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Complexities Involved

Complexities Involved

Insurance books combine exposures to financial and nonfinancial risks.

The financial component can involve path dependent aspects of
account values.

Account values are themselves portfolio values of investment in
numerous financial securities.

We present methodologies for constructing good multi underlier
options hedges.

Hedges are designed not for replication, as this is not possible, but to
enhance the value of the hedged position.

We generalize the static hedging approach of Carr and Wu (2014) to
the wider context admitting no replication.
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Illustrative Example

Illustrative Example

We illustrate the hedge design using Guaranteed Minimum
Withdrawal Benefit Variable Annuity (GMWBVA) accounts written
on portfolios invested in the nine sector ETF’s of the US economy.

10, 000 risk neutral paths of the 9 underliers are simulated at a
monthly reset for 40 years and stored in a 480× 10, 000× 9
matrix.

Present values of payouts through time on all accounts constitute the
target cash flow.

The target cash flow is hedged in the short term, using options on the
nine underliers maturing in six months.

The hedging criteria include least squares and minimization of ask
prices as constructed for two price economies.

The hedging technology can be extended to many other contexts.
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Financial path space simulation

Financial path space simulation

The selection of a path space to simulate is both a critical and
diffi cult decision.

Especially when it comes to multiple underliers over long periods of
time, that are the typical context for insurance products.

There is a strong temptation to attempt to simulate the physical
process as learned from time series data.

Yet we learn from the market valuation of financial products that rare
events with low probability have a much higher price relative to the
probability (Bollerslev and Todorov (2011)).
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Financial path space simulation II

Financial path space simulation II

In such situations when simulating a finite sample space, the events
driving prices may not even arise in a physical simulation.

It is little comfort that theoretically the two probabilities are
equivalent.

For on the finite sample space on which decisions are to be based, the
relevant events are lost.

They do not occur and measure changes cannot compensate for
nonexistence.
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Risk neutral simulation

Risk neutral simulation

Such deficiencies in physical simulation have led researchers to
endogenize measure changes into the simulation by directly simulating
the risk neutral process (See for example Korn, Korn and Kroisandt
(2010)).

Risk neutralization raises the probabilities of the rarer events of
greater import to valuation.

Simultaneously the probability of smaller moves are also lowered.

However, the risk neutral process may be estimated well for a single
underlier from data on option prices for this underlier.

The risk neutral process for the joint law on multiple underliers is not
that readily available.
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Risk neutral issues

Risk neutral issues

For even two underliers one cannot synthesize the joint density from
traded option prices.

To extract such information one would require information on the
prices of the product of two calls at different strike pairs and the same
maturity.

Such securities do not trade and the required price information is not
available.

In the absence of joint information, one may proceed further by
making additional modeling assumptions.
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Risk neutral strategies

Risk neutral strategies

In this direction M. (2011) supposes a set of multiple underliers to be
a linear mixture of independent factors.

M. (2011) then employs time series data and applies independent
components analysis (Fast ICA Hyvärinen and Oja (2000)) to
estimate the mixing matrix.

The mixing matrix is further assumed to be risk neutrally relevant.

Risk neutral laws for the independent components are sought with a
view to repricing all options on all underliers across their strikes and
maturities at market close on a single day.
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Risk neutral choice problems

Risk neutral choice problems

The question then arises as to which risk neutral law is to be
employed.

From daily calibrations to option surfaces one would extract different
laws each day with considerable variations reflecting movements in
both the actual probabilities of events and their associated market
risk premia.

If one just observes the risk neutral law it is not clear whether market
prices of risk involved are exaggerated or not.

For some assessment in this direction one may wish to be explicit
about the risks that are being priced and the market prices being
assumed.
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Modeling market prices of risk

Modeling market prices of risk

When risk is modeled by continuous processes the market price risk at
a particular point of time is a number.

It is given by the instantaneous covariation between the risk and the
change of measure density process (see for example Skiadas (2009).

Covariations are proportional to time as are excess returns.

The former are compensated in the latter.

Return distributions over small intervals are Gaussian and locally risk
is adequately characterized by covariance.

Such a paradigm has served us well, as is effectively documented by
the large literature based on such assumptions.
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is adequately characterized by covariance.

Such a paradigm has served us well, as is effectively documented by
the large literature based on such assumptions.
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Modeling instantaneous risk exposure

Modeling instantaneous risk exposure

Positions in risky assets also expose the holder to the risk of sudden
and substantial moves in prices.

The modeling of risk by continuous processes unrealistically assumes
away such exposures.

The local motion for continuous processes is however Gaussian.

A good feature of the Gaussian model has always been the
observation that it is a limit law.

Sums of large numbers of independent effects or shocks tend to a
Gaussian distribution.
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Choosing a limit law

Choosing a limit law

Lévy (1937) and Khintchine (1938) characterized all the limit laws.

These turn out to be the self decomposable laws that are a subclass
of the infinitely divisible laws associated with Lévy processes.

The literature has allowed for large sudden moves by adding to the
continuous component a separate jump process.

The jumps have a finite arrival rate and often an exponential or
normally distributed jump size distribution.

The resulting process is called a jump diffusion with a survey in Kou
(2008).

However, no jump diffusions are limit laws as they are not self
decomposable.

Limit laws have infinite arrival rates of jumps and are rich enough to
permit dispensing with the diffusion component.
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Choosing a limit law II

Choosing a limit law II

Pure jump processes of independent and identically distributed
increments are Lévy processes defined by the specification of the
arrival rate k(x) of jumps for all jump sizes, x ∈ R− {0}.

This arrival rate function k(x) specifies a Poisson arrival rate for each
jump size and is called the Lévy density.

Sato (1999) shows that a Lévy process has a self decomposable law at
unit time only if h(x) = |x |k(x) is decreasing for positive x and
increasing for negative x .

A simple, tractable and flexible example is the variance gamma
process where the function
h(x) = C exp ((G −M)x/2− (G +M)|x |/2) , for C ,G ,M > 0.

This function is clearly decreasing for positive x as it is exp(−Mx)
and increasing for negative x as it is exp(Gx).
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Variance gamma market price of risk

Variance Gamma market price of risk

For variance gamma, physical and risk neutral laws, we observe that
the market price of risk function can be simply described by a
parameteric function with three parameters.

The parameters price the overall jump size, the asymmetry between
down and up moves and the spread for large over small moves.

The parameters may be estimated from a combination of time series
and option data.
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Variance gamma details

Variance Gamma details

The variance gamma process X (t; σ, ν, θ) was originally introduced
(M. Carr and Chang (1998)) as Brownian motion with drift θ and
volatility σ time changed by a gamma process g(t; ν) of unit mean
rate and variance rate ν.

As a result we have that

X (t; σ, ν, θ) = θg(t; ν) + σW (g(t; ν)),

where (W (t), t > 0) is a standard Brownian motion.

The transformations between σ, ν, θ and C ,G ,M may be found in
Schoutens (2003).
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Dependence Modeling

Dependence Modeling

The monthly distributions for log price relatives of our nine underliers
are in the variance gamma class with parameters that are risk
neutralized.

However, on transforming them to standard normals via the
distribution function composed with the inverse of the standard
normal distribution function, the resulting normals are correlated
using the empirical correlation matrix for the nine underliers.

Hence the one step simulation is that of correlated normals,
transformed to risk neutralized variance gamma marginal distributions.

Non-Gaussian simulations of correlated random variables along these
lines are also used in Bouchaud and Potters (2003).
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Nonfinancial risk interactions with financial path space

Nonfinancial risk interactions with financial path space

The interactions of the nonfinancial risks with the financial path
space are particular to the structured insurance product.

Here we focus on the interactions relevant to our case study of
GMWBVA contracts written on account values invested in the
financial assets.

A single account value process A(t) and its associated base B(t)
evolves until the random time τ that is the minimum of either the
time of death of the account holder or the time at which the the
account value hits zero.

Positive account values at death are returned to the account holder’s
estate and all premium payments and withdrawals stop.

If the account value hits zero before death, the account holder
receives a percentage of the base to death and all premiums stop.
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Account evolution

Account evolution

Before time τ the risk neutral account evolution is given by

dA = (r − κ)Adt − (x + y)B(t)dt + dM.

M is a martingale, r is the interest rate, κ is a management fee based
on the account value, y is a fee relative to the level of the base and x
is the withdrawal rate.

The martingale component of account returns are the returns to
investment in the equity exposure with

dM = A(t)θ′dN

θ is the vector of account proportions invested in the equity assets
and dN is the martingale component of equity returns.
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Base evolution

Base evolution

.Furthermore, there are annual resets on the base defined as

B(n) = max(B(n− 1)(1+ ηn−1),A(n))

ηn is a positive constant, η, for n less than or equal to N and zero
thereafter.
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Zero account value preceeding death

Zero account value preceeding death

Let the complementary distribution function for the time of death be
G (t).

For an account holder of age α entering the contract at time zero, the
present value at time t of the payout until death, if the account value
hits zero and death has not occurred is

V (t) = xB(t)
∫ ∞

0
e−rhG (α+ t + h)dh.
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Target cash flow construction

Target cash flow construction

We simulate the path space of equity underliers S (j)k ,t for equity asset
k, at time t, for k = 1, · · · ,K , t = 1, · · ·T on path j with
j = 1, · · · , J.

We then simulate the account values of numerous account holders
Ai (t) and the associated payouts C

(j)
i ,t

These are negative for the premiums paid both as a percentage of the
account value and a percentage of the base.

They are positive for the insurance component of withdrawals after
the account value has gone to zero and prior to the account holders
death.

We record this insurance benefit as a lump sum paid out at the time
of the account value going to zero before death.
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Target cash flow construction II

Target cash flow construction II

We then form the aggregate present value of all payouts to each
account holder on each path by

C̃ (j)i =
T

∑
t=1
e−rtC (j)i ,t .

The aggregate payout to all account holders is

C(j) = ∑
i
C̃ (j)i .

The target cash flow is C = (C(j), j = 1, · · · , J).
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Hedge cash flow construction

Hedge cash flow construction

We then introduce the hedging assets consisting of financed out of
the money options on all underliers for a fixed maturity H

We also allow investment in the underliers themselves until the same
horizon of H.

The cash flows to the options and the investment in the underliers
with payoffs occuring at time H is given by the D × J matrix H
where H(j)d is the financed payoff to hedging asset d on path j in row
d and column j of H for d = 1, · · ·D and j = 1, · · · J.
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Least squares hedge

Least squares hedge

Let x = (xd , d = 1, · · ·D) denote the positions xd in hedging asset d .

The first hedge reported on is the least squares hedge whereby we just
regress the target cash flow C ′ onto the matrix H′ including a
constant term representing a bond position.

We thus write
C ′ = a+H′xLS + u

The bond position is a, the least squares hedge is xLS and u is the
least squares residual.
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Building the ask price hedge

Building the ask price hedge

Our second hedge first removes constants from the sample space to
define the risk components

C̃ = C−1
J ∑

j
C̃(j)

H̃ = H−1
J ∑

j
H̃(j)

The centered residual cash flow is

R̃(x) = xH̃ − C̃.
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The hedged liability

The hedged liability

We may think of C̃ as a random variable and of

W̃ (x) = C̃ − xH̃

as a hedged position.
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Hedge acceptability

Hedge acceptability

Consider now the bid and ask price operators for a two price economy
with risk acceptability defined as follows.

The risk represented by a random variable X is acceptable, or X ∈ A
just if EQ [X ] ≥ 0 for all Q ∈ M (Artzner, Delbaen, Eber and Heath
(1999)).

The bid and ask prices, b, a respectively, for X require that

X − b(1+ r) ∈ A, a(1+ r)− X ∈ A,

(see for example Carr, M. and Vicente Alvarez (2011)).
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Bid Ask Functionals

Bid Ask Functionals

Equivalently for all Q ∈ M

EQ [X ]− b(1+ r) ≥ 0

a(1+ r)− EQ [X ] ≥ 0

The best bid and ask prices for X provided by the market, b̃(X ),
ã(X ) respectively, are then given by

b̃(X ) =
1

1+ r
inf
Q∈M

EQ [X ]

ã(X ) =
1

1+ r
sup
Q∈M

EQ [X ].
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Bid Ask and Distortions

Bid Ask and Distortions

When risk acceptability uses just the risk distribution function, and
bid prices are additive for comonotone risks then the computation
simplifies.

There then exists a concave distribution function Ψ(u), 0 ≤ u ≤ 1
from the unit interval to itself such that for a distribution function
FX (x)

b̃(X ) =
1

1+ r

∫ ∞

−∞
xdΨ (FX (x))

We employ the distortion minmaxvar introduced in Cherny and M.
(2009) and defined by

Ψγ(u) = 1−
(
1− u

1
1+γ

)1+γ
.

From the relationship of the sup to the inf we observe that the ask
price is the negative of the bid price for the negative.
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Computing Bid Ask

Computing Bid Ask

On a finite sample space one may order outcomes in increasing order
for X(n) being the n

th largest outcome for n = 1, · · · ,N and employ
the empirical distribution function to evaluate the bid price as

b̃(X ) = ∑
n
X(n)

(
Ψγ
( n
N

)
−Ψγ

(
n− 1
N

))
.

For our insurance liability we may seek a hedge position x with a view
to minimizing the ask price of W̃ .
In our case this is given by

z(x) = −
J

∑
j=1
R̃(j)(x)

(
Ψγ

(
j
J

)
−Ψγ

(
j − 1
J

))
.
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Ask price as a hedge criterion

Ask price as a hedge criterion

Our second hedge position is chosen to minimize this ask price for the
substantial stress level of 0.75.

Our third hedge is chosen to minimize the ask price for the hedged
liability under the further constraint that the option positions are kept
non-negative.

We refrain from becoming an option seller with a view towards
lowering ask prices computed on a finite sample space.
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Physical estimation of variance gamma law

Physical estimation of variance gamma law

The estimation was conducted on 501 observations for two years of
data on the nine underliers xlb, xle, xlf , xli , xlk, xlp, xlu, xlv and xly .

We followed M. (2014a) in employing digital moment matching for
the estimation of parameters.

For each underlier 99 strikes were chosen for the return defined as the
log price relative corresponding to the percentiles ranging from 1 to
99 in steps of unity.

For positive strikes we use digital calls were priced, as the probability
observed for being above the selected strike, while for negative strikes
digital puts were priced, at the probability of being below the
corresponding strike.

The variance gamma model was fit by least squares minimization of
the percentage squared error between the observed probability of
being in the tails and the model probability for the same.
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Sample fit for XLF

Sample fit for XLF
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Figure: The observed tail probabilities are shown as circles with dots representing
the corresponding estimated model probabilities.
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VG parameter values

VG parameter values

Table 1
Digital Moment Estimation

of VG Parameters
ETF sigma nu theta
XLB 0.010608 0.769945 ­0.002265
XLE 0.010006 0.362770 ­0.005162
XLF 0.010797 0.634793 ­0.001855
XLI 0.009021 0.420204 ­0.003797
XLK 0.007949 0.239938 ­0.005311
XLP 0.006385 0.393545 ­0.001448
XLU 0.007222 0.344631 ­0.001208
XLV 0.006965 0.165835 ­0.003199
XLY 0.008464 0.301066 ­0.003845
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VG parameter values in CGM format

VG parameter values in CGM format

Table 2
Estimated VG Parameters

in CGM format
ETF C G M
XLB 327.30 133.13 173.39
XLE 694.65 188.70 291.81
XLF 396.98 149.25 181.08
XLI 599.71 199.65 292.95
XLK 1050.27 288.75 456.85
XLP 640.33 319.34 390.37
XLU 731.22 311.21 357.53
XLV 1519.58 437.00 568.87
XLY 837.03 255.53 362.85
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Risk neutralization of physical laws

Risk Neutralization of Physical Laws

It is shown in M. and Schoutens (2015) that the market price of jump
risk by jump size, Y (x) has the form

Y (x) = a exp (bx + c |x |)

when both the risk neutral and physical processes are taken in the
variance gamma class.

Furthermore the risk neutral Lévy measure k̃(x) is related to its
physical counterpart k(x) by

k̃(x) = Y (x)k(x)

For all nine underliers we take the average market prices of risk given
by the parameters a, b, and c and this relationship to construct risk
neutral VG parameters at the one year point.
For the nine underliers k(x) is the annualized physical Lévy measure
reported above in Table 2.
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Market prices of risk employed

Market prices of risk employed

Table 3
Market prices of Risk

ETF a b c
XLB 0.004111 17.7897 146.4575
XLE 0.001861 48.2356 234.1455
XLF 0.002849 14.6195 161.0551
XLI 0.001883 44.4990 240.7047
XLK 0.000924 80.9255 366.7470
XLP 0.001276 36.2157 354.6252
XLU 0.001006 22.2935 331.4028
XLV 0.000435 62.3980 495.7091
XLY 0.001019 54.0275 309.2121
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Risk neutral parameters in σ, ν, θ format

Parameters in

σ, ν, θ format

Table 4
Risk Neutralized VG Parameters

ETF sigma nu theta
XLB 0.2568 0.7432 ­0.1544
XLE 0.3135 0.7733 ­0.3262
XLF 0.3859 0.8841 ­0.1930
XLI 0.2911 0.8857 ­0.1824
XLK 0.2688 1.0303 ­0.2260
XLP 0.7172 1.2240 ­0.2667
XLU 0.4274 1.3591 ­0.1589
XLV 0.1824 1.5111 ­0.1177
XLY 0.3127 1.1722 0.0330
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Risk neutral simulation of underliers

Risk neutral simulation of underliers

The nine underliers are simulated as VG processes using these
annualized parameters at a time step of one month.

The one month marginal distributions are those of a VG process with
these annualized parameters.

However the simulated underliers are generated as correlated normals
that are transformed nonlinearly to have the appropriate marginal VG
distribution.

The simulated path space is stored in a three dimensional matrix of
size 480× 10000× 9.
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Correlation matrix employed

Correlation matrix employed

Table 5
Correlation Matrix

XLB XLE XLF XLI XLK XLP XLU XLV XLY
XLB 1.0000 0.8076 0.8046 0.8505 0.7638 0.5846 0.5150 0.6595 0.7858
XLE 0.8076 1.0000 0.7897 0.8006 0.7244 0.5909 0.4965 0.6383 0.7466
XLF 0.8046 0.7897 1.0000 0.8412 0.7633 0.6375 0.5071 0.7072 0.8073
XLI 0.8505 0.8006 0.8412 1.0000 0.8054 0.6541 0.5330 0.7380 0.8450
XLK 0.7638 0.7244 0.7633 0.8054 1.0000 0.6059 0.4484 0.6706 0.8061
XLP 0.5846 0.5909 0.6375 0.6541 0.6059 1.0000 0.6628 0.7286 0.7160
XLU 0.5150 0.4965 0.5071 0.5330 0.4484 0.6628 1.0000 0.5404 0.5321
XLV 0.6595 0.6383 0.7072 0.7380 0.6706 0.7286 0.5404 1.0000 0.7759
XLY 0.7858 0.7466 0.8073 0.8450 0.8061 0.7160 0.5321 0.7759 1.0000
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Construction of target cash flows

Construction of target cash flows

Ten account values were simulated out to 40 years, with the accounts
invested in the nine underliers, using randomly generated long only
portfolio weights.

The monthly return on the account was a portfolio weighted average
of the returns on the underliers, adjusted for fees and withdrawals.

The withdrawals were at the rate of five percent of the base, while
the fees were at the rate of one percent of both the account value
and the level of the base.

The increment of the base was at five percent or the improvement in
the account value, whichever was greater, for the first ten years.

Thereafter it went up only on account of the account value.
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Account holder details

Account holder details

The account holders had ages ranging from 60 to 69 in steps of one
year.

The life time distribution was taken as Weibull with mean life times
ranging from 80 to 89 in steps of one year.

The standard deviation of the lifetime distribution was taken at five
years.

The interest rate was 2%.

For the ten accounts, 10, 000 paths of length 480 were simulated for
the account value, the level of the base and the cash flows paid to the
account holders.

The account holders received as a lump sum the expected present
value of five percent of the base from the time the account value goes
to zero to death, when the former was earlier
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Target cash flow distribution

Target cash flow distribution

A g g re g a te  P re s e n t  V a l u e  o f  P a yo u ts

­1 000 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

0

0 . 02

0 . 04

0 . 06

0 . 08

0 . 1

0 . 12
P r o b a b i l i ty D is tr ib u tio n  o f P a yo u ts

Figure: Probability distribution of aggregate present value of payouts on the ten
accounts.
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The space of hedging assets

The space of hedging assets

For a maturity close to six months on December 22, 2014, we
obtained data on the prices of options on the nine underliers with
strikes within 50% of the spot.

Table 6

Number of Options and strike ranges on Underliers

Variable XLB XLE XLF XLI XLK XLP XLU XLV XLY

Number 30 79 14 26 18 20 22 34 33

Lowest Strike 30 45 16 38 30 35 33 40 45

Highest Strike 59 105 29 64 47 54 54 80 80

The matrix H of cash flows to the hedging assets six months out is
285× 10000.
The hedge is constructed on a shaved sample space of 7024 paths.
We removed paths with the six month outcome below 50 or above
200 for an initial value reset to 100.
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Hedging results

Hedging Results

Three hedges were performed on this path space, least squares,
unconstrained ask price minimization, and ask price minimization with
options constrained to be long only.

For each hedge we determined the cost of the hedge and three costs
were 559.63, 6337.15 and 196.88, respectively.
The bond components were 618.64 for the least squares hedge and
543.42 for the two ask price minimizing hedges.
The stock components were respectively, −133.75, 5, 528.53 and
−354.61.
The three option components were 74.74, 265.19 and 8.07
respectively.
It appears that the ask price minimizing hedge when unconstrained
takes some large long positions in the stocks. It also takes bigger
option positions.
From a cost perspective the constrained ask price minimization
appears the most favorable alternative.
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Positioning Graphs

Positioning Graphs

We present graphs of functions of the nine underliers accessed by the
three hedges.

We may observe that the least squares and ask price minimization are
quite erratic with many swings that may be smoothed out using a
kernel estimator and this is done for these two optimization criteria.

The constrained ask price minimization provides a smooth hedge and
does not need a kernel smoothing exercise.

Of course the smoothed functions would have to be rehedged to
determine the required option positions, but this is a simple exercise
not conducted here.

Dilip B. Madan (Robert H. Smith School of Business) Conic Hedging
April 2 2015 Zurich Spring School Zurich 47

/ 53



Positioning Graphs

Positioning Graphs

We present graphs of functions of the nine underliers accessed by the
three hedges.

We may observe that the least squares and ask price minimization are
quite erratic with many swings that may be smoothed out using a
kernel estimator and this is done for these two optimization criteria.

The constrained ask price minimization provides a smooth hedge and
does not need a kernel smoothing exercise.

Of course the smoothed functions would have to be rehedged to
determine the required option positions, but this is a simple exercise
not conducted here.

Dilip B. Madan (Robert H. Smith School of Business) Conic Hedging
April 2 2015 Zurich Spring School Zurich 47

/ 53



Positioning Graphs

Positioning Graphs

We present graphs of functions of the nine underliers accessed by the
three hedges.

We may observe that the least squares and ask price minimization are
quite erratic with many swings that may be smoothed out using a
kernel estimator and this is done for these two optimization criteria.

The constrained ask price minimization provides a smooth hedge and
does not need a kernel smoothing exercise.

Of course the smoothed functions would have to be rehedged to
determine the required option positions, but this is a simple exercise
not conducted here.

Dilip B. Madan (Robert H. Smith School of Business) Conic Hedging
April 2 2015 Zurich Spring School Zurich 47

/ 53



Positioning Graphs

Positioning Graphs

We present graphs of functions of the nine underliers accessed by the
three hedges.

We may observe that the least squares and ask price minimization are
quite erratic with many swings that may be smoothed out using a
kernel estimator and this is done for these two optimization criteria.

The constrained ask price minimization provides a smooth hedge and
does not need a kernel smoothing exercise.

Of course the smoothed functions would have to be rehedged to
determine the required option positions, but this is a simple exercise
not conducted here.
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Residual Statistics

Residual Statistics

Table 7
Residual Statistics

Least Ask Price
Variable Squares Ask Price Constrained

std 371.5509 391.4379 378.8404
skew ­3.9751 ­2.2213 ­4.2935

kurtosis 56.0941 28.2784 63.1922
peakedness 0.8161 0.7977 0.8155

tailweightedness 0.0108 0.0108 0.0111
1% ­1061.3622 ­1033.5319 ­1106.1660
5% ­501.0562 ­520.2784 ­501.4194

10% ­314.0071 ­347.6303 ­316.1633
25% ­136.0459 ­180.1364 ­128.0253
50% ­0.5341 ­14.1656 ­3.0193
75% 173.8528 193.7751 169.0452
90% 385.0372 434.0794 389.3928
95% 517.9756 585.9301 528.4485
99% 724.4330 904.5527 715.0523
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Comments on Residual Statistics

Comments of Residual Statistics

We observe that ask price minimization unconstrained at a higher
cost does deliver a higher upside with a comparable down side to the
other two.

A conservative strategy may well be to opt for the constrained ask
price minimizing solution.

The first two if smoothed would have to be reevaluated as well.
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Kernel estimation of conditional expectations

Kernel estimation of conditional expectations

With a view to observing the hedge accomplishments we present
graphs of conditional expectations projected onto the average price
across the nine underliers.

We observe that least squares is the flatest followed by the
constrained ask minimizing hedge.
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Kernel estimation of conditional expectations
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Conditional Ask Prices

Conditional Ask Prices

Recognizing that conditional expectations are not market realizable
entities we also present kernel estimates of conditional ask prices.

We condition on the market average price across the nine underliers.

We use kernel estimators to construct conditional distributions that
are then distorted for the conditional distorted expectation or the
conditional ask price.

We observe that the constrained ask has the flatest conditional ask
price.
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Conditional Ask Prices
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Concluding Remarks

Concluding Remarks

Insurance risks are complex with exposure to numerous underliers.

A strategy is developed to use short maturity options on multiple
underliers to hedge this exposure.

The strategy is illustrated by hedging GMWBVA accounts invested in
the nine sector ETF’s of the US economy.

The implementation requires a risk neutral simulation of underliers
and this accomplished by writing the underliers as transformed
correlated normals with the transformation respecting risk neutrality
at the simulation horizon.
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Concluding Remarks II

Concluding Remarks II

The underlying physical and risk neutral evolution is taken in the
variance gamma class as a simple example of a non-Gaussian limit
law.

Insurance accounts for GMWBVA’s are simulated as adapted to the
path space of the ETF’s.

The present value of aggregate payouts are then hedged using least
squares, ask price minimization and ask price minimization
constrained to long only option positions.

The last of these delivers a least cost and most stable result.
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