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Branching Brownian motion in a strip

x K0

PK
x denotes the law for BBM in a

strip starting from an initial
particle at x ∈ (0,K ),

particles perform Brownian motion with drift −µ and are
killed on hitting 0 or K ,

i.e. according to diffusion operator
L = 1

2
d
dx2
− µ d

dx for {u ∈ C (0,K ) : u(0+) = u(K−) = 0}

they undergo dyadic branching at rate β,
offspring particles move off independently from their birth
position and repeat their parent’s stochastic behaviour.
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Critical width

What is the critical width K0 below which survival is no longer
possible?

What does the process look like as K ↓ K0?

Define the extinction time

ζK = inf{t > 0 : Nt = 0},

where Nt is the number of particles alive at time t.

Theorem

Let x ∈ (0,K ) and λc = β − µ2/2− π2/2K 2.
(i) If λc > 0, then PK

x (ζK =∞) > 0.
(ii) If λc ≤ 0, then PK

x (ζK <∞) = 1 .

So we have positive survival probability if and only if
K > K0 = π√

2β−µ2
.
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Critical width

Conditioning on survival using the martingale

Z (t) =
∑
u∈Nt

eµXu(t)−(β−µ2/2−π2/2K2)t sin(πXu(t)/K ), t ≥ 0,

x K0

induces a spine decomposition

run a Brownian motion
conditioned to stay in (0,K)
- the spine

along its path immigrate
copies of the PK -BBM at
rate 2β .

(i) if K > K0 then P(Z (∞) > 0) > 0,
(ii) if K ≤ K0 then P(Z (∞) = 0) = 1
and we observe {survival} = {Z (∞) > 0}.
→ If K = K0 then {extinction} = {Z (∞) = 0} and we can’t use
the conditioning to get a spine decomposition !
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Blue and red tree

x K0

Colour in blue all particles with an
infinite line of descent

Colour in red all remaining particles

On survival we see a blue tree
dressed with red trees

On extinction we see a red tree
only

Blue tree

dyadic branching at rate β(1− w)
motion LB = 1

2
d
dx2
− (µ+ w ′

1−w ) d
dx (h-transform h = 1− w)

Red tree

dyadic branching at rate βw
motion LR = 1

2
d
dx2
− (µ− w ′

w ) d
dx (h-transform h = w)
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Backbone decomposition

We construct a coloured tree starting from an initial particle at x
as follows:

flip a coin with probability w(x) of ’heads’

if ’heads’ grow a red tree at x

if ’tails’ grow a dressed blue tree at x , that is:

grow blue tree with initial particle at x ,
immigrate red trees along the trajectories at rate 2βw ,

Theorem

Let x ∈ (0,K ). Px has the same law as the coloured tree starting
from x.

→ PK
x (·|ζK =∞) has the same law as observing a dressed blue

tree starting from x .
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Quasi-stationary limit as K ↓ K0

What happens to dressed blue tree as K ↓ K0?

KK'0

Recall: Blue tree

branching rate β(1− w)

diffusion operator LB = 1
2

d
dx2
− (µ+ w ′

1−w ) d
dx

Red tree

branching rate βw

diffusion operator LR = 1
2

d
dx2
− (µ− w ′

w ) d
dx
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Extinction probability near criticality

→ Need to know how the extinction probability w behaves near
criticality.

0 K

Theorem

Let x ∈ (0,K0). As K ↓ K0,

1− wK (x) ∼ cK sin(πx/K0)eµx ,

where cK ∼ λc(K )
(K2

0µ
2+π2)(K2

0µ
2+9π2)

12βπ3(eµK0+1)
.
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Quasi-stationary limit as K ↓ K0

As K ↓ K0, 1− wK (x) ∼ cK sin(πx/K0)eµx , where cK ↓ 0

Blue tree

Branching rate: β(1− w)→ 0

Motion: 1
2

d
dx2 − (µ+ w ′

1−w ) d
dx ”→ ” 1

2
d
dx2 + (sin(πx/K0))

′

sin(πx/K0)
d
dx

Red tree

Branching rate: βw → β
Motion: 1

2
d
dx2 − (µ− w ′

w ) d
dx ”→ ” 1

2
d
dx2 − µ d

dx

Red immigration on blue: 2βw → 2β

Theorem

Let x ∈ (0,K0). Then limK↓K0 P
K
x (·|ζK =∞) = QK0

x (·),
where QK0

x is the law of a particle system which consist of

a spine performing BM conditioned to stay in (0,K0),

immigration of PK0-BBM at rate 2β.
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