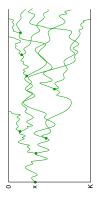
Branching Brownian motion in a strip: Survival near criticality

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou

University of Bath

December 8, 2011

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou Branching Brownian motion in a strip: Survival near criticality



 P_x^K denotes the law for BBM in a strip starting from an initial particle at $x \in (0, K)$,

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou Branching Brownian motion in a strip: Survival near criticality

 P_x^K denotes the law for BBM in a strip starting from an initial particle at $x \in (0, K)$,

• particles perform Brownian motion with drift $-\mu$ and are killed on hitting 0 or K, i.e. according to diffusion operator $L = \frac{1}{2} \frac{d}{dx^2} - \mu \frac{d}{dx}$ for $\{u \in C(0, K) : u(0+) = u(K-) = 0\}$

 P_x^K denotes the law for BBM in a strip starting from an initial particle at $x \in (0, K)$,

- particles perform Brownian motion with drift -μ and are killed on hitting 0 or K, i.e. according to diffusion operator L = ¹/₂ ^d/_{dx²} μ^d/_{dx} for {u ∈ C(0, K) : u(0+) = u(K-) = 0}
 they undergo dyadic branching at rate β
- they undergo dyadic branching at rate β ,

 P_x^K denotes the law for BBM in a strip starting from an initial particle at $x \in (0, K)$,

- particles perform Brownian motion with drift -μ and are killed on hitting 0 or K, i.e. according to diffusion operator L = 1/2 d/dx² μ d/dx for {u ∈ C(0, K) : u(0+) = u(K-) = 0}
 they undergo dyadic branching at rate β,
- offspring particles move off independently from their birth position and repeat their parent's stochastic behaviour.

- What is the critical width *K*₀ below which survival is no longer possible?
- What does the process look like as $K \downarrow K_0$?

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

- What is the critical width K₀ below which survival is no longer possible?
- What does the process look like as $K \downarrow K_0$?

Define the extinction time

$$\zeta^{\mathsf{K}} = \inf\{t > 0 : \mathsf{N}_t = 0\},\$$

where N_t is the number of particles alive at time t.

- What is the critical width K₀ below which survival is no longer possible?
- What does the process look like as $K \downarrow K_0$?

Define the extinction time

$$\zeta^{\mathsf{K}} = \inf\{t > 0 : \mathsf{N}_t = 0\},\$$

where N_t is the number of particles alive at time t.

Theorem

Let
$$x \in (0, K)$$
 and $\lambda_c = \beta - \mu^2/2 - \pi^2/2K^2$.
(i) If $\lambda_c > 0$, then $P_x^K(\zeta^K = \infty) > 0$.
(ii) If $\lambda_c \le 0$, then $P_x^K(\zeta^K < \infty) = 1$.

- ∢ ≣ ▶

- What is the critical width K₀ below which survival is no longer possible?
- What does the process look like as $K \downarrow K_0$?

Define the extinction time

$$\zeta^{\mathsf{K}} = \inf\{t > 0 : \mathsf{N}_t = 0\},\$$

where N_t is the number of particles alive at time t.

Theorem

Let
$$x \in (0, K)$$
 and $\lambda_c = \beta - \mu^2/2 - \pi^2/2K^2$.
(i) If $\lambda_c > 0$, then $P_x^K(\zeta^K = \infty) > 0$.
(ii) If $\lambda_c \leq 0$, then $P_x^K(\zeta^K < \infty) = 1$.

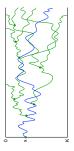
So we have positive survival probability if and only if

$$K > K_0 = rac{\pi}{\sqrt{2eta - \mu^2}}$$

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou Branching Brownian motion in a strip: Survival near criticality

Conditioning on survival using the martingale

$$Z(t) = \sum_{u \in N_t} e^{\mu X_u(t) - (\beta - \mu^2/2 - \pi^2/2K^2)t} \sin(\pi X_u(t)/K), \quad t \ge 0,$$

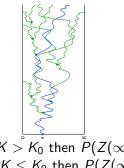


induces a spine decomposition

- run a Brownian motion conditioned to stay in (0,K)
 the spine
- along its path immigrate copies of the P^{K} -BBM at rate 2β .

Conditioning on survival using the martingale

$$Z(t) = \sum_{u \in N_t} e^{\mu X_u(t) - (\beta - \mu^2/2 - \pi^2/2K^2)t} \sin(\pi X_u(t)/K), \quad t \ge 0,$$



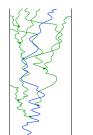
induces a spine decomposition

- run a Brownian motion conditioned to stay in (0,K)
 the spine
- along its path immigrate copies of the P^{K} -BBM at rate 2β .

(i) if $K \stackrel{\circ}{>} \stackrel{\kappa}{K_0}$ then $\stackrel{\kappa}{P}(Z(\infty) > 0) > 0$, (ii) if $K \leq K_0$ then $P(Z(\infty) = 0) = 1$ and we observe {survival} = { $Z(\infty) > 0$ }.

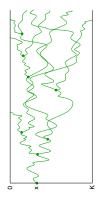
Conditioning on survival using the martingale

$$Z(t) = \sum_{u \in N_t} e^{\mu X_u(t) - (\beta - \mu^2/2 - \pi^2/2K^2)t} \sin(\pi X_u(t)/K), \quad t \ge 0,$$



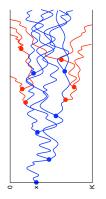
induces a spine decomposition

- run a Brownian motion conditioned to stay in (0,K)
 the spine
- along its path immigrate copies of the P^{K} -BBM at rate 2β .

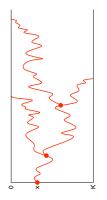


- Colour in blue all particles with an infinite line of descent
- Colour in red all remaining particles

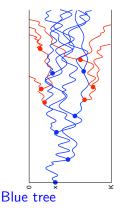
Simon C. Harris, Marion Hesse and Andreas E. Kyprianou Branching Brownian motion in a strip: Survival near criticality



- Colour in blue all particles with an infinite line of descent
- Colour in red all remaining particles
- On survival we see a blue tree dressed with red trees



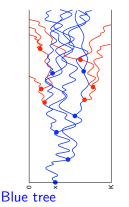
- Colour in blue all particles with an infinite line of descent
- Colour in red all remaining particles
- On survival we see a blue tree dressed with red trees
- On extinction we see a red tree only



- Colour in blue all particles with an infinite line of descent
- Colour in red all remaining particles
- On survival we see a blue tree dressed with red trees
- On extinction we see a red tree only

• dyadic branching at rate $\beta(1-w)$

• motion $L^B = \frac{1}{2} \frac{d}{dx^2} - (\mu + \frac{w'}{1-w}) \frac{d}{dx}$ (h-transform h = 1 - w)



- Colour in blue all particles with an infinite line of descent
- Colour in red all remaining particles
- On survival we see a blue tree dressed with red trees
- On extinction we see a red tree only

- dyadic branching at rate $\beta(1-w)$
- motion $L^B = \frac{1}{2} \frac{d}{dx^2} (\mu + \frac{w'}{1-w}) \frac{d}{dx}$ (h-transform h = 1 w) Red tree
 - dyadic branching at rate βw
 - motion $L^R = \frac{1}{2} \frac{d}{dx^2} (\mu \frac{w'}{w}) \frac{d}{dx}$ (h-transform h = w)

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou

Branching Brownian motion in a strip: Survival near criticality

• flip a coin with probability w(x) of 'heads'

- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x

- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x
- if 'tails' grow a dressed blue tree at x, that is:

- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x
- if 'tails' grow a dressed blue tree at x, that is:
 - grow blue tree with initial particle at x,

- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x
- if 'tails' grow a dressed blue tree at x, that is:
 - grow blue tree with initial particle at x,
 - immigrate red trees along the trajectories at rate $2\beta w$,

- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x
- if 'tails' grow a dressed blue tree at x, that is:
 - grow blue tree with initial particle at x,
 - immigrate red trees along the trajectories at rate $2\beta w$,

Theorem

Let $x \in (0, K)$. P_x has the same law as the coloured tree starting from x.

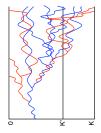
- flip a coin with probability w(x) of 'heads'
- if 'heads' grow a red tree at x
- if 'tails' grow a dressed blue tree at x, that is:
 - grow blue tree with initial particle at x,
 - immigrate red trees along the trajectories at rate $2\beta w$,

Theorem

Let $x \in (0, K)$. P_x has the same law as the coloured tree starting from x.

 $\rightarrow P_x^K(\cdot|\zeta^K = \infty)$ has the same law as observing a dressed blue tree starting from *x*.

What happens to dressed blue tree as $K \downarrow K_0$?



Recall: Blue tree

- branching rate $\beta(1-w)$
- diffusion operator $L^B = \frac{1}{2} \frac{d}{dx^2} (\mu + \frac{w'}{1-w}) \frac{d}{dx}$

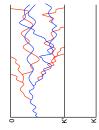
Red tree

- branching rate βw
- diffusion operator $L^R = \frac{1}{2} \frac{d}{dx^2} (\mu \frac{w'}{w}) \frac{d}{dx}$

Simon C. Harris, Marion Hesse and Andreas E. Kyprianou

Branching Brownian motion in a strip: Survival near criticality

What happens to dressed blue tree as $K \downarrow K_0$?



Recall: Blue tree

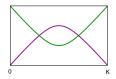
- branching rate $\beta(1 w)$
- diffusion operator $L^B = \frac{1}{2} \frac{d}{dx^2} (\mu + \frac{w'}{1-w}) \frac{d}{dx}$

Red tree

- branching rate βw
- diffusion operator $L^R = \frac{1}{2} \frac{d}{dx^2} (\mu \frac{w'}{w}) \frac{d}{dx}$

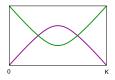
Extinction probability near criticality

 \rightarrow Need to know how the extinction probability w behaves near criticality.



Extinction probability near criticality

 \rightarrow Need to know how the extinction probability w behaves near criticality.



Theorem

Let
$$x \in (0, K_0)$$
. As $K \downarrow K_0$,
 $1 - w_K(x) \sim c_K \sin(\pi x/K_0) e^{\mu x}$,
where $c_K \sim \lambda_c(K) \frac{(K_0^2 \mu^2 + \pi^2)(K_0^2 \mu^2 + 9\pi^2)}{12\beta \pi^3 (e^{\mu K_0} + 1)}$.

As
$$K \downarrow K_0$$
, $1 - w_K(x) \sim c_K \sin(\pi x/K_0)e^{\mu x}$, where $c_K \downarrow 0$
• Blue tree

• Branching rate: $\beta(1-w)
ightarrow 0$

• Motion:
$$\frac{1}{2}\frac{d}{dx^2} - \left(\mu + \frac{w'}{1-w}\right)\frac{d}{dx}$$
" \rightarrow " $\frac{1}{2}\frac{d}{dx^2} + \frac{(\sin(\pi x/K_0))'}{\sin(\pi x/K_0)}\frac{d}{dx}$

- 4 回 > - 4 回 > - 4 回 >

э

As
$$K \downarrow K_0$$
, $1 - w_K(x) \sim c_K \sin(\pi x/K_0) e^{\mu x}$, where $c_K \downarrow 0$

Blue tree

- Branching rate: $\beta(1-w)
 ightarrow 0$
- Motion: $\frac{1}{2}\frac{d}{dx^2} \left(\mu + \frac{w'}{1-w}\right)\frac{d}{dx}$ " \rightarrow " $\frac{1}{2}\frac{d}{dx^2} + \frac{(\sin(\pi x/K_0))'}{\sin(\pi x/K_0)}\frac{d}{dx}$

Red tree

• Branching rate:
$$\beta w \rightarrow \beta$$

• Motion:
$$\frac{1}{2}\frac{d}{dx^2} - (\mu - \frac{w'}{w})\frac{d}{dx}$$
" \rightarrow " $\frac{1}{2}\frac{d}{dx^2} - \mu\frac{d}{dx}$

As
$$K\downarrow K_0$$
, $1-w_K(x)\sim c_K\sin(\pi x/K_0)e^{\mu x}$, where $c_K\downarrow 0$

• Blue tree

- Branching rate: $\beta(1-w)
 ightarrow 0$
- Motion: $\frac{1}{2}\frac{d}{dx^2} \left(\mu + \frac{w'}{1-w}\right)\frac{d}{dx}$ " \rightarrow " $\frac{1}{2}\frac{d}{dx^2} + \frac{(\sin(\pi x/K_0))'}{\sin(\pi x/K_0)}\frac{d}{dx}$

Red tree

• Branching rate:
$$\beta w \rightarrow \beta$$

• Motion:
$$\frac{1}{2}\frac{d}{dx^2} - (\mu - \frac{w'}{w})\frac{d}{dx}$$
" \rightarrow " $\frac{1}{2}\frac{d}{dx^2} - \mu\frac{d}{dx}$

• Red immigration on blue: $2\beta w \rightarrow 2\beta$

伺 と く ヨ と く ヨ と

As
$$K\downarrow K_0$$
, $1-w_{\mathcal{K}}(x)\sim c_{\mathcal{K}}\sin(\pi x/\mathcal{K}_0)e^{\mu x}$, where $c_{\mathcal{K}}\downarrow 0$

• Blue tree

- Branching rate: $\beta(1-w)
 ightarrow 0$
- Motion: $\frac{1}{2}\frac{d}{dx^2} \left(\mu + \frac{w'}{1-w}\right)\frac{d}{dx}$ " \rightarrow " $\frac{1}{2}\frac{d}{dx^2} + \frac{(\sin(\pi x/K_0))'}{\sin(\pi x/K_0)}\frac{d}{dx}$

Red tree

• Branching rate:
$$\beta w \rightarrow \beta$$

• Motion:
$$\frac{1}{2}\frac{d}{dx^2} - \left(\mu - \frac{w'}{w}\right)\frac{d}{dx}" \rightarrow "\frac{1}{2}\frac{d}{dx^2} - \mu\frac{d}{dx}$$

• Red immigration on blue: $2\beta w \rightarrow 2\beta$

Theorem

Let $x \in (0, K_0)$. Then $\lim_{K \downarrow K_0} P_x^K(\cdot | \zeta^K = \infty) = \mathbb{Q}_x^{K_0}(\cdot)$, where $\mathbb{Q}_x^{K_0}$ is the law of a particle system which consist of

- a spine performing BM conditioned to stay in $(0, K_0)$,
- immigration of P^{K_0} -BBM at rate 2β .

イロト イポト イラト イラト