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What is this talk about

• Some probability tools for spatial branching processes.

• Applications to neutron transport problems.

Based on joint work with Alexander M.G. Cox, Simon C. Harris, Emma Horton

and Andreas E. Kyprianou.
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Neutron flux

c©Wood.

ψt(r, v): neutron flux inside the nuclear

reactor core at time t emitted

from the configuration (r, v).

time t

time 0

(r,v)
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Criticality

• Growth rate of ψt(r, v):

Supercritical Critical Subcritical

Put another way, ψt(r, v) � eλ0t , where λ0 = lead eigenvalue.

Criticality of the reactor is determined by sgn(λ0).

• How to evaluate λ0 for a given reactor design?

 Monte-Carlo methods
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Monte-Carlo methods

• A variety of Monte-Carlo methods:

• Neutron branching process (basic)

• Neutron random walk (many-to-one)

• h-neutron random walk (h-transform)

• Modelling of the neutron process as a

spatial branching process.
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Neutron Process

Motion of a neutron is governed by

• Fission

• Scattering

• Absorption
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This is a spatial branching process!

• branching  fission & absorption

• spatial motion  transport, scattering & absorption

Remark. No neutron-neutron interactions.

Inhomogeneous branching and scattering rates.
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1st MC method: Neutron branching process

• Run a simulation of the neutron

branching process starting from the

configuration (r, v).

• Repeat for k times.

N i
t = number of the surviving neutrons at

time t from the i-th simulation.

• ψt(r, v) = E[N i
t ] ≈ 1

k

∑k
i=1 N

i
t . Then

λ0 ≈
1

t
logψt(r, v) ≈ 1

t
log
( 1

k

k∑
i=1

N i
t

)
.
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Neutron Branching Process: Analysis

• Relatively easy to implement and

geometry insensitive.

• Slow convergence and costly to run.

c©Wood.
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Towards other MC methods

• We only employ the first moment:

ψt(r, v) = E[N i
t ].

• Can we find another random variable Ñt also satisfying

ψt(r, v) = E[Ñt ]

but at the same time

• either easier to simulate

• or having a smaller variance
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Many-to-one & neutron random walk

We can suppress branching by

• simulating a single neutron path (rs , vs)

• then applying the many-to-one formula:

ψt(r, v) = E
[
e
∫ t
0
β(rs ,vs )ds 1{survival at t}

]
where β depends only on the branching parameters.

× weight
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Neutron random walk: Analysis

• Quick/cheap to run.

• The exponential weight e
∫ t
0
β(rs ,vs )ds could increase variance.
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h-transform & h-neutron random walk

• Applying an h-transform to the law of the neutron path yields

ψt(r, v) = E
[

exp

(∫ t

0

Lh(r̃s , ṽs)

h(r̃s , ṽs)
+β(r̃s , ṽs)ds

)
h(r, v)

h(r̃t , ṽt)
1{survival at t}

]
where (r̃s , ṽs) is a neutron path which scatters at rate ∝ 1

h and

where L is some differential-integral operator.

1
h
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h-transform & h-neutron random walk (Cont’)

• Optimal choice of h:

(L + β)h = λ0h

In general, such a solution is not known explicitly.

• Instead, we substitute with a guess.

• Since the h-transform formula is valid for a general h, there is no loss

in accuracy.

• As soon as h = 0 at boundary, the scattering will force the neutron

to stay inside.
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Some questions

• What would be a practically good choice of h?

• It seems more efficient to have h = 0 at boundary.

On the other hand, this causes a divergence in the scattering rate.

Will this be a hurdle?

• How to update our knowledge on the eigenfunction and use it to

improve the convergence?
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Some questions (Cont’)

• Other Monte-Carlo methods?

Consider the following method:

• Start with k particles.

• Let the system evolve for some time T0. Denote by K0 the number

of neutrons in the system. If K0 > k, discard K0 − k particles. If

K0 < k, sample new particles from the distribution given by the

current states.

• Iterate.

Long-time behaviour? Genealogy of the particles?
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Some questions (Cont’)

• Ergodicity of the neutron branching process?

Denote by (ris , v
i
s), 1 ≤ i ≤ Ns , the configurations of the neutrons at time

s. Let Xs = 1
Ns

∑
i δ(ris ,vis ).

• In the supercritical regime, Harris, Horton & Kyprianou recently

showed that Xs converges to some deterministic measure. What is

the speed of this convergence?

• What about critical/subcritical regimes (conditioned upon survival)?

• Other applications for the many-to-one or h-transform methods?

Note that there is an analogous theory for discrete-time/generation-based

branching processes (ask Emma Horton!)
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