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The Classical Pricing
Problem

� Asset pricing in liquid �nancial markets has devel-
oped the theory of risk neutral valuation.

� Based on principles of no arbitrage discounted prices
for claims with no intermediate cash �ows are seen
to be martingales under a suitably chosen equilibrium
pricing probability.

� The martingale condition in Markovian contexts
reduces the pricing problem to an equivalent so-
lution of a linear partial di¤erential or integro-
di¤erential equation subject to a boundary con-
dition at maturity.

� The essential property of market liquidity is the sup-
position of the law of one price or the ability, on the
part of market participants, to trade in both direc-
tions at the same price.



The Two Price Economy

� In the absence of such liquidity, the law of one price
is abandoned and we get at a minimum a two price
economy where the terms of trade depend on the
direction of trade.

� Such a two price equilibrium was studied in a static
one period context in M. (2012).

� The two equilibrium prices arise on account of
an exposure to residual risk that cannot be elim-
inated, by construction, and the prices are de-
signed to make this exposure acceptable.

� Acceptability is modeled by requiring positive expec-
tations under a whole host of test or scenario proba-
bilities as described for example in Artzner, Delbaen,
Eber and Heath (1999).



� As a consequence the ask or upper price turns out
to be the supremum of test valuations while the bid
or lower price is an in�mum of the same set of test
valuations.

� The resulting pricing operators are now nonlinear on
the space of random variables, with the lower price
being concave and the upper price convex.

� In particular the upper price of a package of risks is
smaller than the sum of component prices while the
lower price is similarly above.



The Other Direction

� Suppose securities are being traded at a price spread
for the buying price over the selling price.

� In the absence of arbitrage there must exist test
or scenario probabilities that value the securities
at a level between the selling and buying price.

� One may then de�ne the cone of acceptable
risks as those with positive expectation for all
valuations conducted using probabilities pricing
traded securities in the so-called bid ask interval.

� Hence given a cone of acceptable risks two prices
result.

� Also given two prices and no arbitrage a cone of
acceptability results.



� We place our selves in such economies where the law
of one price is no longer available for buying or selling
anything.

� We develop instead the theory for the two prices in
continuous time.



An Important Aside

� What is being developed is not to be confused with
transactions costs that get the two prices from the
one price by in�ating and de�ating by a cost factor.

� The two prices we work with satisfy nonlinear equa-
tions re�ecting charges for risk exposure and are not
mere multiples of a one price theory.

� Also importantly for insurance theoretic applica-
tions we get a separation of a theory of liability
valuation from a theory asset pricing as in our
economy assets are priced at the lower or sell-
ing price and liabilities are priced at the upper
or buying price.

� We do mark to market, but ours is a two price market
that treats liabilities di¤erently from assets.



The Two Prices Using
Probability Distortions

� When the decision of risk acceptability is further
modeled as solely depending on the probability distri-
bution of the risk and if in addition we ask for additiv-
ity of the two prices for risks that are monotonically
related then closed forms for the two prices become
available Kusuoka (2001).

� Speci�cally, the lower price may be expressed
as an expectation computed after distorting the
risk distribution function by composing it with
a prespeci�ed concave distribution function on
the unit interval.

� Such a formulation was proposed and tested on op-
tion market data in Cherny and M. (2010).



� Carr, M. and Vicente Alvarez (2011) employ this ap-
proach to de�ne capital requirements and up front
pro�ts on trades.

� Eberlein and M. (2012) apply the method to esti-
mating capital requirements for the �nancial sector
during the �nancial crisis of 2008.



Dynamic Two Price
Sequences in Discrete

Time

� Dynamically consistent two price sequences based on
locally applying probability distortions are examples
of non-linear expectations as studied in Cohen and
Elliott (2010).

� M. and Schoutens (2012) apply such pricing princi-
ples to study the impact of illiquidity on a variety of
�nancial markets.

� The lower price is a submartingale while the upper
price is a supermartingale with the two prices con-
verging to each other and the payout at maturity.

� M., Wang and Heckman (2011) apply discrete time
distortion based nonlinear expectations to the valu-
ation of insurance liabilities.



Two Price Economies in
Continuous Time

� In continuous time the two prices are related to non-
linear expectations seen as the G-expectations intro-
duced by Peng (2004).

� The use of probability distortions to formulate G-
expectations for the upper and lower price was de-
veloped in Eberlein, M., Pistorius, Schoutens and Yor
(2012).

� This paper extends the theory of distortion based
G-expectations in two directions.

� The �rst is to generalize away from probability
distortions to measure distortions as they arose
in M., Pistorius and Stadje (2013) where the
continuous time limit of discrete time distortion
based nonlinear expectations was developed.



� Here we directly introduce and apply measure distor-
tions.

� The second extension deals with the convergence of
bid ask spreads to zero at maturity.

� Though many contracts have explicit maturities,
economic activities of running airlines, insuring
losses, selling goods and services need to be,
and are valued, in �nancial markets with no ap-
parent maturity.

� M. and Yor (2012) introduce valuation models for
such claims termed stochastic perpetuities conducted
under a liquid, law of one price setting.

� The resulting martingales are uniformly integrable
and the explicit maturity is transferred to in�nity.

� Here we extend distortion based G-expectations to
valuation processes with an in�nite maturity.



Illustrative Applications

� The theory is illustrated on the two price valuation
of stocks.

� We employ both the quadratic variation based prob-
ability distortion introduced in Eberlein, M., Pisto-
rius, Schoutens and Yor (2012) and the new measure
based distortion introduced here.

� We also apply measure distortions to value com-
pound Poisson processes of insurance loss liabilities
for both the homogeneous and inhomogeneous cases.



Introduction to Measure
Distortions

� We introduce the use of measure distortions for de�n-
ing the acceptability of a set of random variables in
the context of a static one period model.

� In continuous time we apply this structure at the
instantaneous level to local risk characteristics.

� Consider �rst the acceptability of a random variable
X with distribution function F (x):

� When acceptability is de�ned just in terms of the
distribution function it may be reduced to a positive
expectation under a �xed concave distortion.

� More precisely, let 	 be a �xed concave distribution
function de�ned on the unit interval.



� The random variable X is acceptable just if the ex-
pectation of X taken with respect to the distorted
distribution function 	(F (x)) is nonnegative, or

E(X) =
Z 1
�1

xd	(F (x)) � 0;

where E(X) refers to a distorted expectation.



From Distorted
Expectation to Choquet

Integrals

� After splitting the distorted expectation at zero and
integrating by parts we may write the distorted ex-
pectation as a Choquet integral in the form

E(X) =
Z 1
0
(1�	(F (x)))dx�

Z 0
�1

	(F (x))dx:

� It is now useful to follow M., Pistorius and Stadje
(2012) and introducebF (x) = 1� F (x)
and b	(x) = 1�	(1� x)
and write the distorted expectation more sym-
metrically as

E(X) =
Z 1
0

b	( bF (x))dx� Z 0
�1

	(F (x))dx:



Connecting to Two Price
Economies

� Formally, Artzner, Delbaen, Eber and Heath (1999)
show that acceptable random variables form a con-
vex cone and earn their acceptability by having a
positive expectation under a set M of scenario or
test measures equivalent to the original probability
P:

� Cherny and M (2010) then introduce the bid, b(X);
and ask, a(X) or upper or lower prices as

b(X) = inf
Q2M

EQ[X]

a(X) = sup
Q2M

EQ[X]

with acceptability being equivalent to b(X) � 0: As
a consequence b(X) = E(X):



� The set of measures Q supporting acceptability or
the set M is identi�ed in M., Pistorius and Stadje
(2012) as all measuresQ; absolutely continuous with
respect to P; with square integrable densities, that
satisfy for all sets A; the condition

b	(P (A)) � Q(A) � 	(P (A)):
� The probability bounds may be explained in terms
charging prices Q(A) for lotteries 1A that rule out
acceptability for buyers and sellers.



Remarks on the Distortions

� We now remark on the distortion 	 and its comple-
mentary distortion b	:

� Both distortions are monotone increasing in their
arguments but 	 is concave and bounded below
by the identity function while b	 is convex and
bounded above by the identity function.

� For the bid price or the distorted expectation one em-
ploys the concave distortion on the losses or negative
outcomes while one employs the convex distortion on
the gains or positive outcomes.

� This is reasonable as distorted expectations are ex-
pectations under a change of measure with the mea-
sure change being the derivative of the distortion
taken at the quantile.



� The concave distortion then reweights upwards the
lower quantiles associated with large losses, while the
convex distortion reweights downward the upper tail.



Distorting Integrals with
respect to a measure

� Consider now in place of an expectation an integra-
tion with respect to a positive, possibly in�nite mea-
sure � or the measure integral

m =
Z 1
�1

v(y)�(dy) <1

� Though the measure may be in�nite, we suppose
that all the tail measures are �nite.

� We may then rewrite the measure integral as

m = �
Z 0
�1

� ((v(y) � x)) dx

+
Z 1
0
� ((v(y) � x)) dx:



Bringing in the measure
distortions

� We now consider two functions �+; �� de�ned on
the positive half line that are zero at zero, monotone
increasing, respectively concave and convex, and re-
spectively bounded below and above by the identity
function.

� These functions will now be used to distort the mea-
sure � and we refer to them as measure distortions.

� We then de�ne the distorted measure integral
as

m = �
Z 0
�1

�+ (� ((v(y) � x))) dx

+
Z 1
0
�� (� ((v(y) � x))) dx;

where we assume both integrals are �nite.



� For computational purposes we shall employ

m =
Z 0
�1

xd (�+ (� ((v(y) � x))))

�
Z 1
0
xd (�� (� ((v(y) � x))))

� Acceptability of a random outcome with respect to
a possibly in�nite measure with �nite tail measures
may then be de�ned by a positive distorted measure
integral.

� M., Pistorius and Stadje (2012) identify the set of
supporting measures as absolutely continuous with
respect to � with square integrable densities that
satisfy for all sets A; for which �(A) <1 the con-
dition

��(�(A)) � Q(A) � �+ (�(A)) :

We shall replace measure integrals by distorted mea-
sure integrals in de�ning G-expectations as solutions
of nonlinear partial integro-di¤erential equations.



The discounted variance
gamma model

� We now introduce the discounted variance gamma
(dvg) model of M. and Yor (2012) as the driving
uncertainty for the stock price.

� The discounted stock price is modeled as a positive
martingale on the positive half line.

� The discounted stock price responds to positive and
negative shocks given by two independent gamma
processes.

� The variance gamma model of M. and Seneta (1990),
M., Carr and Chang (1998) has such a representa-
tion as the di¤erence of two independent gamma
processes, but unlike the variance gamma process,
as we now consider perpetuities, the shocks are dis-
counted in their e¤ects on the discounted stock price.



� More speci�cally, let 
p(t) and 
n(t) be two
independent standard gamma processes (with
unit scale and shape parameters) and de�ne for
an interest rate r the process

X (t) =
Z t
0
bpe

�rsd
p(cps)

�
Z t
0
bne

�rsd
n(cns):

The parameters bp > 0; cp > 0 and bn > 0; cn >
0 re�ect the scale and shape parameters of the
undiscounted gamma processes, however, X(t)
accumulates discounted shocks.

� The characteristic function for X(t) is explicitly de-
rived in M. and Yor (2012) and is shown to be

E [exp (iuX(t))]

= exp

0@ cp
r

�
dilog (iubp)� dilog

�
iubpe�rt

��
+cnr

�
dilog (�iubn)� dilog

�
�iubne�rt

�� 1A
where the dilog function is given by

dilog(x) = �
Z x
0

ln(1� t)
t

dt:



The DVG driven
discounted stock price

� The discounted stock price driven by the discounted
variance gamma process is given by the positive mar-
tingale

M(t) = exp (X(t) + !(t))

where

exp (!(t)) =
1

E [exp (X(t))]
:

� Unlike geometric Brownian motion or exponen-
tial Lévy models, this martingale is uniformly
integrable on the half line and the discounted
stock price at in�nity is a well de�ned positive
random variable

M (1) = exp (X(1) + !(1))



where

X (1) =
Z 1
0
bpe

�rsd
p(cps)

�
Z 1
0
bne

�rsd
n(cns)

and

E [exp (iuX(1))]

= exp
�
cp

r
dilog (iubp) +

cn

r
dilog (�iubn)

�
:



Contingent Claims at
In�nity

� Consider now any claim promising at in�nity the pay-
out in time zero dollars of F (M(1)):

� Equivalently one may consider the limit as T goes to
in�nity of the claim paying at T , the sum erTF (M(T )):

� Markets in the future and hence markets at all times t
price the claim in time zero dollars at the risk neutral
price of

wF (t) = E [F (M(1))jFt] :

� By construction the price process wF (t) is a martin-
gale.



� Now let Y be an independent random variable with
the same law as that of X (1) :

� To determine the price wF (t) we note that

X(1) = X(t) +
Z 1
t
bpe

�rud
p(cpu)

�
Z 1
t
bne

�rud
n(cnu)

(d)
= X(t) + e�rtY:

� We thus observe that conditional on t; there is a
function H(X; v) such that

wF (t) = H(X(t); e
�rt):

� The martingale condition on wF (t) then implies
that

�rvHv +Z 1
�1

(H(X + y; v)�H(X; v)) k(y; v)dy

= 0



where k(y; v) is the Lévy system associated with
the jumps of the process X(t):

� The price process is determined on solving this partial
integro-di¤erential equation subject to the boundary
condition

H(X; 0) = F (exp (X + !(1))

in the interval 0 � v � 1:



Identifying the Lévy system

� For an implementation of the solution we need to
identify the Lévy system k(y; v): De�ne by

H(t) =
Z t
0
be�rsd
(cs):

� From the Laplace transform of H(t) we have

E [exp (��H(t))]

= exp
�Z t
0

Z 1
0

�
e��be

�rsx � 1
�
dx

x
e�xcds

�

= exp

0@ R t
0
R1
0

�
e��y � 1

�
�

c exp
�
� y
be�rs

�
1
ydyds

1A

� It follows that

k(y; v) =
cp

y
exp

 
� y

bpv

!
1y>0

+
cn

jyj
exp

 
� jyj
bnv

!
1y<0:



Bid and ask prices for DVG
driven stock prices using
probability distortions
based on quadratic

variation

� The partial integro-di¤erential equation is transformed
into a nonlinear partial integro-di¤erential equation
to construct bid and ask prices as G-expectations.

� The �rst transformation we employ uses probability
transformations on introducing a quadratic variation
based probability introduced in Eberlein, M., Pisto-
rius, Schoutens and Yor (2012).



� Speci�cally we rewrite the equation as

rvHv

=
Z 1
�1

(H(X + y; v)�H(X; v))
R1
�1 y

2k(y; v)dy

y2

�dFQV (y)

where

FQV (a) =
1R1

�1 y2k(y; v)dy

Z a
�1

y2k(y; v)dy:

� For the speci�c case considered here we have



FQV (a) =
cn(bnv)2

cp(bpv)2 + cn(bnv)2

�
 
exp

 
� jaj
bnv

!
+

 
jaj
bnv

!
exp

 
� jaj
bnv

!!
1a<0 +

cn(bnv)2

cp(bpv)2 + cn(bnv)2
+

cp(bpv)2

cp(bpv)2 + cn(bnv)2
� 

1� exp
 
� jaj
bpv

!
�
 
jaj
bpv

!
exp

 
� jaj
bpv

!!
1a>0:



Distorting the QVCDF

� We next employ the probability distortionminmaxvar
of Cherny and M. (2009) where

	
(u) = 1� (1� u
1
1+
 )1+
:

� The nonlinear G-expectation for the bid price
is then given by the solution of the distorted
partial integro-di¤erential equation

rvHv

=
Z 1
�1

(H(X + y; v)�H(X; v))
R1
�1 y

2k(y; v)dy

y2

�d	
(FQV (y))

� The ask price is computed as the negative of
the bid price of the negative cash �ow.



Properties of the linear
expectation equation for

the stock price

� For the speci�c context of the stock price the func-
tion F is the identity function.

� In this case the solution of the linear expectation
equation can be independently veri�ed.

� Firstly one may solve explicitly for H(X; v) as fol-
lows.

� The conditional law of X(1) given X(t) = X is
that of

X + e�rtY = X + vY



where Y is an independent random variable with the
same law as

X (1)
=

Z 1
0
bpe

�rud
p(cpu)

�
Z 1
0
bne

�rud
n(cnu):

� It follows that

H(X; v) = exp (X + !(1))�Y (�iv)

� From the characteristic function for Y we have that

�Y (�iv)

= exp
�
cp

r
dilog (bpv) +

cn

r
dilog (�bnv)

�
:



� It follows that

H(X; v)

= exp (X + !(1))�

exp
�
cp

r
dilog (bpv) +

cn

r
dilog (�bnv)

�
:



� For numerical solutions it is preferable to have a sta-
tionary grid for the space variable and this is ex-
pected for the discounted stock price.

� We are therefore led to write

H(X; v)

= exp (X + ! (t) + !(1)� !(t))
��Y (�iv)

t = �ln v
r
:

� Further observing that

M(t) = exp (X(t) + !(t))



� de�ne

G(M(v); v)

= M(v)�

exp
�
!(1)� !(�ln v

r
)
�

��Y (�iv):

� Dropping for notational convenience the dependence
of M on v we write thatZ 1

�1
(G(Mey; v)�G(M; v))k(y; v)dy

= G(M; v)
Z 1
�1

(ey � 1) k(y; v)dy:



� Also we have that

Gv

= G(M; v)

�
 
@ ln�Y (�iv)

@v
+
1

rv
!0
�
�ln v
r

�!
= G(M; v)

�

0@ �cp ln(1�bpv)rv � cn ln(1+bnv)
rv

+ 1
rv!

0
�
�ln vr

� 1A

� It follows thatG(M; v) satis�es the di¤erential equa-
tion

rvGv

=
Z 1
�1

(G(Mey; v)�G(M; v))k(y; v)dy

+G(M; v)!0
�
�ln v
r

�
One may therefore work on a �xed stock grid cen-
tered around unity with the di¤erential equation on
applying the desired distortions to the Lévy system
k(y; v):



� The function !0(t) may be precomputed.



Explicit Solution

� The discretized update for the conditional expecta-
tion of M(1) is now

G(M; v + h)

= G(M; v) +

h

rv
�
 R1

�1(G(Mey; v)�G(M; v))k(y; v)dy
+G(M; v)!0

�
�ln vr

� !
:

� However, it will be useful to incorporate the analyt-
ical solution to into the numerical scheme.

� Note that when X(t) = X we have

M(t) = exp (X + !(t))

� but as M(t) is a martingale we must have

Et [exp (X(1) + !(1))] = M(t)

= exp (X + !(t))



� But this conditional expectation is

exp (X + !(1))�Y (�iv):

� Hence one has the implication that

�Y (�iv) = exp
�
!(�ln v

r
)� !(1)

�

� It follows that

M exp
�
!(1)� !

�
�ln v
r

��
�Y (�iv) =M

and the solution of the di¤erential equation

rvGv

=
Z 1
�1

(G(Mey; v)�G(M; v)) k(y; v)dy

+G(M; v)!0
�
�ln v
r

�
is in fact

G(M; v) =M:



Implementation details

� The pricing is implemented for risk neutral parameter
values for the S&P 500 index taken at their median
values as reported in M. and Yor (2012).

� These are

r = :02966

bp = 0:0145

cp = 48:4215

bn = 0:5707

cn = 0:3493

� The di¤erential equation solved for the bid price is

rvGv

=
Z 1
�1

(G(Mey; v)�G(M; v))
R1
�1 y

2k(y; v)dy

y2

�d	

�
FQV (y)

�
+G(M; v)!0

�
�ln v
r

�
:



� In the absence of a distortion the equation has the
solution G(M; v) =M:

� In the computations we set !0 to b!0 that forces
the expectation equation to solve out at the iden-
tity function.

� Hence we set

b!0 = �R1�1(G(Mey; v)�G(M; v))k(y; v)dy
G(M; v)

in the solution of the expectation equation.

� This value of b!0 is then used in the bid and ask
equations.



� It was checked that the values for b!0 and !0 were
close.

� For this parameter setting and with the minmaxvar
stress level set at 10 basis points the bid and ask
prices were solved for as a function of the spot on
the initial date.

� We also present a graph of the bid and ask prices as
a function of calendar time for di¤erent levels of the
initial spot.

� The prices converge at in�nity to the expected value.



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

Level of Spot

B
E

A

Bid Ask and Expectation as a function of Initial Spot
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spot price at time zero.
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Bid and ask for dvg driven
stock using measure

distortions

� The �rst step in applying measure distortions is that
of choosing speci�c functional forms for the measure
distortions �+; ��:

� Recognizing that �+ lies above the identity and ��
lies below we consider functional forms for the posi-
tive gap

G+(x) = �+(x)� x
G�(x) = x� ��(x)

� Both these functions are concave and positive.

� If we suppose that for large x associated with large
tail measures and therefore events nearer to zero,



there need be no reweighting then one has �0+ falling
to unity at large x while �0� rises to unity.

� As a result G+; G� are increasing concave functions
that are eventually constant.

� We may scale by the �nal constant and model them
to be multiples of increasing concave functions that
are �nally unity.

� We then write

G+(x) = aK+(x)

G�(x) = bK�(x)

where K+;K� are unity at in�nity.



Selecting Distortions

� Now consider a generic candidate for such a function,
say K(x): Suppose the concavity coe¢ cient de�ned
by

�K
00

K0

is bounded below by a constant c:

� De�ne

	(y) = K

 
�ln(1� y)

c

!
; 0 � y � 1:

The function 	 is zero at zero, unity at unity, and
increasing in its domain.

� Furthermore we have

	0 = K0
 

1

c(1� y)

!

	00 = K00
 

1

c2(1� y)2

!
+K0

1

c(1� y)2



and 	00 � 0 just if

K00

c
+K0 � 0

or

�K
00

K0
� c:



Measure Distortion via
Probability Distortions

� With a lower bound on the concavity coe¢ cient we
have that

K(x) = 	
�
1� e�cx

�
and 	 is a probability distortion.

� Hence we take as models for speci�c measure
distortions

�+(x) = x+ a	+
�
1� e�cx

�
��(x) = x� b	�(1� e�cx)

for probability distortions 	+;	�:

� If one takes maxvar for	+ to get an in�nite reweight-
ing of large losses and minvar for 	� we have the



speci�c formulation

�+(x) = x+ a
�
1� e�cx

� 1
1+
+

��(x) = x� b

c
(1� e�c(1+
�)x)

� In the calculations reported we set 
� = 0 and em-
ployed a four parameter speci�cation for the measure
distortion. The maximum downward discounting of
gains is ��(0) = 1� b:



Measure Distortion results
for the dvg stock price

� The equation solved in this case is

�

rvGv

=
Z 0
�1

xd

 
�+

 Z
(G(Mey;v)�G(M;v)�x)

k(y; v)dy

!!
dx�

Z 1
0
xd

 
��

 Z
(G(Mey;v)�G(M;v)�x)

k(y; v)dy

!!
dx

+G(M; v)!0
�
�ln v
r

�
:

� The results shown are for

a = 0:01

b = 0:05

c = 1


 = 0:0010
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Figure 3: Bid, Ask and Expected Values as a function of
the spot at the initial time using measure distortions.

� The Figure presents the bid, ask and expectation as
a function of the initial spot.

� We also present the bid and ask as functions of time
for three di¤erent spot levels in Figure
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Figure 4: Bid and Ask as functions of time for three
di¤erent spot levels using measure distortions. The lower
curves in magenta and cyan are the bid and ask for the
spot level of 0.75. Red and Black are the bid and ask for
the level 1.0 and blue and green are for level 1.25.



Two price valuation of
insurance loss processes

� We now apply measure distortions to the two price
valuation of insurance losses.

� Let L(t) be the process for cumulated losses.

� A discounted expected value may be computed as

E

�Z 1
0
e�rsdL(s)

�
where L(t) is for example a compound Poisson process
with arrival rate � and loss sizes that are i:i:d: gamma
distributed.

� Consider the value process in time zero dollars for
these losses,

V (t) = Et

�Z 1
0
e�rsdL(s)

�
:



� Let X(t) be the level of discounted losses to date or

X(t) =
Z t
0
e�rsdL(s):

� We then have that conditional on this realizationZ 1
0
e�rsdL(s) = X + e�rt

Z 1
t
e�r(s�t)dL(s)

(d)
= X + e�rtY

where Y is an independent copy of the random vari-
able Z 1

0
e�rsdL(s):

� It follows that the conditional expectation is a mar-
tingale of the form

H(X(t); e�rt)



� The martingale condition for H once again yields
that

rvHv

=
Z 1
0
(H(X + w; v)�H(X; v))k(w; v)dw

where k(w; v) is related to the Lévy system forX(t):



The Lévy system

� We may derive this Lévy system from the character-
istic function for X(t):

� The characteristic function is developed as follows

E [exp (iuX(t))]

= E

�
exp

�
iu
Z t
0
e�rsdL(s)

��
= exp

 Z t
0

Z 1
0

�
eiue

�rsx � 1
�

�

� (
)
c
x
�1e�cxdxds

!

= exp

0@ R t
0
R1
0

�
eiuw � 1

�
�

�
�(
)

�
c

e�rs
�

w
�1 exp

�
� c
e�rsw

�
dwds

1A

� It follows that the Lévy system for X(t) is

k(w; t) =
�

� (
)

�
c

e�rt

�

w
�1 exp

�
� c

e�rt
w

�



Implementing Insurance
Loss Valuation

� We consider an arrival rate � = 10 with gamma
distribution of mean 5 and variance 10:

� Therefore we have c = :5; 
 = 2:5 and � = 100:

� We take the interest rate at r = :02:

� The mean of the �nal discounted loss is
�


rc
= 2500

� The di¤erential equation is

Hv =
1

rv

Z 1
0
(H(X + y; v)�H(X; v))k(y; v)dy



with

k(y; v) =
�

�(
)

�
c

v

�

y
�1 exp

�
�c
v
y

�

� We �x a grid in X from 0 to 100 measured in thou-
sands for which we take c = 500: We take the grid
in X to be (:25 : :25 : 100):



One sided measure
distortions

� We only have positive outcomes for the cumulated
discounted loss process.

� Our equation for the bid price is therefore

b = �
Z 1
0
xd�� (� (� > x))

� and for ask price we have

a = �
Z 1
0
xd�+ (� (� > x)) :

� We have the same equation but we use �� for the
bid and �+ for the ask.

� The measure distortion parameters used were a =
:1; b = :2; c = 1 and 
 = :02:
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Figure 5: Bid, Ask and Expectation as functions of initial
loss level
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Remarks on the design of
measure distortions

� There are four parameters in the proposed measure
distortion �+; �� and they are a; b; c and 
:

� The parameter c may be calibrated by a cuto¤ on
what are viewed as rare events.

� If the exponential of �cx is below 1=2 then 1 �
exp(�cx) > 1=2 and these are the likely events.

� De�ning

x� =
� ln(1=2)

c

we have arrival rates below x� constituting the rare
events.



� Hence for c = � ln(1=2) arrival rates above one per
year are the normal events while arrival rates below
one per year are the rare ones.

� If arrival rates below 2 per year are to be the rare
ones then c = � ln(1=2)=2 = 0:3466 and if rare is
viewed as one every two years then c = 1:3863:



� The parameter b sets the discount on gains.

� For b = 0 there is no gain discount and �� is the
identity function. The highest gain discount is unity.
The gain discount should be set below unity.

� Once b and c are set then the choice of � in

a =
b

c
�

sets the parameter a:

� The choice of � = 1 provided a balanced treatment
of gains and losses as the maximum penalty in the
gap functions G+ and G� are then equal. The pa-
rameter � is then a balance parameter

� The parameter 
 is a stress parameter and controls
the speed with which losses are reweighted upwards.
This is a parameter familiar from the uses of proba-
bility distortions maxvar or minmaxvar:



Inhomogeneous compound
Poisson losses

� Consider an inhomogeneous arrival rate �(t) for losses,
a general discount curve D(t) and gamma distrib-
uted loss sizes.

� For the loss process L(t) the linear expectation val-
uation is given by

V (t) = Et

�Z 1
0
D(s)dL(s)

�

� Now conditioning on time t we have that

V (t) =
Z t
0
D(s)dL(s)

+Et

�Z 1
t
D(s)dL(s)

�



� De�ne

C(t)

=
Z 1
t
D(s)

Z 1
0
�(s)

c


�(
)
x
e�cxdxds

and observe that

M(t) =
Z t
0
D(s)dL(s)

+C(t)

is a martingale.

� Infact

dM(t) = D(t)dL(t)

�D(t)
Z 1
0
�(t)

c


�(
)
x
e�cxdxdt

� and as the compensator of dL(t) is

�(t)
c


�(
)
x
e�cxdxdt

we have a martingale.



Nonlinear Valuations

� In general in the current context we have that V (t) =
H(X(t); t)

where in fact the function H takes the speci�c form

H(X(t); t) = X(t) + C(t):

� Apply Ito�s lemma to the functionH and noting that
it is a martingale we deduce that

Ht+
Z 1
0
(H(X(t)+y; t)�H(X(t); t))k(y; t)dy = 0

where again k(y; t) is the Lévy system for X(t):

� Equivalently in terms of the compensator for dL(t)
we may write

Ht = �
Z 1
0
(H(X(t) +D(t)x; t)�H(X(t); t))�

�(t)
��

�(�)
x��1e��xdx:



� Now substituting the speci�c form of the function H
yields that

Ct = �
Z 1
0
D(t)x�(t)

��

�(�)
x��1e��xdx

or that

C(t) =
Z 1
t

Z 1
0
D(s)x�(s)

��

�(�)
x��1e��xdxds:

� For the nonlinear measure distorted result we write

�

Et
�Z 1
0
D(s)dL(s)

�
=
Z t
0
D(s)dL(s) + eC(t)

eC(t)
=

Z 1
t
D(s)

Z 1
0
�+

 Z 1
x
�(t)

c


�(
)
y
�1e�cydy

!
dxds

� The computation of eC(t) as the ask price valuation
is what we implement for the inhomogeneous case



as a conjectured solution. For the bid we replace �+
by ��:



Inhomogeneous Example

� We employ for the discount curve a Nelson-Siegel
discount curve with yield to maturity y(t) speci�ca-
tion

y(t) = a1 + (a2 + a3t)e
�a4t

a1 = :0424

a2 = �:0367
a3 = :0034

a4 = :0686:

The discount curve is graphed in Figure 7.

� For the inhomogeneous arrivar rate we take an ex-
ponential model with

�(t) =
a

�
exp

�
� t
�

�
:

The parameters used were a = 100 and � = 10:
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Figure 7: Discount Curve used in Inhomogeneous Com-
pound Poisson Loss Model.



� The distribution for losses are gamma with c = 
 =
1:2346; consistent with a unit mean and a standard
deviation of 0:9:

� For the measure distortions parameters we employ
a = :7214; b = :5; c = :6931 and 
 = 0:25:

� Presented are the premia of ask over expectation
and the shave of bid relative to expectation in basis
points, for the function eC(t) when we use �+ for
the ask and �� for the bid.
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Conclusion

� The use of probability distortions in constructing non-
linear G-expectations for bid and ask or lower and up-
per prices in continuous time as introduced in Eber-
lein, M., Pistorius, Schoutens and Yor (2012) is here
extended to the direct use of measure distortions.

� Integrals with respect to a positive and possibly in-
�nite measure with �nite measure in the two sided
tails on either side of zero are distorted using concave
measure distortions for losses and convex measure
distortions for gains.

� It is shown that measure distortions can fairly gener-
ally be constructed as probability distortions applied
to an exponential distribution function on the half
line.



� The valuation of economic activities as opposed to
contracts places the problem in a context with no
apparent maturity.

� The two price continuous time methodologies hereto-
fore available for explicit maturities are extended to
in�nitely lived economic activities.

� This permits the construction of two prices for stock
indices and the coverage of insurance liabilities in
perpetuity.

� The methods are illustrated with explicit computa-
tions using probability and measure distortions for an
in�nitely lived stock price model as developed in M.
and Yor (2012).

� Measure distortions are applied to in�nitely lived com-
pound Poisson insurance loss processes.




