▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

Dynamical Systems, Financial Mathematics, Geometry and Topology, Logic and Set Theory, Mathematical Biology, Number Theory, Probability and Statistics, Quantum Physics

School of Mathematics <

Problem	Tools	The censored process	Results
00	000	00000	00000

Censored α -stable processes

Andreas Kyprianou¹ Juan-Carlos Pardo² Alex Watson¹

¹University of Bath ²CIMAT, Mexico

Junior Probability Meeting, Bath, 8/12/2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem	Tools	The censored process	Results
00	000	00000	00000
Outline			

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 Tools

- pssMps and the Lamperti transform
- $\bullet \ \alpha \mbox{-stable processes}$

3 The censored process

- Construction
- Lamperti transform
- Wiener-Hopf factorisation

4 Results

Problem	Tools	The censored process	Results
•0	000	00000	00000
Problem st	tatement		

Definition: α -stable

A Lévy process $(X, P_x)_{x \in \mathbb{R}}$ is called α -stable if it satisfies the scaling property

$$\left(cX_{c^{-\alpha}t}\right)_{t\geq0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=}X|_{\mathsf{P}_{cx}},\quad c>0$$

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1,1)\}$$

be the first hitting time of (-1, 1). What is $P_x(X_{\tau_{-1}^1} \in dy, \tau_{-1}^1 < \infty)$?

Problem	Tools	The censored process	Results
•0	000	00000	00000
Problem st	atement		

Definition: α -stable

A Lévy process $(X, P_x)_{x \in \mathbb{R}}$ is called α -stable if it satisfies the scaling property

$$\left(cX_{c^{-\alpha}t}\right)_{t\geq0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=}X|_{\mathsf{P}_{cx}},\quad c>0$$

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1,1)\}$$

be the first hitting time of (-1, 1). What is $P_x(X_{\tau_{-1}^1} \in dy, \tau_{-1}^1 < \infty)$?

Problem ⊙●	Tools 000	The censored process	Results
Problem: hist	tory		

• Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Port (1967): one-sided jumps

Problem	Tools	The censored process	Results
0●	000		00000
Problem:	history		

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (0, 1]$,

$$\begin{split} \mathsf{P}_x(X_{\tau_{-1}^1} \in \mathsf{d} y,\,\tau_{-1}^1 < \infty)/\mathsf{d} y \\ &= \frac{\sin(\pi\alpha/2)}{\pi} (x^2 - 1)^{\alpha/2} (1 - y^2)^{-\alpha/2} (x - y)^{-1} \end{split}$$

for $y \in (-1, 1)$.

Problem	Tools	The censored process	Results
0●	000		00000
Problem:	history		

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (1, 2)$,

$$\begin{aligned} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} \in \mathsf{d}y)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha/2)}{\pi} (x^{2} - 1)^{\alpha/2} (1 - y^{2})^{-\alpha/2} (x - y)^{-1} \\ &- (\alpha - 1) \frac{\sin(\pi\alpha/2)}{\pi} (1 - y^{2})^{-\alpha/2} \int_{1}^{x} (t^{2} - 1)^{\alpha/2 - 1} \mathsf{d}t, \end{aligned}$$
for $y \in (-1, 1).$

Problem	Tools	The censored process	Results
00	000		00000
Outline			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Problem

2 Tools

• pssMps and the Lamperti transform

 $\bullet \ \alpha \mbox{-stable processes}$

3 The censored process

- Construction
- Lamperti transform
- Wiener-Hopf factorisation

4 Results

Problem	Tools	The censored process	Results
00	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
00	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
00	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
00	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
00	○●○		00000
Lamperti	transform		

$$(X, \mathsf{P}_x)_{x>0} \alpha$$
-pssMp \leftrightarrow

$$X_t = \exp(\xi_{S(t)}),$$

S a random time-change

 $(\xi, \mathbb{P}_y)_{y \in \mathbb{R}}$ killed Lévy $\xi_s = \log(X_{T(s)}),$ T a random time-change

くりょう 山田 マイボット 小田 マイロッ

Problem	Tools	The censored process	Results
Stable processe	S		00000

Definition

A Lévy process X is called α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ is well defined.

Problem	Tools	The censored process	Results
00	00●	00000	00000
Stable proces	5605		

Definition

A Lévy process X is called α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0, 2]$. $[\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ is well defined.

We make two assumptions:

- X does not have one-sided jumps,
- When $\alpha = 1$, X is symmetric.

Problem	Tools	The censored process	Results
00	000		00000
Outline			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem

- Tools
 - pssMps and the Lamperti transform
 - α -stable processes

3 The censored process

- Construction
- Lamperti transform
- Wiener-Hopf factorisation

4 Results

Problem	Tools	The censored process	Results
00	000	••••••	00000
Construction			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Start with X, the stable process.

Problem	Tools	The censored process	Results
00	000	●○○○○	00000
Construction			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

Problem	Tools	The censored process	Results
00	000	●○○○○	00000
Construction			

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

• Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem	Tools	The censored process	Results
00	000	••••••	00000
Construction			

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

- Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.
- Finally, make zero an absorbing state: $Y_t = \check{Y}_t \mathbb{1}_{(t < T_0)}$. This is the censored stable process.

Problem	Tools	The censored process	Results
00	000	0000	00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Lamperti transform and its structure

Censoring preserves self-similarity: Y is a pssMp.

Problem	Tools	The censored process	Results
00	000	0000	00000

The Lamperti transform and its structure

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Problem	Tools	The censored process	Results
00	000	0000	00000

Wiener-Hopf factorisation

Recall: Wiener-Hopf factorisation (probabilistic part)

Any Lévy process ξ is associated with two increasing, possibly killed Lévy processes, H and \hat{H} .

 ${\cal H}$ is a time-change of $\bar{\xi},$ the running maximum.

 $-\hat{H}$ is a time-change of ξ , the running minimum.

H and \hat{H} can be identified by looking at the characteristic function of ξ_1 .

 Problem
 Tools
 The censored process
 Result

 So
 000
 000
 000
 000

Wiener-Hopf factorisation for ξ : $\alpha \in (0, 1]$

WHF for $\alpha \in (0, 1]$

- H: Lamperti-stable subordinator with parameters (lpha
 ho,1),
- \hat{H} : Lamperti-stable subordinator with parameters $(\alpha \hat{\rho}, \alpha)$.

Lamperti-stable subordinators are nice! We can calculate:

- The Lévy measure of ξ ,
- The Lévy measures of H and Ĥ,
- The renewal measures, $\mathbb{E} \int_0^\infty \mathbb{1}_{(H_t \in \cdot)} dt$ and $\mathbb{E} \int_0^\infty \mathbb{1}_{(\hat{H}_t \in \cdot)} dt$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

WHF for $\alpha \in (1, 2)$

• *H*: Conjugate of $\mathcal{T}_{\alpha-1}$ -transform of LSS $(1 - \alpha \rho, \alpha \hat{\rho})$.

•
$$\hat{H}$$
: Conjugate of LSS $(1 - \alpha \hat{\rho}, \alpha \rho)$.

Not as nice, but we can still calculate Lévy measures and renewal measures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem 00	Tools 000	The censored process	Results
Outline			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Problem

Tools

• pssMps and the Lamperti transform

• α -stable processes

3 The censored process

- Construction
- Lamperti transform
- Wiener-Hopf factorisation

4 Results

Problem	Tools	The censored process	Results
00	000		●0000
Results			

Recall: the problem

Let X be a stable process and x > 1.

$$\mathsf{P}_{x}ig(X_{ au_{-1}^{1}}\in \mathsf{d} y,\, au_{-1}^{1}<\inftyig)=\mathsf{what}$$
?

Problem	Tools	The censored process	Results
00	000		●0000
Results			

Recall: the problem

Let X be a stable process and x > 1.

$$\mathsf{P}_{x}ig(X_{ au_{-1}}\in \mathsf{d} y,\, au_{-1}^{1}<\inftyig)=\mathsf{what}?$$

By shifting and scaling, reduce this to finding

$$\mathsf{P}_1\big(X_{\tau^b_0} \in \mathsf{d} z, \tau^b_0 < \infty\big), \qquad 0 < b < 1.$$

Problem	Tools	The censored process	Results
00	000	00000	0●000
Results			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

We are looking for

$$\mathsf{P}_1(X_{\tau_0^b} \in \mathsf{d}z, \tau_0^b < \infty) = \mathsf{P}_1(Y_{\tau_0^b} \in \mathsf{d}z, \tau_0^b < \infty).$$

Problem	Tools	The censored process	Results
00	000		0●000
Results			

We are looking for

$$\mathsf{P}_1\big(X_{\tau_0^b} \in \mathsf{d} z, \tau_0^b < \infty\big) = \mathsf{P}_1\big(Y_{\tau_0^b} \in \mathsf{d} z, \tau_0^b < \infty\big).$$

Recall: Lamperti transform

$$Y_t = \exp(\xi_{S(t)}), \text{ and } \xi_s = \log Y_{T(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact: if $a = \log b$, then (0, b) corresponds to $(-\infty, a)$ and τ_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < a\}$. Then,

$$Y_{\tau_0^b} = \exp\bigl(\xi_{S_a^-}\bigr).$$

Problem	Tools	The censored process	Results
00	000		0●000
Results			

We are looking for

$$\mathsf{P}_1\big(X_{\tau_0^b} \in \mathsf{d} z, \tau_0^b < \infty\big) = \mathsf{P}_1\big(Y_{\tau_0^b} \in \mathsf{d} z, \tau_0^b < \infty\big).$$

Recall: Lamperti transform

$$Y_t = \exp(\xi_{\mathcal{S}(t)}), \text{ and } \xi_s = \log Y_{\mathcal{T}(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact: if $a = \log b$, then (0, b) corresponds to $(-\infty, a)$ and τ_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < a\}$. Then,

$$Y_{\tau_0^b} = \exp\bigl(\xi_{S_a^-}\bigr).$$

So now we are looking for $\mathbb{P}(\xi_{S_a^-} \in \mathsf{d} w, S_a^- < \infty)$, for a < 0.

Problem	Tools	The censored process	Results
00	000		00●00
Results			

Now we are looking for $\mathbb{P}(\xi_{S_a^-} \in \mathsf{d}w, S_a^- < \infty)$, for a < 0.

Method for $\alpha \in (0, 1]$

Use the ladder process:

$$\mathbb{P}(\xi_{S_a^-} \in \mathsf{d}w, \, S_a^- < \infty) = \mathbb{P}(\underline{\xi}_{S_a^-} \in \mathsf{d}w, \, S_a^- < \infty)$$
$$= \mathbb{P}(-\hat{H}_{S_{-a}^+} \in \mathsf{d}w)$$
$$= \int_{[0,-a]} \hat{U}(\mathsf{d}z) \Pi_{\hat{H}}(-\mathsf{d}w - z),$$

recalling that $-\hat{H}$ is a time-change of the running minimum ξ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem	Tools	The censored process	Results
00	000		00●00
Results			

Now we are looking for
$$\mathbb{P}ig(\xi_{S^-_a}\in \mathsf{d} w,\ S^-_a<\inftyig)$$
, for $a<0.$

Method for $\alpha \in (1,2)$

Use the Pecherskii-Rogozin identity:

$$\int_0^\infty \int \exp(qa - \beta(a - \xi_{S_a^-})) \, \mathrm{d}\mathbb{P} \, \mathrm{d}a = \frac{\hat{\kappa}(q) - \hat{\kappa}(\beta)}{(q - \beta)\hat{\kappa}(q)},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for a < 0, $q, \beta > 0$, where $e^{-\hat{\kappa}(\lambda)} = \mathbb{E}(e^{-\lambda H_1})$.

Problem	Tools	The censored process	Results
00	000		000●0
The theorem			

Theorem

Let x > 1. Then, when $\alpha \in (0, 1]$,

$$\begin{split} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} \in \mathsf{d}y, \, \tau_{-1}^{1} < \infty)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (x+1)^{\alpha\rho} (x-1)^{\alpha\hat{\rho}} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}} (x-y)^{-1}, \end{split}$$

for
$$y \in (-1, 1)$$
.

Problem	Tools	The censored process	Results
00	000		000●0
The theorem			

Theorem

Let x > 1. Then, when $\alpha \in (1, 2)$,

$$P_{x}(X_{\tau_{-1}^{1}} \in dy)/dy$$

$$= \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (x+1)^{\alpha\rho} (x-1)^{\alpha\hat{\rho}} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}} (x-y)^{-1}$$

$$- (\alpha-1) \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}}$$

$$\times \int_{1}^{x} (t-1)^{\alpha\hat{\rho}-1} (t+1)^{\alpha\rho-1} dt,$$
For $x \in (-1, 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for $y \in (-1, 1)$.

Problem	Tools	The censored process	Results
00	000	00000	00000

Thank you!

