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Self-similar Markov processes (ssMp)

Definition

A regular strong Markov process (Zt : t ≥ 0) on Rd , with
probabilities Px , x ∈ Rd , is a rssMp if there exists an index
α ∈ (0,∞) such that:

for all c > 0 and x ∈ Rd

(cZtc−α : t ≥ 0) under Px

is equal in law to

(Zt : t ≥ 0) under Pcx .
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Some of your best friends are ssMp

Write Nd(0,Σ) for the Normal distribution with mean 0 ∈ Rd

and correlation (matrix) Σ. The moment generating function
of Xt ∼ Nd(0,Σt) satisfies, for θ ∈ Rd ,

E [eθ·Xt ] = etθ
TΣθ/2 = e(c−2t)(cθ)TΣ(cθ)/2 = E [eθ·cXc−2t ].

Thinking about the stationary and independent increments of
Brownian motion, this can be used to show that
Rd -Brownian motion: is a ssMp with α = 2.
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Some of your best friends are ssMp

Suppose that (Xt : t ≥ 0) is an R-Brownian motion:

Write X t := infs≤t Xs . Then (Xt ,X t), t ≥ 0 is a Markov
process.

For c > 0 and α = 2,(
cX c−αt

cXc−αt

)
=

(
c infs≤c−αt Xs

cXc−αt

)
=

(
infu≤t cXc−αu

cXc−αt

)
, t ≥ 0,

and the latter is equal in law to (X ,X ), because of the scaling
property of X .

⇒ Markov process Zt := Xt − (−x ∧ X t), t ≥ 0 is also a
ssMp on [0,∞) with index 2.

⇒ Zt := Xt1(X t>0), t ≥ 0 is also a ssMp, again on [0,∞).
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Some of your best friends are ssMp

Suppose that (Xt : t ≥ 0) is an Rd -Brownian motion:

Consider Zt := |Xt |, t ≥ 0. Because of rotational invariance,
it is a Markov process. Again the self-similarity (index 2) of
Brownian motion, transfers to the case of |X |. Note again,
this is a ssMp on [0,∞)

Note that |Xt |, t ≥ 0 is a Bessel-d process. It turns out that
all Bessel processes, and all squared Bessel processes are
self-similar on [0,∞). Once can check this by e.g. considering
scaling properties of their transition semi-groups.
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Some of your best friends are ssMp

Suppose that (Xt : t ≥ 0) is an Rd -Brownian motion:

Note when d = 3, |Xt |, t ≥ 0 is also equal in law to a
Brownian motion conditioned to stay positive: i.e if we define,
for a 1-d Brownian motion (Bt : t ≥ 0),

P↑x(A) = lim
s→∞

Px(A|Bt+s > 0) = Ex

[
Bt

x
1(Bt>0)1(A)

]
where A ∈ σ{Xt : u ≤ t}, then

(|Xt |, t ≥ 0) with |X0| = x is equal in law to (B,P↑x).
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More examples?

All of the previous examples have in common that their paths
are continuous. Is this a necessary condition?

We want to find more exotic examples as most of the previous
examples have been extensively studied through existing
theories (of Brownian motion and continuous
semi-martingales).
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Some of the best friends of your best friends are ssMp

All of the previous examples are functional transforms of
Brownian motion and have made use of the scaling and
Markov properties and (in some cases) isometric distributional
invariance.

If we replace Brownain motion by an α-stable process, a Lévy
process that has scale invariance, then all of the functional
transforms
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α-stable process

Definition

A Lévy process X is called (strictly) α-stable if it is also a
self-similar Markov process.

Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]

The characteristic exponent Ψ(θ) := −t−1 logE(eiθXt )
satisfies

Ψ(θ) = |θ|α(eπiα( 1
2
−ρ)1(θ>0) + e−πiα( 1

2
−ρ)1(θ<0)), θ ∈ R.

where ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ
Assume jumps in both directions (0 < αρ, αρ̂ < 1), so that
the Lévy density takes the form

Γ(1 + α)

π

1

|x |1+α

(
sin(παρ)1{x>0} + sin(παρ̂)1{x<0}

)
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Your new friends

Suppose X = (Xt : t ≥ 0) is within the assumed class of α-stable
processes in one-dimension and let X t = infs≤t Xs . Your new
friends are:

Z = X

Z = X − (−x ∧ X ), x > 0.

Z = X1(X>0)

Z = |X | providing ρ = 1/2

What about Z =“X conditioned to stay positive”?
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Conditioned α-stable processes

Recall that each Lévy processes, ξ = {ξt : t ≥ 0}, enjoys the
Wiener-Hopf factorisation i.e. up to a multiplicative constant,
Ψξ(θ) := t−1 logE[eiθξt ] respects the factorisation

Ψξ(θ) = κ(−iθ)κ̂(iθ), θ ∈ R,

where κ and κ̂ are Bernstein functions. That is e.g. κ takes
the form

κ(λ) = q + aλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0

where ν is a measure satisfying
∫

(0,∞) 1 ∧ xν(dx) <∞.
The probabilistic significance of these subordinators, is that
their range corresponds precisely to the range of the running
maximum of ξ and of −ξ respectively.
In the case of α-stable processes, up to a multiplicative
constant,

κ(λ) = λαρ and κ̂(λ) = λαρ̂, λ ≥ 0.
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Conditioned α-stable processes

Associated to the descending ladder subordinator κ̂ is its
potential measure Û, which satisfies∫

[0,∞)
e−λx Û(dx) =

1

κ̂(λ)
, λ ≥ 0.

It can be shown that for a Lévy process which satisfies
lim supt→∞ ξt =∞, for A ∈ σ(ξu : u ≤ t),

P↑x(A) = lim
s→∞

Px(A|X t+s > 0) = Ex

[
Û(Xt)

Û(x)
1(X t>0)1(A)

]

In the α-stable case Û(x) ∝ xαρ̂

[Note in the excluded case that α = 2 and ρ = 1/2, i.e.
Brownian motion, Û(x) = x .]
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Conditioned α-stable processes
For c , x > 0, t ≥ 0 and appropriately bounded, measurable
and non-negative f , we can write,

E↑x [f ({cXc−αs : s ≤ t})]

= E

[
f ({cX (x)

c−αs : s ≤ t})
(X

(x)
c−αt)

αρ̂

xαρ̂
1

(X
(x)

c−αt
≥0)

]

= E

[
f ({X (cx)

s : s ≤ t}(X
(cx)
t )αρ̂

(cx)αρ̂
1

(X
(cx)
t ≥0)

]
= E↑cx [f ({Xs : s ≤ t})].

This also makes the process (X ,P↑x), x > 0, a self-similar
Markov process on [0,∞).

Unlike the case of Brownian motion, the conditioned stable
process does not have the law of the radial part of a
3-dimensional stable process.
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Notation

Use ξ := {ξt : t ≥ 0} to denote a Lévy process which is killed
and sent to the cemetery state −∞ at an independent and
exponentially distributed random time, eq, with rate in
q ∈ [0,∞). The characteristic exponent of ξ is thus written

− log E (eiθξ1) = Ψ(θ) = q + Lévy–Khintchine

Define the associated integrated exponential Lévy process

It =

∫ t

0
eαξs ds, t ≥ 0. (1)

and its limit, I∞ := limt↑∞ It .

Also interested in the inverse process of I :

ϕ(t) = inf{s > 0 : Is > t}, t ≥ 0. (2)

As usual, we work with the convention inf ∅ =∞.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (i))

Fix α > 0. If Z (x), x > 0, is a positive self-similar Markov process with index of
self-similarity α, then up to absorption at the origin, it can be represented as
follows. For x > 0,

Z
(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)}, t ≥ 0,

where ζ(x) = inf{t > 0 : Z
(x)
t = 0} and either

(1) ζ(x) =∞ almost surely for all x > 0, in which case ξ is a Lévy
process satisfying lim supt↑∞ ξt =∞,

(2) ζ(x) <∞ and Z
(x)

ζ(x)− = 0 almost surely for all x > 0, in which

case ξ is a Lévy process satisfying limt↑∞ ξt = −∞, or

(3) ζ(x) <∞ and Z
(x)

ζ(x)− > 0 almost surely for all x > 0, in which

case ξ is a Lévy process killed at an independent and
exponentially distributed random time.

In all cases, we may identify ζ(x) = xαI∞.
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Lamperti transform for POSITIVE ssMp

Theorem (Part (ii))

Conversely, suppose that ξ is a given (killed) Lévy process. For
each x > 0, define

Z
(x)
t = x exp{ξϕ(x−αt)}1(t<xαI∞), t ≥ 0.

Then Z (x) defines a positive self-similar Markov process, up to its
absorption time ζ(x) = xαI∞, with index α.
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Lamperti transform for POSITIVE ssMp

(Z ,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔ (ξ,Py )y∈R killed Lévy

ξs = log(ZT (s)),

T a random time-change

Z never hits zero
Z hits zero continuously
Z hits zero by a jump

 ↔


ξ →∞ or ξ oscillates

ξ → −∞
ξ is killed



ssMp and examples Lamperti transform pssMp Entrance Laws rssMp

Lamperti transform for POSITIVE ssMp

(Z ,Px)x>0 pssMp

Zt = exp(ξS(t)),

S a random time-change

↔ (ξ,Py )y∈R killed Lévy
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Stable process killed on entry to (−∞, 0)

The stable process cannot ‘creep’ downwards across the
threshold 0 and so must do so with a jump.

This puts Z ∗t := Xt1(X t>0), t ≥ 0, in the class of pssMp for
which the underlying Lévy process experiences exponential
killing.

Write ξ∗ = {ξ∗t : t ≥ 0} for the underlying Lévy process and
denote its killing rate by q∗.

Let’s try and decode the characteristics of ξ∗.
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Stable process killed on entry to (−∞, 0)

We know that the α-stable process experiences downward jumps at rate

Γ(1 + α)

π
sin(παρ̂)

1

|x |1+α
dx , x < 0.

Given that we know the value of Zt−, on {X t > 0}, the stable process
will pass over the origin at rate

Γ(1 + α)

π
sin(παρ̂)

(∫ ∞
Zt−

1

|x |1+α
dx

)
=

Γ(1 + α)

απ
sin(παρ̂)Z−αt− .

On the other hand, the Lamperti transform says that on {t < ζ}, as a
pssMp, Z is sent to the origin at rate

q∗
d

dt
ϕ(t) = q∗e

−αξ∗ϕ(t) = q∗Z−αt .

Comparing gives us

q∗ = Γ(α)sin(παρ̂)/π =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
.
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Stable process killed on entry to (−∞, 0)

Referring again to the Lamperti transform, we know that,
under P1 (so that P1(ξ∗0 = 0) = 1),

Zζ− = Xτ−0 −
= e

ξ∗eq∗ ,

where eq∗ is an exponentially distributed random variable with
rate q∗.

This motivates the computation

E1[(Zζ−)iθ] = E1[e
iθξ∗eq∗− ] =

q∗

(Ψ∗(z)− q∗) + q∗
, θ ∈ R,

where Ψ∗ is the characteristic exponent of ξ∗.
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Stable process killed on entry to (−∞, 0)

Setting

K =
sinαρ̂π

π

Γ(α + 1)

Γ(αρ)Γ(αρ̂)
,

Remembering the “overshoot-undershoot” distributional law at
first passage (see Victor Rivero’s notes) and deduce that, for all
v ∈ [0, 1],

P1(Xτ−0 −
∈ dv)

= P̂0(1− Xτ+
1 −
∈ dv)

= K

(∫ ∞
0

∫ ∞
0

1(y≤1∧v)
(1− y)αρ̂−1(v − y)αρ−1

(v + u)1+α
dudy

)
dv

=
K

α

(∫ 1

0
1(y≤v)v

−α(1− y)αρ̂−1(v − y)αρ−1dy

)
dv ,

where P̂0 is the law of −X issued from 0.
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Stable process killed on entry to (−∞, 0)

We are led to the conclusion that

q∗
Ψ∗(θ)

=
K

α

∫ 1

0
(1− y)αρ̂−1

∫ ∞
0

1(y≤v)v
iθ−αρ̂−1

(
1− y

v

)αρ−1
dvdy

=
K

α

∫ 1

0
(1− y)αρ̂−1y iθ−αρ̂dy

Γ(αρ̂− iθ)Γ(αρ)

Γ(α− iθ)

=
Γ(αρ̂− iθ)Γ(αρ)Γ(1− αρ̂+ iθ)Γ(αρ̂)Γ(α + 1)

αΓ(αρ)Γ(αρ̂)Γ(1− αρ̂)Γ(αρ̂)Γ(1 + iθ)Γ(α− iθ)
,

where in the first equality Fubini’s Theorem has been used, in the
second equality a straightforward substitution w = y/v has been
used for the inner integral on the preceding line together with the
classical beta integral and, finally, in the third equality, the Beta
integral has been used for a second time. Inserting the respective
values for the constants q∗ and K , we come to rest at the
following result:
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Stable process killed on entry to (−∞, 0)

Theorem

For the pssMp constructed by killing a stable process on first entry
to (−∞, 0), the underlying Lévy process, ξ∗, that appears through
the Lamperti transform has characteristic exponent given by

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R.
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Stable processes conditioned to stay positive
Use the Lamperti representation of the α-stable process X to write, for
A ∈ σ(Xu : u ≤ t),

P↑x (A) = Ex

[
Xαρ̂

t

xαρ̂
1(X t>0)1(A)

]
= E

[
eαρ̂ξ

∗
τ 1(τ<eq∗ )1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration of ξ∗.

Noting that Ψ∗(−iαρ̂) = 0, the change of measure constitutes an Esscher
transform at the level of ξ∗.

Theorem

The underlying Lévy process, ξ↑, that appears through the Lamperti transform
applied to (X ,P↑x ), x > 0,has characteristic exponent given by

Ψ↑(z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1 + αρ̂+ iz)

Γ(1 + iz)
, z ∈ R.

In particular Ψ↑(z) = Ψ∗(z − iαρ̂), z ∈ R so that Ψ↑(0) = 0 (i.e. no
killing!)

One can also check by hand that Ψ↑′(0+) = E [ξ↑1 ] > 0 so that
limt→∞ ξ

↑
t =∞.
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Did you spot the other root?
In essence, the case of the stable process conditioned to stay positive
boils down to an Esscher transform in the underlying
(Lamperti-transformed) Lévy process.

It was important that we identified a root of Ψ∗(z) = 0 in order to avoid
involving a ‘time component’ of the Esscher transform.

However, there is another root of the equation

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
= 0,

namely z = −i(1− αρ̂).

And this means that
e(1−αρ̂)ξ∗ , t ≥ 0,

is a unit-mean Martingale, which can also be used to construct an
Esscher transform:

Ψ↓(z) = Ψ∗(z − i(1− αρ̂)) = Ψ↓(z) =
Γ(1 + αρ− iz)

Γ(1− iz)

Γ(iz + αρ̂)

Γ(iz)
.

The choice of notation is pre-emptive since we can also check that
Ψ↓(0) = 0 and Ψ↓′(0) < 0 so that if ξ↓ is a Lévy process with
characteristic exponent Ψ↓, then limt→∞ ξ

↓
t = −∞.
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Reverse engineering

What now happens if we define for A ∈ σ(Xu : u ≤ t),

P↓x(A) = E
[
e(1−αρ̂)ξ∗τ1(τ<eq∗ )1(A)

]
= Ex

[
X

(1−αρ̂)
t

x (1−αρ̂)
1(X t>0)1(A)

]
,

where τ = ϕ(x−αt) is a stopping time in the natural filtration
of ξ∗.

In the same way we checked that (X ,P↑x), x > 0, is a pssMp,

we can also check that (X ,P↓x), x > 0 is a pssMp.

In an appropriate sense, it turns out that (X ,P↓x), x > 0 is the
law of a stable process conditioned to continuously approach
the origin from above.
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ξ∗, ξ↑ and ξ↓

The three examples of pssMp offer quite striking underlying
Lévy processes

Is this exceptional?
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Censored stable processes

Start with X , the stable process.

Let At =
∫ t

0 1(Xt>0) dt.

Let γ be the right-inverse of A, and put Žt := Xγ(t).

Finally, make zero an absorbing state: Zt = Žt1(t<T0) where

T0 = inf{t > 0 : Xt = 0}.

Note T0 <∞ a.s. if and only if α ∈ (1, 2) and otherwise
T0 =∞ a.s.

This is the censored stable process.
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Censored stable processes

Theorem

Suppose that the underlying Lévy process for the censored stable

process is denoted by
 

ξ . Then
 

ξ is equal in law to ξ∗∗ ⊕ ξC, with

ξ∗∗ equal in law to ξ∗ with the killing removed,

ξC a compound Poisson process with jump rate
q∗ = Γ(α)sin(παρ̂)/π.

Moreover, the characteristic exponent of
 

ξ is given by

 

Ψ (z) =
Γ(αρ− iz)

Γ(−iz)

Γ(1− αρ+ iz)

Γ(1− α + iz)
, z ∈ R.
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The radial part of a stable process

Suppose that X is a symmetric stable process, i.e ρ = 1/2.

We know that |X | is a pssMp.

Theorem

Suppose that the underlying Lévy process for |X | is written ξ�,
then it characteristic exponent is given by

Ψ�(z) = 2α
Γ( 1

2 (−iz + α))

Γ(−1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.
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Hypergeometric Lévy processes
Definition (and Theorem)

For (β, γ, β̂, γ̂) in{
β ≤ 2, γ, γ̂ ∈ (0, 1) β̂ ≥ −1, and 1− β + β̂ + γ ∧ γ̂ ≥ 0

}
there exists a (killed) Lévy process, henceforth refered to as a hypergeometric
Lévy process, having the characteristic function

Ψ(z) =
Γ(1− β + γ − iz)

Γ(1− β − iz)

Γ(β̂ + γ̂ + iz)

Γ(β̂ + iz)
z ∈ R.

The Lévy measure of Y has a density with respect to Lebesgue measure is
given by

π(x) =


− Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1

(
1 + γ, η; η − γ̂; e−x) , if x > 0,

− Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

where η := 1− β + γ + β̂ + γ̂, for |z | < 1, 2F1(a, b; c; z) :=
∑

k≥0
(a)k (b)k

(c)kk!
zk .
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Starting from zero

We have carefully avoided the issue of talking about pssMp issued from
the origin.

This should ring alarm bells when we look at the Lamperti transform

Z
(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)} = exp{ξϕ(x−αt) + log x}, t ≥ 0,

On the one hand log x ↓ −∞, which is the point of issue of ξ, but

ϕ(x−αt) = inf{s > 0 :

∫ s

0

eα(ξu+log x)du > t},

meaning that we are sampling the Lévy process over a longer and longer
time horizon.

We know that 0 is an absorbing point, but it might also be an entrance
point (can it be both?).

We know that some of our new friends have no problem using the origin
as an entrance point, e.g. |X |, where X is an α-stable process (or
Brownian motion).

We know that some of our new friends have no problem using the origin
as an entrance point, but also a point of recurrence, e.g. X −X , where X
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meaning that we are sampling the Lévy process over a longer and longer
time horizon.

We know that 0 is an absorbing point, but it might also be an entrance
point (can it be both?).

We know that some of our new friends have no problem using the origin
as an entrance point, e.g. |X |, where X is an α-stable process (or
Brownian motion).

We know that some of our new friends have no problem using the origin
as an entrance point, but also a point of recurrence, e.g. X −X , where X
is an α-stable process (or Brownian motion).



ssMp and examples Lamperti transform pssMp Entrance Laws rssMp

Starting from zero

We have carefully avoided the issue of talking about pssMp issued from
the origin.

This should ring alarm bells when we look at the Lamperti transform

Z
(x)
t 1(t<ζ(x)) = x exp{ξϕ(x−αt)} = exp{ξϕ(x−αt) + log x}, t ≥ 0,

On the one hand log x ↓ −∞, which is the point of issue of ξ, but

ϕ(x−αt) = inf{s > 0 :

∫ s

0

eα(ξu+log x)du > t},

meaning that we are sampling the Lévy process over a longer and longer
time horizon.

We know that 0 is an absorbing point, but it might also be an entrance
point (can it be both?).

We know that some of our new friends have no problem using the origin
as an entrance point, e.g. |X |, where X is an α-stable process (or
Brownian motion).

We know that some of our new friends have no problem using the origin
as an entrance point, but also a point of recurrence, e.g. X −X , where X
is an α-stable process (or Brownian motion).



ssMp and examples Lamperti transform pssMp Entrance Laws rssMp

Starting from zero

We want to find a way to give a meaning to “P0 := limx↓0 Px”.

Could look at behaviour of the transition semigroup of Z as its initial
value tends to zero. That is to say, to consider whether the weak limit
below is well defined:

P0(Zt ∈ dy) := lim
x↓0

Px(Zt ∈ dy), t, y > 0.

In that case, for any sequence of times 0 < t1 ≤ t2 ≤ · · · ≤ tn <∞ and
y1, · · · , yn ∈ (0,∞), n ∈ N, the Markov property gives us

P0(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

:= lim
x↓0

Px(Zt1 ∈ dy1, · · · ,Ztn ∈ dyn)

= lim
x↓0

Px(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn)

= P0(Zt1 ∈ dy1)Py1 (Zt2−t1 ∈ dy2, · · · ,Ztn−t2 ∈ dyn).

When the limit exists, it implies the existence of P0 as limit of Px as
x ↓ 0, in the sense of convergence of finite-dimensional distributions.
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Starting from zero

We would like a stronger sense of convergence e.g. we would
like

E0[f (Zs : s ≤ t)] := lim
x→0

Ex [f (Zs : s ≤ t)]

for an appropriate measurable function on cadlag paths of
length t.

The right setting to discuss distributional convergence is with
respect to so-called Skorokhod topology.

ROUGHLY: There is a metric on cadlag path space which
does a better job of measuring how “close” two paths are
than e.g. the uniform functional metric.

This metric induces a topology (the Skorokhod topology).
From this topology, we build a measurable space around the
space of cadlag paths.

Think of Px , x > 0 as a family of measures on this space and
we want weak convergence “P0 := limx→0 Px” on this space.
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Starting from zero

Assume that Z is a pssMp with ζ =∞ a.s. Moreover, suppose that the Lévy
process ξ, associated with Z through the Lamperti transform, is not a
compound Poisson process.

Theorem

Under the assumption that E(ξ1) > 0, for any positive measurable function f
and t > 0,

E0(f (Zt)) =
1

αE(ξ1)
E

(
1

I−∞
f

((
t

I−∞

)1/α
))

,

where I−∞ =
∫∞

0
exp{−αξs}ds.

Theorem

The limit P0 := limx→0 Px exists in the sense of convergence with respect to
the Skorokhod topology if and only if E(H+

1 ) <∞ (H+ is the ascending ladder
process of ξ).
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Sketch proof of the second theorem

The basic idea is to give a pathwise construction of a candidate for
“(Z ,P0)” then check that there is weak convergence to it.

Suppose we can identify ξ◦ which is a version of the underlying Lévy
process ξ of (Z ,Px), x > 0 but now indexed by R rather than indexed by
[0,∞), then we can identify the pathwise candidate for “(Z ,P0)” by

Z
(0)
t = exp{ξ◦ϕ◦(t)}, t ≥ 0,

where

I ◦t =

∫ t

−∞
eαξ
◦
s ds and ϕ◦(t) = inf{s > 0 : I ◦s ≥ t}.

If the above makes sense, then ξ◦ must “enter” from the space-time
point (−∞,−∞).

It is the existence of an ξ◦ and “convergence” to it of ξ + log x on [−s, t]
as x → 0, s →∞ which produces the necessary and sufficient condition
that E [H+

1 ] <∞.
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Construction of ξ◦

If ξ◦ enters from (−∞,∞), then it must make first passage over any level
x in a “stationary” way.

Specifically, we would need that (ξ◦
σ+
a
− a, a− ξ◦

σ+
a −

) is independent of

a ∈ R, where σ+
a = inf{t > −∞ : ξ◦t > a}.This motivates the following

construction:

Take the stationary overshoot/undershoot law of ξ (which requires the
necessary and sufficient condition E [H+

1 ] <∞)

χ(dy , dz) =
1

E[H+
1 ]

(
Ûξ(z)Πξ(z + dy)dz + γδ0(dy)δ0(dz)

)
, y , z ≥ 0.

Build the two-dimensional random variable (∆,∆↑) has distribution χ.
Then

ξ◦t :=

{
ξt under P∆ if t ≥ 0,

−ξ↑|t|− under P↑
∆↑

if t < 0,

where (ξ,Px), x > 0 is an independent copy of the underlying Lévy
process for Z and ξ↑ = {ξ↑t : t ≥ 0} under P↑x is an independent copy of
the process ξ conditioned to stay positive.

Hidden catch: Before constructing the entrance of Z from 0, we need to
construct the entrance of ξ↑ from 0.
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Ûξ(z)Πξ(z + dy)dz + γδ0(dy)δ0(dz)

)
, y , z ≥ 0.

Build the two-dimensional random variable (∆,∆↑) has distribution χ.
Then

ξ◦t :=

{
ξt under P∆ if t ≥ 0,

−ξ↑|t|− under P↑
∆↑

if t < 0,

where (ξ,Px), x > 0 is an independent copy of the underlying Lévy
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Recurrent extension
The previous construction has insisted that Z is a pssMp with ζ =∞ a.s.
But what about the case that ζ <∞ a.s.

We can say something about the case that ζ <∞ a.s. and Xζ− = 0.

A cadlag strong Markov process,
→
Z := {

→
Z t : t ≥ 0} with probabilities {

→
Px ,

x ≥ 0}, is a recurrent extension of Z if, for each x > 0, the origin is not

an absorbing state
→
P x -almost surely and {

→
Z

t∧
→
ζ

: t ≥ 0} under
→
P x has

the same law as (Z ,Px), where
→
ζ= inf{t > 0 :

→
Zt= 0}.

Theorem

Assume that Z is a non-conservative positive self-similar Markov process.
Suppose that (ξ,P) is the (killed) Lévy process associated with Z through the
second Lamperti transform. Then there exists a unique recurrent extension of
Z which leaves 0 continuously if and only if there exists a β ∈ (0, α) such

E(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.
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Suppose that (ξ,P) is the (killed) Lévy process associated with Z through the
second Lamperti transform. Then there exists a unique recurrent extension of
Z which leaves 0 continuously if and only if there exists a β ∈ (0, α) such

E(eβξ1 ) = 1.

Here, as usual, α is the index of self-similarity.
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So far we only spoke about [0,∞).

What can we say about R-valued self-similar Markov
processes.

This requires us to first investigate Markov Additive (Lévy)
Processes
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Markov additive processes (MAPs)

E is a finite state space

(J(t))t≥0 is a continuous-time, irreducible Markov chain on E

process (ξ, J) in R× E is called a Markov additive process
(MAP) with probabilities Px ,i , x ∈ R, i ∈ E , if, for any i ∈ E ,
s, t ≥ 0: Given {J(t) = i},

(ξ(t + s)− ξ(t), J(t + s)) ⊥ {(ξ(u), J(u)) : u ≤ t},
(ξ(t + s)− ξ(t), J(t + s))

d
= (ξ(s), J(s)) with

(ξ(0), J(0)) = (0, i).



ssMp and examples Lamperti transform pssMp Entrance Laws rssMp

Pathwise description of a MAP

The pair (ξ, J) is a Markov additive process if and only if, for each
i , j ∈ E ,

there exist a sequence of iid Lévy processes (ξni )n≥0

and a sequence of iid random variables (Un
ij )n≥0, independent

of the chain J,

such that if T0 = 0 and (Tn)n≥1 are the jump times of J,

the process ξ has the representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξnJ(Tn)(t − Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
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Lamperti-Kiu transform

Take J to be irreducible on E = {1,−1}.
Let

Zt = |x |eξ(τ(|x |−αt))J(τ(|x |−αt)) 0 ≤ t < T0,

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t

}
and

T0 = |x |−α
∫ ∞

0
eαξ(u)du.

Then Zt is a real-valued self-similar Markov process in the
sense that the law of (cZtc−α : t ≥ 0) under Px is Pcx .

The converse (within a special class of rssMps) is also true.
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Characteristics of a MAP

Denote the transition rate matrix of the chain J by
Q = (qij)i ,j∈E .
For each i ∈ E , the Laplace exponent of the Lévy process ξi
will be written ψi (when it exists).
For each pair of i , j ∈ E , define the Laplace transform
Gij(z) = E(ezUij ) of the jump distribution Uij (when it exists).
Write G (z) for the N × N matrix whose (i , j)th element is
Gij(z).
Let

Ψ(z) = diag(ψ1(z), . . . , ψN(z))−Q ◦ G (z),

(when it exists), where ◦ indicates elementwise
multiplication.
The matrix exponent of the MAP (ξ, J) is given by

E0,i (e
zξ(t); J(t) = j) =

(
e−Ψ(z)t

)
i ,j
, i , j ∈ E ,

(when it exists).
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Entrance at zero

Given the Lamperti-Kiu representation

Zt = eξ(τ(|x|−αt))+log |x|J(τ(|x |−αt)) 0 ≤ t < T0,

it is clear that we can think of a similar construction from zero to the
case of pssMp.

We need to construct a stationary version of the pair (ξ, J) which is
indexed by R and pinned at space-time point (−∞,∞).

Just like the theory of Lévy processes, by observing the range of the
process (ξt , Jt) t ≥ 0, only at the points of its new suprema, we see a
process (H+

t , J
+
t ), t ≥ 0, which is also a MAP, where H+ is has increasing

paths.

Theorem

Suppose that πQ = 0. Then the limit P0 := lim|x|→0 Px exists in the sense of
convergence with respect to the Skorokhod topology if and only if
π1E1(H+

1 ) + π−1E−1(H+
1 ) <∞, and otherwise limit does not exist.
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An α-stable process is a rssMp

An α-stable process up to absorption in the origin is a rssMp.

When α ∈ (0, 1], the process never hits the origin a.s.

When α ∈ (1, 2), the process is absorbs at the origin a.s.

The matrix exponent of the underlying MAP is given by:


Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)
−Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

−Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)

Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).
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Esscher transform for MAPs
If Ψ(z) is well defined then it has a real simple eigenvalue χ(z), which is
larger than the real part of all its other eigenvalues.

Furthermore, the corresponding right-eigenvector
v(z) = (v1(z), · · · , vN(z)) has strictly positive entries and may be
normalised such that π · v(z) = 1.

Theorem

Let Gt = σ{(ξ(s), J(s)) : s ≤ t}, t ≥ 0, and

Mt := eγ(ξ(t)−ξ(0))−χ(γ)t vJ(t)(γ)

vJ(0)(γ)
, t ≥ 0,

for some γ ∈ R such that χ(γ) is defined. Then, Mt , t ≥ 0, is a unit-mean
martingale. Moreover, under the change of measure

dPγx,i
∣∣
Gt

= Mt dPx,i |Gt , t ≥ 0,

the process (ξ, J) remains in the class of MAPs with new exponent given by

Ψγ(z) = ∆v (γ)−1Ψ(z − iγ)∆v (γ)− χ(γ)I.

Here, I is the identity matrix and ∆v (γ) = diag(v(γ)).
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Esscher and drift

Suppose that χ is defined in some open interval D of R, then,
it is smooth and convex on D.

Since Ψ(0) = −Q, we always have χ(0) = 0 and
v(0) = (1, · · · , 1). So 0 ∈ D and χ′(0) is well defined and
finite.

With all of the above

lim
t→∞

ξt
t

= χ′(0) a.s.
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Esscher and the stable-MAP

For the MAP that underlies the stable process D = (−1, α), it
can be checked that detΨ(α− 1) = 0 i.e. χ(α− 1) = 0,
which makes

Ψ•(z) = ∆−1Ψ(z+α−1)∆ =


Γ(1− z)Γ(α + z)

Γ(1− αρ− z)Γ(αρ+ z)
−Γ(1− z)Γ(α + z)

Γ(αρ)Γ(1− αρ)

−Γ(1− z)Γ(α + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(1− z)Γ(α + z)

Γ(1− αρ̂− z)Γ(αρ̂+ z)

 ,
where ∆ = diag(sin(παρ̂), sin(παρ)).

When α ∈ (0, 1), χ′(0) > 0 (because the stable process never
touches the origin a.s.) and Ψ•(z)-MAP drifts to −∞
When α ∈ (1, 2), χ′(0) < 0 (because the stable process
touches the origin a.s.) and Ψ•(z)-MAP drifts to +∞.
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Riesz-Bogdan-Zak transform

Theorem (Riesz–Bogdan–Zak transform)

Suppose that X is an α-stable process as outlined in the
introduction. Define

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ R\{0}, (−1/Xη(t))t≥0 under Px is equal in law to
(X ,P•−1/x), where

dP•x
dPx

∣∣∣∣∣
Ft

=

(
sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(Xt )

sin(παρ) + sin(παρ̂)− (sin(παρ)− sin(παρ̂))sgn(x)

) ∣∣∣∣Xt

x

∣∣∣∣α−1

1
(t<τ{0})

and Ft := σ(Xs : s ≤ t), t ≥ 0. Moreover, the process (X ,P•x),
x ∈ R\{0} is a self-similar Markov process with underlying MAP
via the Lamperti-Kiu transform given by Ψ•(z).
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What is the Ψ•-MAP?

Thinking of the affect on the long term behaviour of the
underlying MAP of the Esscher transform

When α ∈ (0, 1), (X ,P•x), x 6= 0 has the law of the the stable
process conditioned to absorb continuously at the origin.

When α ∈ (1, 2), (X ,P•x), x 6= 0 has the law of the stable
process conditioned to avoid the origin.
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