t]

R
Rd \{0}H

2((Xu, u < s), y)dsΠ(dy)
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s∈(0,t]

R
Rd \{0}H

2((Xu, u < s), y)dsΠ(dy)
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First passage of subordinators

An application to first passage

We will assume that X is a subordinator with characteristics (b,Π).
Let x > 0 and τ+

x = inf{t > 0 : Xt > x}, the first passage time above level x
for X and (Ux, Ox) be the undershoot and overshoot of X at level x,

Ox = X
τ+
x
− x, Ux = x−X

τ+
x −

.

We are interested by the distribution of the random variables (τx, Ux, Ox).
The potential measure of X is defined as the measure

V (dy) := E
„Z ∞

0

ds1{Xs∈dy}

«
, y ≥ 0.

This measure is characterised by its Laplace transform, which is given byZ
[0,∞)

V (dy)e−λy =
1

φ(λ)
, λ > 0.
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First passage of subordinators

Theorem
For any f : R2 → R+ measurable

IE(f(Ux, Ox)1{Ux>0}) =

Z x

0

V (dy)

Z
(0,∞)

Π(dz)f(x− y, y + z − x)1{z>x−y}

For every f : R+ → R+

IE(f(τ+
x )1{Ux>0}) =

Z ∞
0

f(t) IE
`
Π(x−Xt), Xt < x

´
.
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First passage of subordinators

Proof.
On X

τ+
x
> x, τ+

x is the unique instant where Xt− < t and Xt > x, hence

IE
`
f(τx, Ux, Ox)1{Ux>0}

´
= IE

 X
t>0

f(t, x−Xt−, (Xt −Xt−) +Xt− − x)1{Xt>x>Xt−}

!

Now, we apply the compensation formula to get

= IE

 Z ∞
0

dt

Z
(0,∞)

Π(dy)f(t, x−Xt−, y +Xt− − x)1{y>x−Xt−>0}

!
.

The set of discontinuities has zero Lebesgue measure

= IE

 Z ∞
0

dt

Z
(0,∞)

Π(dy)f(t, x−Xt, y +Xt − x)1{y>x−Xt>0}

!
.

Specialize to time or space.
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First passage of subordinators

The creeping case

Theorem
X creeps, viz. P(X

τ+
x

= x) > 0 for some, and hence for all, x > 0, if and only
if b > 0. In that case, for any 0 < t ≤ ∞, the occupation measure

Ut(dy) := E
„Z t

0

ds1{Xs∈dy}

«
, y ≥ 0,

has a continuous and bounded density on (0,∞), ut(y), y > 0. The formula

P(τ+
x ∈ (t, t+ ∆], XTx = x) = b

Z
[0,x)

P(Xt ∈ dy)u∆(x− y), (3)

holds for x > 0, t ≥ 0, ∆ > 0.
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First passage of subordinators

Corollary

Assume b = 0. The r.v. Z τ+
x

0

Π(x−Xt)dt

follows an exponential distribution of parameter 1.

Proof.
Recall that

1 = IE(1{Ux>0}) =

Z ∞
0

IE
`
Π(x−Xt), Xt < x

´
.

Also, for y > 0, IEy(1{Ux>0}) = IE(1{Ux−y>0}) = 1, ∀y ≥ 0, and thus that

IEy

 Z τ+
x

0

Π(x−Xt)

!
=

Z ∞
0

IE
`
Π((x− y)−Xt), Xt < x− y

´
.

By iteration, the following expression equals n!

IE

 Z τ+
x

0

Π(x−Xt)

!n
= n! IE

 Z
1{0<s1...<sn<τ+

x }

nY
i=1

Π(x−Xsi)ds1 · · · dsn

!
.
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First passage of subordinators

The stable case

If X is α-stable subordinator
φ(λ) = λα,

the Lévy measure is Π(dx) = α
Γ(1−α)

dx
x1+α . The renewal measure has Laplace

transform Z
[0,∞)

V (dy)e−λy =
1

φ(λ)
=

1

Γ(α)

Z ∞
0

e−λyyα−1dy.

Thus V (dy) = 1
Γ(α)

yα−1dy, y ≥ 0.

Corollary

For any x > 0 the random variables Ux/x and Ox/Ux are independent, its law
do not depend of x, the former has a Beta(1− α, α) distribution and the latter
has a Pareto distribution on (0,∞) of parameter α.

IE
„
f

„
Ux
x

«
g (Ox/Ux)

«
∝
Z 1

0

duu−α(1− u)α−1f (u)

Z ∞
0

dv

(1 + v)1+α
g (v) ,

the normalising constant is cα = α
Γ(1−α)Γ(α)

.
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Itô’s formula for Lévy processes

Itô’s formula

We know that X is a semi-martingale.

Theorem (Itô’s formula for Lévy processes)

Let F : R×R+ → R, F ∈ C2,1, F (Xt, t) t ≥ 0 is a semi-martingale and

F (Xt, t) = F (X0, 0) +

Z t

s

∂F

∂t
(Xs−, s)ds+

Z t

0

∂F

∂x
(Xs−, s)dXs

+
σ2

2

Z t

0

∂2F

∂x2
(Xs−, s)ds

+
X
s≤t

„
F (Xs, s)− F (Xs−, s)−

∂F

∂x
(Xs−, s)∆Xs

«
.
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Itô’s formula for Lévy processes

F (Xt, t) = F (X0, 0) +Mt + Vt,

where M is a local martingale and V is a bounded variation process, given by

Mt = σ

Z t

0

∂F

∂x
(Xs−, s)dBs

+

Z t

0

Z
|y|<1

F (Xs− + y)− F (Xs−)(J(dsdy)− dsΠ(dy)),

and

Vt =
X
s≤t

(F (Xs, s)− F (Xs−, s)) 1{|∆Xs|≥1} +

Z t

0

LF (Xs, s)ds,

with L the infinitesimal generator of (t,Xt),

LF (x, s) =
∂F

∂t
F (x, s) + a

∂F

∂x
(x, s) +

σ2

2

∂2F

∂x2
(x, s)

+

Z
R \{0}

„
F (x+ y, s)− F (x, s)− y1{|y<1|}

∂F

∂x
(x, s)

«
Π(dy)
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Killed Lévy processes

Killed Lévy processes

Let eX be Lévy process and eq an independent exponential time of parameter
q ≥ 0, where we understand e0 =∞ a.s. We consider the killed Lévy process
as the Rd ∪{−∞}-valued process defined as

Xt =

( eXt, if t < eq

−∞, if t ≥ eq,
t ≥ 0.

−∞ is a cemetery state and we denote ζ the lifetime of X,
ζ = inf{t > 0 : Xt = −∞}.

Lemma
The process X, while alive, has independent and stationary increments. The
lifetime ζ follows an exponential distribution of parameter q.
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Killed Lévy processes

For, it suffices to verify that for any t, s ≥ 0, 0 < t1 < . . . < tn ≤ t,

IE

 "
nY
j=1

e
iλjXtj

#
eiλ(Xt+s−Xt), t+ s < ζ

!

= IE

 "
nY
j=1

e
iλjXtj

#
, t < ζ

!
e−s(q+Ψ(λ)).

(4)

We have

IE
“
eiλ(Xt+s−Xt), t+ s < ζ|t < ζ

”
= e−s(q+Ψ(λ)), t, s ≥ 0, λ ∈ R .

The Lévy-Khinthchine formula can be written as

q + Ψ(λ) = −i < a, λ > +||QλT ||2/2

+

Z
{x∈Rd,|x|∈]−1,1[\{0}}

(1− ei<λ,x> + i < λ, x >)Π(dx)

+

Z
{x∈Rd,|x|∈]−1,1[c}∪{−∞}

(1− ei<λ,x>) (Π(dx) + qδ−∞(dx)) .
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Strong law of large numbers

Strong law of large numbers

Theorem
Let X be a Lévy process on Rd, which is no equal to zero everywhere. If
IE (|X1|) <∞, and IE(X1) = γ, then

lim
t→∞

1

t
Xt = γ, a.s.

If IE(|X1|) =∞, then

lim sup
t→∞

1

t
|Xt| =∞, a.s.

When d = 1, if IE(X1) =∞, then

lim
t→∞

1

t
Xt =∞, a.s.

while, if IE(X1) = −∞, then

lim
t→∞

1

t
Xt = −∞, a.s.
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Strong law of large numbers

Proof.
It is essentially a consequence of the Strong law of large numbers for sums of
i.i.d.r.v. This implies the result along t integer. Then consider
Yn = supt∈[n,n+1] |Xt −Xn|, n ≥ 1. The result will follow from the discrete
version if 1

n
Yn → 0, a.s. For this end, notice these are i.i.d. and it can be

verified that IE(Y1) <∞. The SLLN applied to Y imply

1

n

nX
i=1

Yi −−−−→
n→∞

IE (Y1) .

It follows 1
n
Yn → 0 a.s.
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Strong law of large numbers

Corollary

For d = 1, we have one and only one of the following

lim sup
t→∞

Xt =∞ and lim inf
t→∞

Xt = −∞ a.s.

lim
t→∞

Xt =∞ a.s.

lim
t→∞

Xt = −∞ a.s.



58/ 97

Lévy processes

Strong law of large numbers

There are many other results that describe the asymptotic behaviour of a
Lévy process at infinity that can be inferred from its analogue for random
walks.

It is not always the case that they are obtained by a direct application of
its analogue for random walks. The main complication comes from the
infinitely many small jumps.

The behaviour of a Lévy process at 0 has no analogue in random walks.
This is an active area of research.
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From now on d = 1

From now on d = 1
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Duality and time reversal

For x ∈ R, we denote by IPx the push forward measure of the transformation
x+X under IP . Let bX be the dual Lévy process, defined bybXt = −Xt, t ≥ 0, under IP .

The process bX is a Lévy process with characteristic exponentbΨ(λ) = Ψ(−λ), λ ∈ R .

Lemma
For each t > 0, fixed, the time reversed process {X(t−s)− −Xt, 0 ≤ s ≤ t},
has the same law as the dual process { bXs, s ≤ t} under IP.

Proof.
The time reversed process has independent increments, has cádlág paths. The
law of {X(t−s)− −Xt equals that of −Xs, for any 0 ≤ s ≤ t, under IP .
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Duality and time reversal0.0 0.1 0.2 0.3 0.4 0.5
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Figure: Seen from right to left the jumps change of sign, the increments are still
independent and stationary.
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Duality and time reversal

For t > 0, denote the running supremum by St = sup{0 ∨Xs, s ≤ t} and the
running infimum by It = inf{0 ∧Xs, s ≤ t}, for t > 0.

Lemma
For each t > 0 fixed, the pairs of variables (St, St −Xt) and (Xt − It,−It)

Proof.
Take eXt = Xt and eXs = Xt −X(t−s)− 0 ≤ s < t. Notice
(St, St −Xt) = ( eXt − eIt,−eIt) a.s. By the duality lemma X and eX have the
same law.
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Duality and time reversal
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Lévy processes

Fluctuation theory

the Wiener-Hopf factorization

The Wiener-Hopf factorisation-I

Let τ = e be an exponential time of parameter q, and independent of X. Recall
St = sup{0 ∨Xs, s ≤ t} and It = inf{0 ∧Xs, s ≤ t},

gt = sup{s < t : Xs = Ss}, t > 0.

The Wiener-Hopf factorisation states

(τ,Xτ ) = (gτ , Sτ ) +|{z}
independent

(τ − gτ , Xτ − Sτ ),

(τ − gτ , Xτ − Sτ )
Law
= (bgτ ,−bSτ ),

and provides a characterisation of the law of these r.v.
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Fluctuation theory

the Wiener-Hopf factorization

Theorem
The joint law of (gτ , τ − gτ , Sτ , Sτ −Xτ ) is determined by

(i) The pairs (gτ , Sτ ) and (τ − gτ , Sτ −Xτ ) are independent and infinitely
divisible

(ii) For all α, β > 0,

IE (exp{−αgτ − βSτ})

= exp

 Z ∞
0

dt

t

Z
[0,∞[

(e−αt−βx − 1)e−qt IP(Xt ∈ dx)

!
,

and

IE (exp{−α(τ − gτ )− β(Sτ −Xτ )})

= exp

 Z ∞
0

dt

t

Z
]−∞,0]

(e−αt−βx − 1)e−qt IP(Xt ∈ dx)

!
.

The proof is based in excursion theory
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Fluctuation theory

the Wiener-Hopf factorization

The characteristic function of Xτ can be written as

IE(exp{iλXτ}) =
q

q + Ψ(λ)
= Ψ+(λ)Ψ−(λ),

where

Ψ+(λ) = IE(exp{iλSτ}), Ψ−(λ) = IE(exp{−iλ(Sτ −Xτ )}), λ ∈ R .

If X is a Brownian motion

q

q + λ2

2

=

√
q

√
q − iλ

√
q

√
q + iλ

,

In Kyprianou’s course other explicit factorisations will be given for
particular values of q.
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Fluctuation theory

Reflected process

Lemma
Assume X is a real valued Lévy process. The process X reflected in the
supremum Rt = St −Xt, t ≥ 0, is a Markov process in the filtration Ft, t ≥ 0
and it has the Feller property.

Proof.
Let T be a finite stopping time and s ≥ 0. We have the identity

ST+s = ST ∨ sup{XT+u, 0 ≤ u ≤ s}
= XT + (ST −XT ) ∨ sup{XT+u −XT , 0 ≤ u ≤ s}.

(5)

We can write

ST+s −XT+s = (ST −XT ) ∨ sup{XT+u −XT , 0 ≤ u ≤ s} − (XT+s −XT ).

The Markov property of X implies that the conditional law of ST+s −XT+s

given FT is the same as that of (x ∨ Ss)−Xs under IP with
x = ST −XT ≥ 0, which is the law of Ss −Xs under IP−x .
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Fluctuation theory

Local time for R at zero

Local time

For simplicity we will assume that 0 is regular upwards and downwards i.e.
τ+
0 = inf{t > 0 : Xt > 0} is such that IP(τ+

0 > 0) = 0 = bIP(τ+
0 > 0).

Equivalently the first return to 0 for R is zero a.s.

General theory on Markov processes establishes that there exists a local time at
0 for R, i.e. a non-decreasing adapted process (Lt, t ≥ 0) such that:

L0 = 0 when R0 = 0;

Lt+s = Lt + Ls ◦ θt| {z }
shift at t

, for s, t ≥ 0;

L is the unique, up to multiplicative constants, functional that grows at
the times where R = 0;Z ∞

0

1{Rs 6=0}dLs = 0, a.s.

if T is a random time such that on {T <∞}, RT = 0, a.s. and the
conditional law of {(LT+t − LT , Rt), t ≥ 0}, given {T <∞}, is the same
as that of {(Lt, Rt), t ≥ 0} under P(|R0 = 0).
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Fluctuation theory

Local time for R at zero

If X is a Brownian motion

Lt = lim
ε→0+

1

ε

Z t

0

1{Ss−Xs≤ε}ds, t ≥ 0,

the limit holds uniformly over bounded intervals in probability.

The same holds if X has no-negative jumps.

In general there exists a function bV , s.t.
Lt = lim

ε→0+

1bV (ε)

Z t

0

1{Ss−Xs≤ε}ds, t ≥ 0,

the limit holds uniformly over bounded intervals in probability.

There exists a constant δ ≥ 0 such that

Lt = δ

Z t

0

1{Rs=0}ds, t ≥ 0.
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Fluctuation theory

excursion theory

Theorem (Itô’s excursion theory for R)

The process of excursions (et, t ≥ 0)

et =

(
X
L−1
t−
−X

L−1
t−+s

, 0 ≤ s ≤ L−1
t − L−1

t− , if L−1
t − L−1

t− > 0

∆, if L−1
t − L−1

t− = 0,

is a Poisson point process with values in D†, and characteristic measure n.
(Itô, 1971)

Under n the process of coordinates has lifetime ζ, bears the Markov
property with the same semigroup as bX killed at the time
τ−0 = inf{t > 0 : Xt < 0}, that is

n (F (eu, u ≤ t)f(et+s), t+ s < ζ)

= n
“
F (eu, u ≤ t)bIEet

`
f(Xs), s < τ−0

´
, t < ζ

”
,

for any F, f measurable bounded functionals.
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Lévy processes

Fluctuation theory

Explicit construction of the excursion process

Chaumont’s construction of the Normalized excursion

Assume X is a stable process, and define d1 = inf{t > 1 : St −Xt = 0}, and
g1 = sup{t < 1 : Ss = Xt}. The scaling property implies that the process

1

(d1 − g1)1/α
Rg1+(d1−g1)s, 0 ≤ s ≤ 1,

has the same law as the excursion process under n (·|ζ = 1) , and this is
independent of d1 − g1. This is the normalised stable excursion.



72/ 97

Lévy processes

Fluctuation theory

Explicit construction of the excursion process

For a Brownian motion the normalized excursion (length one) is obtained from
the brownian bridge using the Vervaat transform.

Let B be a standard Brownian motion and Xt, 0 ≤ t ≤ 1, the process

Xt = Bt − tB1, 0 ≤ t ≤ 1,

is the Brownian Bridge. Let ρ = inf{t > 0 : Xt = m =: min{0≤s≤1}Xs}. The
Vervaat transform inverts the path of X after and before the time ρ. The
resulting process is the normalised excursion.

470 S. Fourati / Ann. I. H. Poincaré – PR 41 (2005) 461–478

Pour le calcul des lois initiales et finales sous Q+ dans les autres cas, nous renvoyons au paragraphe « longue
digression ».
(3) Chaumont [3] a construit cette mesure d’excursion « conditionnée à mourir à l’instant t » dans le cas stable.

Pour tout λ > 0, on note Qλ+ la mesure obtenue à la place de Q+ lorsqu’on remplace la loi P par Pλ.

Proposition 3.3. Pour tout λ > 0, les mesures Qλ+(dw) et Q+(dw e−λζ ) sont égales.

Démonstration. Il est clair que la mesure d’excursion Nλ, obtenue à la place de N lorsqu’on remplace P par Pλ,
est la loi du processus canonique X sous N tué en un temps exponentiel indépendant de paramètre λ. De même, la
fonction h∗ est remplacée par la fonction h∗

λ, excessive pour le noyau potentiel du processus (Xt )0<t<T0 sous Pλ

et telle que la mesure h∗(y)dy vérifie les égalités :

h∗
λ(y)dy = Pλ

( ζ∫

0

1−It∈dyL(dt)

)

= P
( ζ∫

0

e−λt1−It∈dyL(dt)

)

.

On déduit alors facilement du Paragraphe 1.5 l’expression du co-noyau de Nλ, V ∗λ
+ en fonction de V ∗

+ et par dualité
l’expression de V λ

+ en fonction de V+ :

V ∗λ
+ (x,dw) = V ∗

+(x,dw e−λζ )

V ∗
+(x, e−λζ )

, V ∗
+(x, e−λζ ) = hλ(x)

h(x)
,

V λ
+(x,dw) = V+(x,dw e−λζ )

V+(x, e−λζ )
, V+(x, e−λζ ) = h∗

λ(x)

h∗(x)
.

On montre ensuite l’égalité des mesures markoviennes Qλ+(dw) et Q+(dw e−λζ ) en identifiant leurs noyaux,
co-noyaux et mesures excessives (comme dans la démonstration du Théorème 2.1). ✷

4. La transformation de Vervaat

La transformée de Vervaat d’une trajectoire w, qu’on note φ(w), est définie pour les trajectoires naissant à
l’instant 0 et mourant en un temps fini et pour lesquels il existe un unique temps (noté ρ) pour lequel le processus
X ou X− vaut sa valeur minimale (notée m). Cette transformation φ prend ses valeurs dans l’ensemble Ω[0] des
trajectoires en vie au temps 0, elle est caractérisée comme suit (Fig. 1) :

Xt(φ) = Xζ+t − m si ρ − ζ < t < 0,
Xt (φ) = Xt − m si 0< t < ρ,

Xt (φ) = δ si t /∈ ]ρ − ζ,ρ[.

Fig. 1.
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Lévy processes

Fluctuation theory

Explicit construction of the excursion process

This holds if X is a bridge from 0 to 0 of length 1 of a stable process.

For a stable process we have IPx(Xs ∈ dy) = ps(y − x)dy, with s ≥ 0
x, y ∈ Rd, can be constructed by taking the time inhomogeneous process with
semigroup

P 0,0
u,s (x, dy) =

ps−u(y − x)p1−s(−y)

p1−u(−x)
dy, 0 ≤ u ≤ s ≤ 1, x, v ∈ R,

under IP . (Fitzsimmons-Pitman-Yor, 1995).
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Lévy processes

Fluctuation theory

Master formula

Theorem (Master formula)

Let G denote the left extrema of the excursion intervals, and for g ∈ G,
dg = inf{t > 0 : Rt = 0}.

IE

0B@X
g∈G

F (Xs, s < g)H (Sg −Xg+u, u ≤ dg − g)| {z }
excursion at time g

1CA
= IE

„Z ∞
0

dLtF (Xs, s < t)n (H(εu, u ≤ ζ))
«

;

and

IE
„Z ∞

0

dtF (Xs, s < t)f(Xt)1{Xt=St}

«
= δ IE

„Z ∞
0

dLtF (Xs, s < t)f(Xt)

«
,

where F,G, f are test functionals, and the stochastic process
(ω, t) 7→ F (Xs(ω), s < t), is adapted and left continuous.
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Lévy processes

Fluctuation theory

Master formula

Lemma
The processes (Xt, 0 ≤ t < gτ ) and (Xgτ+t −Xgτ , 0 ≤ t ≤ τ − gτ ) are
independent.

Proof.

By the compensation formula, for s > 0,

IE (F (Xt, 0 ≤ t < gs)H(Xgs+t −Xgs , 0 ≤ t ≤ s− gs))

= IE

 X
g∈G

F (Xt, 0 ≤ t < g)H(Xg+t −Xg, 0 ≤ t ≤ s− g)1{0≤g<s<dg}

!
=

IE
„Z s

0

dLuF (Xt, 0 ≤ t < u)

Z
D
n(de)H(−e(t), 0 ≤ t ≤ s− u)1{s−u<ζ}

«
,

Notice that for s fixed there is no independence.
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Lévy processes

Fluctuation theory

Master formula

Integrate w.r.t. qe−qds to get

IE (F (Xt, 0 ≤ t < Gτ )H(XGτ+t −XGτ , 0 ≤ t ≤ τ −Gτ )) =

IE
„Z ∞

0

dLue
−quF (Xt, 0 ≤ t < u)

«„Z
D
n(de)H(−e(t), 0 ≤ t ≤ τ)1{τ<ζ}

«
,

Conclude by normalising to get probability measures.
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Lévy processes

Fluctuation theory

Master formula

(Lt, t ≥ 0), the local time at 0 of the reflected process
S − ξ = (St −Xt, t ≥ 0). We define the right continuous inverse of L by

L−1
t = inf{s > 0 : Ls > t}, t ≥ 0.

upward ladder time process (L−1
t , t ≥ 0),

upward ladder height process (Ht ≡ SL−1
t
, t ≥ 0).

The ladder process (L−1, H) is a bivariate subordinator (possibly killed),

whose
Laplace exponent κ is given by

Fristedt’s formula

for λ, µ ≥ 0,

κ(λ, µ) = − log E(exp{−λL−1
1 − µH1})

= c exp

 Z ∞
0

dt

t

Z
[0,∞[

(e−t − e−λt−µx) P(ξt ∈ dx)

!
.
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Lévy processes

Fluctuation theory

Master formula

Draw the ladder height process
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Lévy processes

Fluctuation theory

Master formula

Lemma
The r.v. (gτ , Sτ ) is infinitely divisible and its Laplace transform is

IE (exp{−αgτ − βSτ}) = κ(q, 0)/κ(α+ q, β), α, β > 0.

Proof.
Master Formula!
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Lévy processes

Quintuple law

Π will be the Lévy measure and for x > 0, Π
+

(x) = Π(x,∞).

The potential measure of (L−1, H) is denoted by

V (ds, dx) =

Z ∞
0

dt · P(L−1
t ∈ ds,Ht ∈ dx)

The same construction can be done for −X giving us the descending
ladder height process (bL−1, bH) and associated potential measurebV (ds, dx).

The ladder processes has (amongst other things) hidden information about
the distribution of Xt, τ+

x and

gt = sup{s < t : Xs = Xs}.



80/ 97

Lévy processes

Quintuple law

Π will be the Lévy measure and for x > 0, Π
+

(x) = Π(x,∞).

The potential measure of (L−1, H) is denoted by

V (ds, dx) =

Z ∞
0

dt · P(L−1
t ∈ ds,Ht ∈ dx)

The same construction can be done for −X giving us the descending
ladder height process (bL−1, bH) and associated potential measurebV (ds, dx).

The ladder processes has (amongst other things) hidden information about
the distribution of Xt, τ+

x and

gt = sup{s < t : Xs = Xs}.



80/ 97

Lévy processes

Quintuple law

Π will be the Lévy measure and for x > 0, Π
+

(x) = Π(x,∞).

The potential measure of (L−1, H) is denoted by

V (ds, dx) =

Z ∞
0

dt · P(L−1
t ∈ ds,Ht ∈ dx)

The same construction can be done for −X giving us the descending
ladder height process (bL−1, bH) and associated potential measurebV (ds, dx).

The ladder processes has (amongst other things) hidden information about
the distribution of Xt, τ+

x and

gt = sup{s < t : Xs = Xs}.



80/ 97

Lévy processes

Quintuple law

Π will be the Lévy measure and for x > 0, Π
+

(x) = Π(x,∞).

The potential measure of (L−1, H) is denoted by

V (ds, dx) =

Z ∞
0

dt · P(L−1
t ∈ ds,Ht ∈ dx)

The same construction can be done for −X giving us the descending
ladder height process (bL−1, bH) and associated potential measurebV (ds, dx).

The ladder processes has (amongst other things) hidden information about
the distribution of Xt, τ+

x and

gt = sup{s < t : Xs = Xs}.



81/ 97

Lévy processes

Quintuple law

The quintuple law at first passage

Theorem (Doney and Kyprianou 2006)

For each x > 0 we have on u > 0, v ≥ y, y ∈ [0, x], s, t ≥ 0,

P(τ+
x − gτ+

x −
∈ dt, g

τ+
x −
∈ ds, X

τ+
x
− x ∈ du, x−X

τ+
x −
∈ dv, x−X

τ+
x −
∈ dy)

= V (ds, x− dy)bV (dt, dv − y)Π(du+ v)

where the equality holds up to a normalising multiplicative constant.

s t

y

u

v

x
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Lévy processes

Quintuple law

Suppose that X is a two-sided strictly stable process with index α ∈ (1, 2) and
positivity parameter ρ = IP(Xt ≥ 0) ∈ (0, 1), then the following facts are
known:

Its jump measure is given by

Π(dx) = 1(x>0)
c+
x1+α

dx+ 1(x<0)
c−
|x|1+α

dx

Its renewal measures V (dx) := V (R+, dx) and bV (x) := bV (R+, dx) are
known

V (dx) =
xαρ−1

Γ(αρ)
dx and bV (dx) =

xα(1−ρ)−1

Γ(α(1− ρ))
dx.

Corollary

The random variables r−1(U(r), O(r)) have a joint p.d.f.

pαρ(u, v) =
αρ sinαρπ

π
(1− u)αρ−1(u+ v)−1−αρ,

for 0 < u < 1, v > 0, if αρ ∈ (0, 1); and is the Dirac mass at (0, 0) if αρ = 1.
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Lévy processes

Quintuple law

Lemma (Vigon 2002, Équations amicales)

Let bV (dy) = bV ([0,∞)× dy)

ΠH(x) =

Z ∞
0

bV (dy)Π
+

(x+ y),

Π
+

(x) =

Z
]x,∞[

ΠH(dy)Π bH(y − x) + bdp(x) + bkΠH(x),

where p(x) is the density of the measure ΠH , which exists if bd > 0.
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Lévy processes

Quintuple law

Proof.
Notice that

ΠH(x) = n (εζ < −x, ζ <∞) .

In the event where the excursion ends by a jump, ζ is the unique time where
εt− > 0 > εt, this equals

n

 X
0<t

1{εt−>0>−x>εt−+εt−εt−}

!
,

By the Poissonian structure of the jumps and the compensation formula

n

„Z ζ

0

dt1{εt−>0}Π
+

(x+ εt−)

«
=

Z ∞
0

bV (dy)Π
+

(x+ y).
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Lévy processes

Lévy processes conditioned to stay positive

Lévy processes conditioned to stay positive

Assume that X does not drift to −∞ under P.

Define bV (z) = bV (R+, [0, z]), for z ≥ 0. This function is invariantZ
R

bV (z)Px(Xt ∈ z; τ−0 > t) = bV (x), x ≥ 0.

We can define a new law P↑x on the space of non-negative cadlag paths
initalized at x > 0 via the semi-group

P↑x(Xt ∈ dz) =
bV (z)bV (x)

Px(Xt ∈ z; τ−0 > t),

the h-transform of Px(Xt ∈ z; τ−0 > t) via the invariant function bV (·)
Work of Bertoin, Chaumont, Doney and others help us justify the claim
that (X,P↑x) as a Doob h-transform is the result of "conditioning" X to
stay non-negative. Their final conclusion is

lim
q→0

IPx
`
F (Xs, s < t), t < eq|eq < τ−0

´
= IP↑x (F (Xs, s < t))

Moreover, in the sense of weak convergence with respect to the Skorohod
topology, they have also shown that P↑ := limx↓0 Px is well defined.
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Moreover, in the sense of weak convergence with respect to the Skorohod
topology, they have also shown that P↑ := limx↓0 Px is well defined.
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Lévy processes conditioned to stay positive

Assume that X does not drift to −∞ under P.
Define bV (z) = bV (R+, [0, z]), for z ≥ 0. This function is invariantZ

R
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The Tanaka-Doney pathwise construction of (X,P↑) from (X,P) replaces
excursions of X from X by their time-reversed dual.

x

w

y

u

s t

We have also that

P↑|Ft =
1bV (Xt)

n|Ft , t > 0.

Where n is the excursion measure for X reflected in the infimum.
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The quintuple law at last passage

Let

→Xt
= inf{Xs : s ≥ t}

be the future infimum of X,

→Dt
= inf{s > t : Xs −→Xt

= 0}

is the right end point of the excursion of X from its future infimum straddling
time t. Now define the last passage time

Ux = sup{s ≥ 0 : Xt ≤ x}
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A quintuple law

Theorem
Suppose that X is a Lévy process which does not drift to −∞. For s, t ≥ 0,
0 < y ≤ x, w ≥ u > 0,

P↑(→DUx
− Ux ∈ dt, Ux ∈ ds, X−→Ux − x ∈ du, x−XUx− ∈ dy, XUx − x ∈ dw)

= V (ds, x− dy)bV (dt, w − du)Π(dw + y)

where the equality hold up to a multiplicative constant.

x

w

y

u

s t
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Spectrally negative LP

We will assume Π(0,∞) = 0, and that X is not monotone.

IE(eβX1) <∞ because
Z ∞

1

eβxΠ(dx)| {z }
=0

+
R −1

−∞ e
βxΠ(dx) <∞

Ψ is well defined and analytical on {=(z) ≤ 0}, IE(exp{λX1}) = eψ(λ),

ψ(λ) = −Ψ(−iλ) = aλ+
σ2

2
λ2 +

Z
(−∞,0)

eλx − 1− λx1{x<−1}Π(dx).

By Hölder’s inequality ψ is convex on [0,∞), ψ(0) = 0, ψ(∞) =∞ and
E0(X1) = ψ′(0+).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

x

z

Figure: Typical shape of ψ. Black ψ′(0+) < 0, Red ψ′(0+) ≥ 0.
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Lemma
For q ≥ 0, let Φ(q) be the largest solution to ψ(λ) = q. The continuous
increasing process St = sup{Xs, s ≤ t} is the local time at 0 for the process
reflected R. Its right continuous inverse

τ+
x = inf{t > 0 : Xt > x}, x ≥ 0,

is subordinator with Laplace exponent Φ,

IE
`
exp{−βτ+

x }
´

= exp{−xΦ(β)}, β ≥ 0.

If X drifts towards −∞, τ+ is killed with rate Φ(0).

Proof.
The process Mt = exp{Φ(β)Xt − tβ} is a Martingale (the Wald martingale of
Φ(β)). So is the process M

t∧τ+
x
, and it is bounded by eΦ(β)x. By a Dominated

convergence argument we get

1 = IE
“
eβxe−βτ

+
x

”
, x ≥ 0.
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Spectrally negative Lévy processes

When X is Brownian motion it is a consequence of the reflection principle that
τ+ is an 1/2-stable subordinator.
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Spectrally negative Lévy processes

The absence of positive jumps implies that the upward ladder height
processHt = S

L−1
t

= t, t ≥ 0.

The Laplace exponent κ(·, ·) is

− log IE
`
exp{−αL−1

1 − βHt}
´

= κ(α, β) = Φ(α) + β,

for all α, β ≥ 0.

The downward ladder heigh process has Laplace exponent

bκ(α, β) =
α−Ψ(β)

Φ(α)− β , α, β > 0.
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Spectrally negative Lévy processes

Scale functions

For each q ≥ 0, the, so-called, q-scale function W (q) : R 7→ [0,∞) is defined by
W (q)(x) = 0 for x < 0 and elsewhere continuous and increasing satisfyingZ ∞

0

e−βxW (q)(x)dx =
1

ψ(β)− q

for all β sufficiently large (ψ(β) > q).

Scale functions are fundamental to virtually all fluctuation identities concerning
spectrally negative Lévy processes.
Let τ−a = inf{t > 0 : Xt < a}, τ+

b = inf{t > 0 : Xt > b}, a, b ∈ R . We have
the classical identity

Ex(e−qτ
+
a 1

(τ+
a <τ

−
0 )

) =
W (q)(x)

W (q)(a)

for q ≥ 0, 0 ≤ x ≤ a.
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Spectrally negative Lévy processes

Applications in:

ruin theory (first appearance in Tackács (1966), Zolotarev (1964)),

IPx(τ−0 <∞) = 1− W (x)

W (∞)
, W (∞) = 1/ψ′(0+) ∈ (0,∞).

fluctuation theory of Lévy processes,

optimal stopping,

optimal control,

queuing and storage models,

branching processes,

insurance risk and ruin,

credit risk,

fragmentation.
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Spectrally negative Lévy processes

Proof of the two sided exit formula q = 0 and Xt →∞ a.s.

IPx(τ+
a < τ−0 ) =

W (x)

W (a)
.

For y ≥ 0 let hy = sup{(S −X)τ+
y− + t, 0 ≤ t < τ+

y − τ+
y−},

IP(τ+
a−x < τ−−x) = IP (#{hy > y + x, y ∈ [0, a− x]} = 0) ,

By the Poissonnian structure of the excursions this is equal to

exp

(
−
Z

[0,∞)

dy1{y∈[0,a−x]}

Z
D
n(de)1{h(e)>y+x)

)

= exp{−
Z a+x

x

dyn(h > y)}.

Make a→∞, to get that

IP(−I∞ ≤ x) = IP(τ−−x =∞) = exp{−
Z ∞
x

dyn(h > y)},

and verify that this has the right Laplace transform.
For a general X and q use a change of measure.
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