Probabilistic Approaches to Neutron Transport Problems

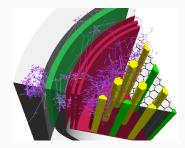
Minmin Wang, University of Sussex

Growth & Division in Mathematics & Medicine, 4-6 November, UCL

- Some probability tools for spatial branching processes.
- Applications to neutron transport problems.

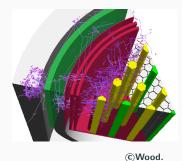
Based on joint work with Alexander M.G. Cox, Simon C. Harris, Emma Horton and Andreas E. Kyprianou.

Neutron flux

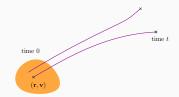


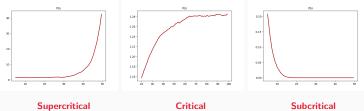
©Wood.

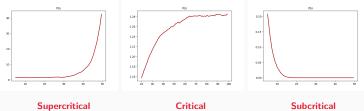
Neutron flux



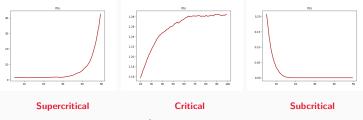
 $\psi_t(\mathbf{r}, \mathbf{v})$: **neutron flux** inside the nuclear reactor core at time *t* emitted from the configuration (\mathbf{r}, \mathbf{v}) .





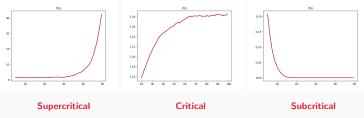


Put another way, $\psi_t(\mathbf{r}, \mathbf{v}) \simeq e^{\lambda_0 t}$, where $\lambda_0 = \text{lead eigenvalue}$. Criticality of the reactor is determined by $\text{sgn}(\lambda_0)$.



Put another way, $\psi_t(\mathbf{r}, \mathbf{v}) \simeq e^{\lambda_0 t}$, where $\lambda_0 = \text{lead eigenvalue}$. Criticality of the reactor is determined by $\text{sgn}(\lambda_0)$.

• How to evaluate λ_0 for a given reactor design?



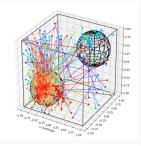
Put another way, $\psi_t(\mathbf{r}, \mathbf{v}) \simeq e^{\lambda_0 t}$, where $\lambda_0 = \text{lead eigenvalue}$. Criticality of the reactor is determined by $\text{sgn}(\lambda_0)$.

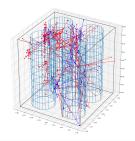
• How to evaluate λ_0 for a given reactor design?

 \rightsquigarrow Monte-Carlo methods

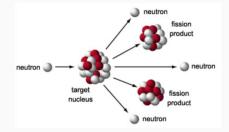
Monte-Carlo methods

- A variety of Monte-Carlo methods:
 - Neutron branching process (basic)
 - Neutron random walk (many-to-one)
 - *h*-neutron random walk (*h*-transform)
- Modelling of the neutron process as a spatial branching process.





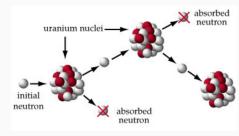
- Fission
- Scattering
- Absorption



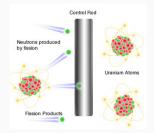
- Fission
- Scattering
- Absorption



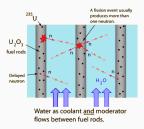
- Fission
- Scattering
- Absorption



- Fission
- Scattering
- Absorption



- Fission
- Scattering
- Absorption



- **branching** \rightsquigarrow fission & absorption
- spatial motion \rightsquigarrow transport, scattering & absorption

Remark. No neutron-neutron interactions.

nhomogeneous branching and scattering rates.

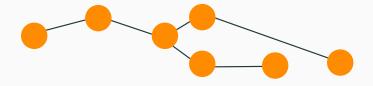
This is a spatial branching process!

- **branching** \rightsquigarrow fission & absorption
- spatial motion \rightsquigarrow transport, scattering & absorption

Remark. No neutron-neutron interactions.

nhomogeneous branching and scattering rates.

This is a spatial branching process!

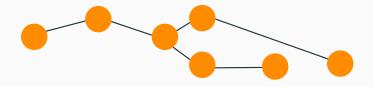


- **branching** \rightsquigarrow fission & absorption
- spatial motion \rightsquigarrow transport, scattering & absorption

Remark. No neutron-neutron interactions.

nhomogeneous branching and scattering rates.

This is a spatial branching process!



- branching ~>> fission & absorption
- spatial motion ~> transport, scattering & absorption

Remark. No neutron-neutron interactions.

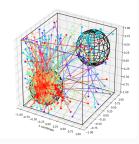
Remark. Inhomogeneous branching and scattering rates.

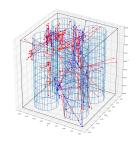
1st MC method: Neutron branching process

- Run a simulation of the neutron branching process starting from the configuration (r, v).
- Repeat for k times.
 - N_t^i = number of the surviving neutrons at time t from the *i*-th simulation.

•
$$\psi_t(\mathbf{r}, \mathbf{v}) = \mathbb{E}[N_t^i] \approx \frac{1}{k} \sum_{i=1}^k N_t^i$$
. Then

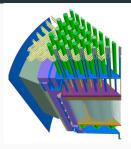
$$\lambda_0 pprox rac{1}{t} \log \psi_t(\mathbf{r}, \mathbf{v}) pprox rac{1}{t} \log \Big(rac{1}{k} \sum_{i=1}^k N_t^i \Big).$$





Neutron Branching Process: Analysis

- Relatively easy to implement and geometry insensitive.
- Slow convergence and costly to run.



C Wood.

• We only employ the first moment:

 $\psi_t(\mathbf{r},\mathbf{v})=\mathbb{E}[N_t^i].$

• We only employ the first moment:

$$\psi_t(\mathbf{r},\mathbf{v})=\mathbb{E}[N_t^i].$$

• Can we find another random variable \tilde{N}_t also satisfying

$$\psi_t(\mathbf{r}, \mathbf{v}) = \mathbb{E}[\tilde{N}_t]$$

but at the same time

- either easier to simulate
- or having a smaller variance

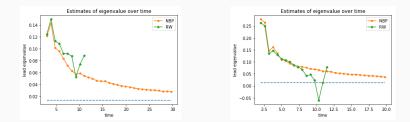
We can suppress branching by

- simulating a single neutron path $(\mathbf{r}_s, \mathbf{v}_s)$
- then applying the many-to-one formula:

$$\psi_t(\mathbf{r},\mathbf{v}) = \mathbb{E}\Big[e^{\int_0^t eta(\mathbf{r}_s,\mathbf{v}_s)ds} \, \mathbf{1}_{\{ ext{survival at }t\}}\Big]$$

where β depends only on the branching parameters.

- Quick/cheap to run.
- The exponential weight $e^{\int_0^t \beta(\mathbf{r}_s,\mathbf{v}_s)ds}$ could increase variance.

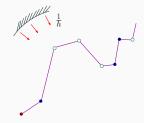


h-transform & h-neutron random walk

• Applying an h-transform to the law of the neutron path yields

$$\psi_t(\mathbf{r}, \mathbf{v}) = \mathbb{E}\bigg[\exp\bigg(\int_0^t \frac{\mathrm{L}h(\tilde{\mathbf{r}}_s, \tilde{\mathbf{v}}_s)}{h(\tilde{\mathbf{r}}_s, \tilde{\mathbf{v}}_s)} + \beta(\tilde{\mathbf{r}}_s, \tilde{\mathbf{v}}_s)ds\bigg) \frac{h(\mathbf{r}, \mathbf{v})}{h(\tilde{\mathbf{r}}_t, \tilde{\mathbf{v}}_t)} \mathbf{1}_{\{\text{survival at }t\}}\bigg]$$

where $(\tilde{\mathbf{r}}_s, \tilde{\mathbf{v}}_s)$ is a neutron path which scatters at rate $\propto \frac{1}{h}$ and where L is some differential-integral operator.



• Optimal choice of h:

 $(L+\beta)h=\lambda_0h$

• Optimal choice of h:

$$(L+\beta)h = \lambda_0 h$$

In general, such a solution is not known explicitly.

- Instead, we substitute with a guess.
 - Since the *h*-transform formula is valid for a general *h*, there is no loss in accuracy.
 - As soon as *h* = 0 at boundary, the scattering will force the neutron to stay inside.

- What would be a practically good choice of h?
 - It seems more efficient to have h = 0 at boundary.
 On the other hand, this causes a divergence in the scattering rate.
 Will this be a hurdle?
 - How to update our knowledge on the eigenfunction and use it to improve the convergence?

• Other Monte-Carlo methods?

Consider the following method:

- Start with k particles.
- Let the system evolve for some time T_0 . Denote by K_0 the number of neutrons in the system. If $K_0 > k$, discard $K_0 k$ particles. If $K_0 < k$, sample new particles from the distribution given by the current states.
- Iterate.

Long-time behaviour? Genealogy of the particles?

Some questions (Cont')

• Ergodicity of the neutron branching process?

Denote by $(\mathbf{r}_s^i, \mathbf{v}_s^i), 1 \leq i \leq N_s$, the configurations of the neutrons at time s. Let $X_s = \frac{1}{N_s} \sum_i \delta_{(\mathbf{r}_s^i, \mathbf{v}_s^i)}$.

- In the supercritical regime, Harris, Horton & Kyprianou recently showed that X_s converges to some deterministic measure. What is the speed of this convergence?
- What about critical/subcritical regimes (conditioned upon survival)?
- Other applications for the many-to-one or *h*-transform methods? Note that there is an analogous theory for discrete-time/generation-based branching processes (ask Emma Horton!)