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Stocks as Stochastic Perpetuities

Stocks as Stochastic Perpetuities

Stock prices have been modeled, Williams (1938), as claims to future
dividend distributions.

Alternate approaches emphasize stock prices as claims to future free
cash flows, Copeland, Koller and Murrin (1994).

Or future abnormal earnings Preinreich (1938), Edwards and Bell
(1961) and Ohlson (1995).

We infer from such observations that markets are comfortable in
valuing claims with no clear distribution dates or explicit payoffs.

You get some random payoffs sometime and possibly well past your
remaining lifetime.
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Discounted stock prices in financial engineering models

Discounted stock prices in financial engineering models

By way of contrast the derivative pricing literature, beginning with
Black and Scholes (1973) and Merton (1973) models the discounted
price of a non-dividend paying stock directly as a risk neutral
martingale.

We ask here what kind of martingale should one be considering.

In particular should it be uniformly integrable.
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The Discounted Gains Martingale

Discounted Gains Martingale

Imagine all gains, be they dividends, free cash flows or abnormal
earnings, being invested at market rates, to engineer no distributions,
with the resulting accumulation being embedded into the final stock
price at time t.

In addition the stock at time t accounts for the value at time t of all
gains in the future past time t.

Now discount back to time zero and let t go to infinity.

There will be no future left after time t but the present value
computed will converge to the present value of all gains over all time
as evaluated at infinity.

The resulting discounted gains martingale converges at infinity to the
present value of all gains through time and is thus a uniformly
integrable martingale.
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Discounted Stock Price in Financial Engineering Models

Discounted stock price in financial engineering models

The discounted stock price in most financial engineering models is not
a uniformly integrable martingale.

In fact it converges to zero with probability one at infinity.

We wish to consider uniformly integrable martingale models for the
discounted stock price.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 6 /

50



Discounted Stock Price in Financial Engineering Models

Discounted stock price in financial engineering models

The discounted stock price in most financial engineering models is not
a uniformly integrable martingale.

In fact it converges to zero with probability one at infinity.

We wish to consider uniformly integrable martingale models for the
discounted stock price.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 6 /

50



Discounted Stock Price in Financial Engineering Models

Discounted stock price in financial engineering models

The discounted stock price in most financial engineering models is not
a uniformly integrable martingale.

In fact it converges to zero with probability one at infinity.

We wish to consider uniformly integrable martingale models for the
discounted stock price.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 6 /

50



Discounted Stock Price in a Balanced Market

Discounted stock price in a balanced market

We have a discounting process

Y (t) =
∫ t

0
e−r (u)du

And a positive martingale M(t) for the discounted stock price that
we take to be the stochastic exponential of the martingale mY where

mY (t) =
∫ t

0
Y (u)dm(u)

The martingale m(t) represents the shocks to free cash flows or
abnormal earnings.

The discounted stock is the stochastic exponential of discounted
shocks to earnings or free cash flows.
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Explicit representation of positive martingale

Explicit representation of positive martingale

Suppose m(t) has a continuous martingale component m(c )(t) and
finite variation jump compensator ν(dx , dt) with

m(t) = m(c )(t) +
∫ t

0

∫ ∞

−∞
x (µ(dx , du)− ν(dx , du))

Then

M(t) = exp

( ∫ t
0 Y (u)dm(u)−

1
2

∫ t
0 Y

2(u)d〈mc 〉u
−
∫ t
0

∫ ∞
−∞ (exp (Y (u)x)− 1) ν(dx , du)

)
.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 8 /

50



Explicit representation of positive martingale

Explicit representation of positive martingale

Suppose m(t) has a continuous martingale component m(c )(t) and
finite variation jump compensator ν(dx , dt) with

m(t) = m(c )(t) +
∫ t

0

∫ ∞

−∞
x (µ(dx , du)− ν(dx , du))

Then

M(t) = exp

( ∫ t
0 Y (u)dm(u)−

1
2

∫ t
0 Y

2(u)d〈mc 〉u
−
∫ t
0

∫ ∞
−∞ (exp (Y (u)x)− 1) ν(dx , du)

)
.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 8 /

50



Balanced Market Condition

Balanced Market Condition

For a stock in a balanced market we ask that M be uniformly
integrable or equivalently that M (∞) is a well defined terminal
random variable with

M(t) = Et [M(∞)] .

The discounted stock price is then the conditional expectation of a
stochastic claim defined at infinity.

It is consistently valued through time in the market in line with its
final resolution occuring at infinity.
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Balanced Geometric Brownian Motion

Balanced Geometric Brownian Motion

In the case of geometric Brownian motion with mc = σW for a
standard Brownian motion W = (W (t), t ≥ 0) and Y (t) = e−rt we
have, 〈mc 〉 = σ2t and

M(t) = exp
(∫ t

0
e−ruσdW (u)− σ2

2

∫ t

0
e−2rudu

)

In this case log(M(∞)) is normal with mean −σ2/(4r) and variance
σ2/(2r).
For t < ∞, log(M(t)) is normal with mean
−(σ2/2) (1− exp(−2rt)) /(2r) and variance
σ2 (1− exp(−2rt)) /(2r).
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Discounted Variance Gamma Model

Discounted Variance Gamma Model

We take Y (u) to be exp(−ru) and m(u) to be the difference of two
standard gamma processes

m(u) = γp(u)− γn(u)

This yields

mY (t) =
∫ t

0
e−rudγp(u)−

∫ t

0
e−rudγn(u).
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Discounted Variance Gamma (DVG) with Parameters

Discounted Variance Gamma (DVG) with Parameters

Now Introduce parameters and allow the two gamma processes
affecting positive and negative shocks to have independent mean and
variance rates.

This is accommodated by space scaling and a time change.

Hence for parameters bp , cp , bn, cn we write for X = (X (t), t ≥ 0)
the process

X (t) =
∫ t

0
bpe−rudγp(cpu)−

∫ t

0
bne−rudγn(cnu)

=
∫ cp t

0
bpe−ru/cpdγp(u)−

∫ cnt

0
bne−ru/cndγn(u)

= Hp(t)−Hn(t)
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Compensator for DVG

Compensator for DVG

The process m(t) is given by the jump compensator

ν(dx , dt) =
(
1x<0cn

exp(−|x |/bn)
|x | + 1x>0cp

exp(−x/bp)
x

)
dxdt.
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Characteristic Function for DVG

Characteristic function for DVG

The characteristic function for X (t) is given by

φX (t)(u) = exp
( cp

r (dilog (iubp)− dilog (iubpe−rt ))
+ cn

r (dilog (−iubn)− dilog (−iubne−rt ))

)

The dilog function is given by

dilog(x) = −
∫ x

0

ln(1− t)
t

dt.
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Characteristic function for limiting random variable

Characteristic function for limiting random variable

The limiting random variable X (∞) has characteristic function

φX (∞)(u) = exp
(cp
r
dilog (iubp) +

cn
r
dilog (−iubn)

)
.

Using the analysis of Barndorff-Nielsen and Shepard (2002), one may
relate this limiting random variable to the stationary distribution for
the process of abnormal gains G (t) where we define

dG = −rGdt + dL

The driving process L(t) for undiscounted shocks is here given by

L(t) = bpγp(cpt)− bnγn(cnt).

The distribution of the random variable X (∞) is the stationary
distribution for G (t) .
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Exponential DVG

Exponential DVG

For the exponential convexity correction define

ω(t) = − ln
(

φX (t)(−i)
)
.

Equivalently

exp (ω(t)) =
1

E [exp(X (t))]
.

Given that X (t) is a process of independent but inhomogeneous
increments we get that M = (M(t), t ≥ 0) is a martingale where

M(t) = exp (X (t) +ω(t)) .
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Calibration of Exponential DVG to option data

Calibration of Exponential DVG to option data

We model our risk neutral discounted stock price V as the four
parameter martingale M.

This model may be calibrated to option price data using standard
Fourier transform methods of Carr and Madan (1999) from the
characteristic function for X (t).

More specifically the stock price at maturity t is modeled as

S(t) = S0 exp ((r̃(t)− q(t))t +ω(t) + X (t))

r̃(t) and q(t) are the annualized discount rates and dividend yields
for maturity t consistent with the forward price for maturity t.
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Unbalanced Markets

Unbalanced Markets

For generality consider separate discounting functions for abnormal
gains and losses whereby we write for the positive and negative
components of the log price the processes

Xp(t) =
∫ t

0
hp(u)dγp(u)

Xn(t) =
∫ t

0
hn(u)dγn(u).

We may lose uniformly integrability by the stochastic exponential of
compensated jumps failing to be uniformly integrable on either the
positive or negative side or both.

For the positive side we have a boom market and for the negative side
we have a crashing market or one in a bust.
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Conditions for uniform integrability

Conditions for uniform integrability

In the context of Wiener gamma integrals the required integrability
conditions may be shown to be∫ ∞

0
log (1+ hi (u)) du < ∞, i = p, n.

−
∫ ∞

0
log (1− hp(u)) du < ∞.

The last condition is needed to ensure a finite exponential moment for
Xp .
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The structure of booms

The structure of booms

Suppose the positive shocks fail to be uniformly integrable when
exponentially compensated.

The integrability condition then fails for hp and∫ ∞

0
log (1+ hp(u)) du = ∞.

It follows also that ∫ ∞

0
hp(u)du = ∞

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 20 /

50



The structure of booms

The structure of booms

Suppose the positive shocks fail to be uniformly integrable when
exponentially compensated.

The integrability condition then fails for hp and∫ ∞

0
log (1+ hp(u)) du = ∞.

It follows also that ∫ ∞

0
hp(u)du = ∞

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 20 /

50



The structure of booms

The structure of booms

Suppose the positive shocks fail to be uniformly integrable when
exponentially compensated.

The integrability condition then fails for hp and∫ ∞

0
log (1+ hp(u)) du = ∞.

It follows also that ∫ ∞

0
hp(u)du = ∞

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 20 /

50



Drift action for booms

Drift action for booms

The process Lp(t) for the logarithm of the positive shocks may then
be defined as

Lp(t) =
∫ t

0
hp(u)dγp(u) +

∫ t

0
log(1− hp(u))du.

The expectation of Lp(t) is

E [Lp(t)] =
∫ t

0
hp(u)du +

∫ t

0
log(1− hp(u))du,

and as
− log(1− x) > x

the expectation of Lp(t) is negative and tending to negative infinity.
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Summary for booms

Summary for booms

The drift dominates and the logarithm tends to negative infinity.

The terminal random variable is then zero.
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The structure of busts

The structure of busts

The integrability condition now fails for hn and we have∫ ∞

0
log (1+ hn(u)) du = ∞.

It follows that ∫ ∞

0
hn(u)du = ∞,

The process Ln(t) for the logarithm of the negative shocks may be
defined as

Ln(t) = −
∫ t

0
hn(u)dγn(u) +

∫ t

0
log(1+ hn(u))du.
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Jump action for busts

Jump action for busts

The expectation of the logarithm of the negative shocks is

E [Ln(t)] = −
∫ t

0
hn(u)du +

∫ t

0
log(1+ hn(u))du

The inequality
log(1+ x) < x

yields that this expectation is negative and tending to negative infinity.

However, this time the negative shocks are too large with insuffi cient
compensation to keep the price from dropping.
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Differences between booms and busts

Differences between booms and busts

With regard to booms and busts we observe that a jump of size
x > 0 is compensated in the exponential by a drift of −(ex − 1) and
this dominates the jump with (ex − 1) > x .

Similarly for a negative jump of size −x < 0 the compensation in the
drift is (1− e−x ) < x and the jumps dominate the drift
compensation.

Hence risk neutrally booms are ended by the negative drift while
jumps dominate the positive drift in busts.
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DVGBB generalization for booms and busts

DVGBB generalization for booms and busts

The DVG model is extended to accomodate booms and busts to form
the model DVGBB.

With a view to accomodating booms and busts we consider the
Wiener-Gamma integral

K (t) =
∫ t

0

(
a+ be−ru

)
dγ(cu)

=
∫ ct

0

(
a+ be−ru/c

)
dγ(u)
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Laplace transform of K(t)

Laplace transform of K(t)

The Laplace transform of K (t) is given by

E [exp (−λK (t))] = exp
(
c
r

(
Ξ
(

1
a+ b

, a,λ
)
− Ξ

(
1

a+ be−rt
, a,λ

)))
where

Ξ (z , a,λ) =
∫ log

(
1+ λ

z

)
z − az2 dz

= −dilog
(
a(λ+ z)
aλ+ 1

)
− log (λ+ z) log

(
1− a(λ+ z)

aλ+ 1

)
+ dilog(az)

+ log(z) log(1− az)− dilog
(
− z

λ

)
+ log(z) log(λ)

−1
2
log2(z).
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DVG Calibrated to S&P 500 index options

DVG calibrated to S&P 500 index options

The discount rate for the response of the discounted stock price to
abnormal earnings as captured in the processes Hp , Hn is taken to be
fixed at a long term interest rate and in the reported calibrations this
was set at the 30 year discount rate.

We first fit the DVG model to 582 options covering 30 maturities for
S&P 500 options as at market close on April 18 2012.
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Calibration Result

Calibration Result

The result is as follows, where the fit statistics rmse, aae and ape are
respectively, the root mean square error, the average absolute error
and the average percentage error defined as the aae relative to the
average option price in the data set.

r = 0.02966

bp = 0.0066

cp = 512.9406

bn = 122.4987

cn = 0.0095

rmse = 4.9734

aae = 4.0684

ape = 0.0311
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Calibration Remarks

Calibration Remarks

We observe that excluding some deep out-of-the-money short
maturity options the fit is quite good for a four parameter model fit
across such a large number of maturities.

In general an exponential Lévy model does not fit options across
maturity as skewness and excess kurtosis fall theoretically too sharply
for such models.
The performance of the variance gamma on this same data set is
reported on later in the paper.
The four parameter Sato process (Carr, Geman, Madan and Yor
(2007)) does fit the option surface but has a time inhomogeneity that
is financially not as well motivated as the inhomogeneity for the DVG
model.
Furthermore the Sato process generally cannot be extended to the
larger maturities.
Eventually the time scaling involved will lead to a loss of exponential
moments for the scaled unit time random variable .
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is financially not as well motivated as the inhomogeneity for the DVG
model.

Furthermore the Sato process generally cannot be extended to the
larger maturities.
Eventually the time scaling involved will lead to a loss of exponential
moments for the scaled unit time random variable .
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Asymptotic Implied Volatilities

Asymptotic implied volatilities

In addition we now have a well defined terminal random variable and
we present the asymptotic implied volatility curve for options written
on this terminal random variable in a zero rate economy.
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Calibration of DVGBB

Calibration of DVGBB

The DVGBB model was calibrated to the 582 options across 30
maturities for the S&P 500 index as at April 18 2012. The results
were as follows.

ap = .0061415

bp = .0003486

cp = 512.9436

an = .0112195

bn = 122.4965

cn = .0089424

rmse = 4.3626

aae = 3.6366

ape = .02781
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DVGBB Calibration Remarks

DVGBB Calibration Remarks

The calibration with boom and bust introduces the presence of some
exposure to booms and busts making a 12% improvement in the root
mean square error.

In general statistical tests are not available for calibration exercises.

Recently Madan (2013) has developed such procedures and future
research could implement such significance tests for the boom and
bust coeffi cients ap , an.
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On valuing path dependent stochastic perpetuities

Valuing path dependent stochastic perpetuities

We consider claims that depend on the entire path of our martingale
(M(t), t ≥ 0).

Consider by way of example a claim to the terminal cash flow

C (∞) = (M(∞)−K )+ +N
∫ ∞

0
e−rt1M (t)>adt

which is a call option on the terminal value of the discounted stock
with strike K coupled with a note with notional N that is a perpetual
coupon earned while the discounted stock is above a lower barrier.

Such products are now popularly issued by numerous entities in the
financial sector and are attractive to the investment community
seeking principal protected yield enhancement opportunities.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 34 /

50



On valuing path dependent stochastic perpetuities

Valuing path dependent stochastic perpetuities

We consider claims that depend on the entire path of our martingale
(M(t), t ≥ 0).
Consider by way of example a claim to the terminal cash flow

C (∞) = (M(∞)−K )+ +N
∫ ∞

0
e−rt1M (t)>adt

which is a call option on the terminal value of the discounted stock
with strike K coupled with a note with notional N that is a perpetual
coupon earned while the discounted stock is above a lower barrier.

Such products are now popularly issued by numerous entities in the
financial sector and are attractive to the investment community
seeking principal protected yield enhancement opportunities.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 34 /

50



On valuing path dependent stochastic perpetuities

Valuing path dependent stochastic perpetuities

We consider claims that depend on the entire path of our martingale
(M(t), t ≥ 0).
Consider by way of example a claim to the terminal cash flow

C (∞) = (M(∞)−K )+ +N
∫ ∞

0
e−rt1M (t)>adt

which is a call option on the terminal value of the discounted stock
with strike K coupled with a note with notional N that is a perpetual
coupon earned while the discounted stock is above a lower barrier.

Such products are now popularly issued by numerous entities in the
financial sector and are attractive to the investment community
seeking principal protected yield enhancement opportunities.

Dilip B. Madan (Robert H. Smith School of Business) Stochastic Perpetuities
Zurich Spring School 2015, April 3 34 /

50



Time zero and time t values

Time zero and time t values

In valuing this claim through time we are interested in the value in
time zero dollars of

w(t) = Et [C (∞)] .

The value in time t dollars is then given by

V (t) = ertw(t).
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Conditioning on time t

Conditioning on time t

To evaluate this conditional expectation we isolate the dependence of
the claim on information known at time t, in particular the value
X (t).

Now we know that

M(∞) = exp (X (∞) +ω(∞)) ,

X (∞) =
∫ ∞

0
bpe−rudγp(cpu)−

∫ ∞

0
bne−rudγn(cnu)

By construction we have that

X (∞) = X (t) +
∫ ∞

t
bpe−rudγp(cpu)−

∫ ∞

t
bne−rudγn(cnu)

= X (t) + e−rtY

where the law of Y is that of X (∞).
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The law of Y in the interim

The law of Y in the interim

Furthermore we also have for u > t

X (u) = X (t) + e−rtY (u − t)

The law of Y (u) is that of∫ u

0
bpe−rsdγp(cps)−

∫ u

0
bne−rsdγn(cns)
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Evaluating the conditional expectation

Evaluating the conditional expectation

We then have

Et [C (∞)]

= Et

[
(exp (X (∞) +ω(∞))−K )+
+N

∫ ∞
0 e

−rs1X (s)+ω(s)>ln(a)ds

]

= Et

 (exp (X (t) + e−rtY +ω(∞))−K )++(
N
∫ t
0 e
−rs1X (s)>ln(a)−ω(s)ds

+N
∫ ∞
t e

−rs1X (t)+e−rtY (s−t)+ω(s)>ln(a)ds

) 
= Et

 (exp (X (t) + e−rtY +ω(∞))−K )++(
N
∫ t
0 e
−rs1X (s)>ln(a)−ω(s)ds

+e−rtN
∫ ∞
0 e

−ru1Y (u)>(ln(a)−ω(t+u)−X (t))e rtdu

) 
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Introduce the path statistic

Introduce the path statistic

Define the path statistic

c(t) =
∫ t

0
e−rs1X (s)>ln(a)−ω(s)ds.

Given X (t), e−rt , c(t) we may employ the terminal density of Y ,
f (y) and the densities g(y , u) for the random variables Y (u) to
construct the above expectation as a function

w(t) = H(X , e−rt ) +Nc(t)
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Martingale property for w(t)

Martingale property for w(t)

We also know that w(t) is a martingale and furthermore

H(X (∞), 0) +Nc(∞) = (exp (X (∞) +ω(∞))−K )+ +Nc(∞).

We may then deduce the boundary condition

H(X , 0) = (exp (X +ω(∞))−K )+

The martingale condition yields

−re−rtHu + e−rt1X>ln(a)−ω(t)

+
∫ ∞

−∞
(H(X + y , e−rt )−H(X , e−rt ))k(y)dy

= 0

or in terms of u

−ruHu(X , u) + u1X>ln(a)−ω(− 1
r ln(u))

+
∫ ∞

−∞
(H(X + y , u)−H(X , u))k(y)dy

= 0
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Direct computation of H(X,u)

Direct computation of H(X,u)

We may also directly compute the value as

H(X , u)

= EY
[
(exp (X + uY +ω(∞))−K )+

]
+E(Y (s),s≥0)

[
uN

∫ ∞

0
e−rs1

Y (s)>(ln(a)−ω(− ln(u)
r +s)−X )/uds

]

We write in terms of the law of Y (s) +ω(s) or Y +ω(∞) as follows

H(X , u)

= E [(exp (X + u(Y +ω(∞)) + (1− u)ω(∞))−K )]+

+E(Y (s)+ω(s),s≥0)

[
uN

∫ ∞

0
e−rs1

Y (s)+ω(s)>(ln(a)−ω(− ln(u)
r +s)+uω(s)−X )/uds

]
.

In this way we may compute the values of claims through time that
are defined at infinity and in the interim have no cash flows but just a
market value process.
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Coupon for stock above a barrier

Coupon for stock above a barrier

There are now a number of yield enhancement securities offering
coupon for the time spent by a stock index above a barrier.

For example Morgan Stanley issued such a note June 27, 2011,
maturing June 30, 2031 and paying a 7.5% coupon provided the S&P
500 index was above 900 (See Registration Statement No.
333-156423, Rule 424(b) (2), Pricing Supplement No. 837).
The notes can be quite long dated with maturities up to 20 or 30
years, and we take them here to be perpetuities.
The payoff in present value terms is then

c
∫ ∞

0
e−rt1S (t)>adt.

Alternatively in terms of the discounted stock martingale we could
write

c
∫ ∞

0
e−rt1M (t)>ae−rtdt.
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A GBM computation

A GBM computation

Suppose we take for our martingale the classical geometric Brownian
motion model whereby

MC (t) = e
σW (t)− σ2 t

2

Compare this with the discounted approach which would give a
discounted shock integral with

MD (t) = exp
(∫ t

0
e−ruσdW (u)− σ2

2

∫ t

0
e−2rudu

)
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Perpetuity values

Perpetuity values

The values of these perpetuities are respectively wC ,wD with

wC = c
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Numerical Estimates

Numerical Estimates

For 70% down or a/S0 = .7 at an interest rate of 3% and a volatility
of 25% we have

wC = 21.1327c

wD = 29.5941c

For a 7.5% coupon offered under the classical geometric Brownian
motion model the discounted approach would only offer a coupon of
5.43%.

The classical model could then be seriously underpricing such
contracts and thereby offering larger coupons than would be justified
by a discounted approach.
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Numerical Estimates Calibrated valuation of time above a barrier

Calibrated valuation of time above a barrier

We calibrate a variance gamma and a discounted variance gamma
model to option prices on the S&P500 index as at April 18 2012.

For the calibration of the variance gamma model to the 582 options
with 30 maturities the results were

σ = 0.2715

ν = 6.4921

θ = −0.1183
rmse = 9.2396

aae = 7.7866

ape = 0.0596

We observe that the DVG fit to the surface of option prices is
certainly much better.
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Price for time above a barrier

Price for time above a barrier

We now wish to evaluate the price of time above a barrier for these
two models.

For a barrier of .7 this requires the computation

wVG = −
∫ ∞

0

∂cVG (.7, t)
∂K

dt

wDVG = −
∫ ∞

0

∂cDVG (.7, t)
∂K

dt

We perform these calculations for the estimated parameters at
r = .02966 the rate used in the DVG calibrations.
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Numerical estimates

Numerical estimates

For these parameters calibrated to SPX options we obtain

wVG = 13.2043

wDVG = 21.9565

The revised coupon rate would be 4.5104.

Coupon rates in markets for similar claims have been between 7 and
10 percent, but comparisons are not that easily made as they also
involve credit considerations related to the CDS rate of the issuing
entity.

We also present a graph of the integrands employed in the calibrated
VG and DVG models.
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Numerical estimates
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Conclusion I

calibrated VG and DVG models as a function of the maturity.
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Conclusion I

Conclusion I

It is argued that from the perspective of longer maturities, the
discounted stock under no dividend distributions should be modeled
as a martingale with a nontrivial limit at infinity.

Making an analogy with the discounted gains martingale in the
presence of dividends one observes that in the limit the discounted
gains martingale converges to the nontrivial limit of discounted gains
over all time.
This makes the discounted gains martingale the conditional
expectation of its limit.
The same should be true for long horizon modeling of balanced stock
price processes in the absence of dividend distributions.
Out of balance, and then in the absence of a limiting random
variable, booms or busts are distinguished by the manner in which
one loses uniform integrability, by either the positive shock or negative
shock martingales failing to be uniformly integrable.
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Conclusion II

Conclusion II

New models are proposed for the discounted stock price that are
stochastic exponentials and conditional expectations of nontrivial
random variables at infinity.

A particular example is the discounted variance gamma model for
which a closed form for the characteristic function is developed.

In addition procedures are presented for the valuation of path
dependent stochastic perpetuities that never have a payoff and it is
argued that as they may be easily valued theoretically, that markets
may value as them as well.

For the new models it is also observed that implied volatility curves do
not flatten out as they have nontrivial non-Gaussian limits at infinity.
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