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Modelling the dynamics of a cellular population
Recent technological development: microfluidics, videomicroscopy, etc.

å Single-cell measurements: heterogeneity of cellular populations
å Individual-based models to capture this heterogeneity
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Development of structured individual-based models
© Study of complex cellular mechanisms (division, ageing,

inheritance)
© Inference of division rate, gene expression parameters
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Structured branching processes
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Model description
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1. The trait (X u
t )t≥0 of each individual u follows a Markov process.

Ex: dXt = r(Xt)dt + σ(Xt)dWt , X0 = x .
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2. A cell u divides at time t at rate B(X u
t ), i.e.

P (β(u) > t|α(u), (X u
s , α(u) ≤ s ≤ t)) = exp

(
−
∫ t

α(u)
B(X u

s )ds

)
where β(u) denotes the lifetime of u and α(u) its time of birth. 4 / 28
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3.- At division, a cell with trait x is replaced by k daughter cells with
probability pk(x).

- The traits at birth are given for the ith descendant by Fi (x , θ).

Ex: F1(x , θ) = θx ,F2(x , θ) = (1− θ)x , where θ ∼ κ(dθ).
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4. Conditionally to the trait of their ancestor, the daughter cells evolves
4. independently following the same dynamics.
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Examples

© Study of ageing: age-structured populations
© Study of the division mechanism: asymmetry, size-dependency,

heritability
© Switching dynamics: different division rate for different

subpopulations (dormant cells, etc.)
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Example: study of the proliferation of an infection in a
cellular population

Figure: Image : Soifer, Robert & Amir, 2016.

© Asymmetric division : asymmetric sharing of the parasites in the
daughter cells

© Strategy to eliminate the infection?

A. Marguet, C. Smadi, Long time behaviour of a general class of
branching Markov processes, Preprint, 2019.
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Inference in branching processes
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Inference of the division rate

© Piecewise Deterministic branching processes

© Genealogical time, Size-structured population:

M. Doumic, M. Hoffmann, N. Krell, L. Roberts,
Statistical estimation of a growth-fragmentation model
observed on a genealogical tree, 2015 (generalization to
any flow along a branch, N. Krell, 2018).

© Continuous time, Age-structured population:

M. Hoffmann, A. Olivier Non-parametric estimation of
the division rate of an age-dependent branching process,
2016.

© Stochastic flow

© Genealogical time

M. Hoffmann, A. Marguet. Statistical estimation in a
randomly structured population, 2018.

© Continuous time ?
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Genealogical time
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Bifurcating Markov chains
We consider Ulam-Harris-Neveu notations: for n,m ≥ 0, let

T =
⋃
m∈N
{0, 1}m, Tn =

n⋃
m=0

{0, 1}m, T?n = Tn \ {∅} .

Let Xu be the trait at birth of cell u ∈ T. Assume that we are given
observations

Xn = (Xu)u∈Tn .

The process (Xu, u ∈ T) is a bifurcating Markov chain with transition
kernel P from R into R× R such that:

E
[ ∏
u∈Gm

ψu(Xu,Xu0,Xu1)
∣∣Fm

]
=
∏

u∈Gm

Pψu(Xu),

for all m ≥ 0.

Guyon 2007.
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Example of trajectory
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© Deterministic dynamic: as if we observed trajectories.
© Stochastic dynamic: unknown trajectories.
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Kernel estimation
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Kernel estimation
A function G : R→ R is a kernel of order k if for all i = 0, . . . , k .∫

R
x iG (x)dx = 1{i=0}

For h > 0, we define

Gh(y) = h−1G (h−1y), ∀y ∈ R.
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Kernel estimator of the invariant measure

Consider the empirical measure

Mn(ϕ) =
1
|T?n|

∑
u∈T?n

ϕ(Xu).

IfMn(ϕ) converges towards ν(ϕ), we have

Mn(Gh(· − x0)) −−−→
n→∞

∫
R
Gh(x − x0)ν(x)dx .

An estimator of ν(x0), for x0 ∈ R is then given by

ν̂n(x0) =Mn(Gh(· − x0)).

åHow good is this estimator?
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Convergence of the empirical measure
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Process of the tagged cell
Let Y be the Markov chain corresponding to the trait of the tagged
cell.

Force topology is enabled!
Branch lengths do not represent real values.
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The transition operator of Y is given by , where

P1(x , dy) =

∫
R
P(x , dydy2) P2(x , dy) =

∫
R
P(x , dy1dy).
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Convergence of the tagged chain

Let
|ϕ|V = sup

x∈R

|ϕ(x)|
1 + V (x)

.

Theorem
Under assumptions, Q admits an invariant measure ν. Moreover, there
exist C > 0 and ρ ∈ (0, 1) such that for all m ∈ N:∣∣Qmϕ− ν(ϕ)

∣∣
∞ ≤ Cρm

∣∣ϕ− ν(ϕ)
∣∣
∞

for all measurable function ϕ : R→ R such that |ϕ|V <∞, where
V (x) = x2.
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Convergence of estimator

Let β > 0 and let G be a kernel of order k > β. Let us set

h = |Tn|
−1

2β+1

Theorem
Under assumptions ensuring the ergodicity of the tagged chain Y , we
have (

E
[(
ν̂n(x0)− ν(x0)

)2])1/2
. |Tn|−β/(2β+1),

uniformly in Q for Q in a given Hölder regularity class depending on β.
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Estimation of the division rate
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Size-structured population
Assume that the cells grow exponentially at rate a, and divide in two
equal parts. Then, the transition kernel of the chain of successive size
at birth along a branch is given by

QB(x , dy) = 12y≥x
B(2y)

ay
e
−

∫ y
x
2

B(z)
az

dz
dy .

Moreover, if νB is the invariant measure of the chain, we have

νB(x) =
B(2x)

ax
EνB

[
1{Xu≥x , Xu−≤2x}

]
,

where Xu denotes the size at birth of cell u and u− is the ancestor of
u. Then, an estimator of B is given by

B̂(x) = a
x

2
n−1∑

u∈Un Gh(Xu − x/2)

n−1
∑

u∈Un 1{Xu≥x , Xu−≤2x}

M. Doumic, M. Hoffmann, N. Krell, L. Roberts, Statistical estimation of
a growth-fragmentation model observed on a genealogical tree, 2015.
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Randomly structured population
Assume that the dynamic of the trait follows

dφx(t) = r(φx(t))dt + σ(φx(t))dWt , φx(0) = x .

The dependency in B of the transition function is complex but explicit:

q(x , y) =

∫ 1

0

κ(z)

z
B(y/z)σ(y/z)−2E

[ ∫ ∞
0

e−
∫ t
0 B(φx (s))dsdL

y/z
t (φx)

]
dz ,

where Lyt (φx) is the local time at time t at position y of φx and

Q(x , dy) = q(x , y)dy

.

å Likelihood contrast in a parametric framework with (r , σ, κ) known.

M. Hoffmann, A. Marguet. Statistical estimation in a randomly
structured population, 2018.
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Parametric model

Assume that the division rate B belongs to a class

B =
{
B : [0, L]→ R,B(x) = B0(ϑ, x), x ∈ [0, L], ϑ ∈ Θ

}
,

where x 7→ B0(x , ϑ) is known up to a parameter ϑ ∈ Θ, and Θ ⊂ Rd

is a compact set.

Aim
Estimate ϑ from (Xu, u ∈ Tn).
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Likelihood contrast
A likelihood contrast is given by:

Ln
(
ϑ, (Xu, u ∈ Tn)

)
=
∏
u∈T?n

qϑ(Xu− ,Xu),

where Xu− is the trait of the ancestor of u. We consider the estimator
of ϑ given by:

ϑ̂n ∈ argmax
ϑ∈Θ

 1
T?n

∑
u∈T?n

log (qϑ (Xu− ,Xu))

 .

Under regularity assumptions on B , we prove that
© ϑ̂n converges in probability to ϑ when n tends to infinity.
© ϑ̂n is asymptotically efficient.

M. Hoffmann, A. Marguet. Statistical estimation in a randomly
structured population, 2018.
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Continuous time
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Data : continuous time vs genealogical time

© Random size of the population
© Sampling bias: more cells coming from fertile lineages
© Censored data: the cells at the bottom of the tree have not

divided yet
25 / 28



Behavior of a typical individual
For all t > 0, x0 ∈ X , for all measurable positive function
F : D ([0, t],X )→ R, we have:

Eδx0

∑
u∈Vt

F (X u
s , s ≤ t)

 = Eδx0 (Nt)Ex0

[
F
(
Y

(t)
s , s ≤ t

)]
,

with
(
Y

(t)
s

)
s≤t

a time-inhomogeneous Markov process.

© Tool: First moment semigroup transformation (Del Moral 2004,
Bansaye 2013, Champagnat et Villemonais 2016, Cloez 2017)

© Interest : A unique process to summarize the dynamic of the
whole population

A. Marguet, Uniform sampling in a structured branching population,
2019.
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Estimation of the division rate: age-structured population
© Many-to-One formula

E

∑
u∈Vt

g(X u
t )

 =
eλB t

m
E
[
g(χt)B(χt)

−1HB(χt)
]
,

where χ is an auxiliary process.
© Convergence of the empirical measure: using the geometric

ergodicity of χ.
© Representation of B : combining

B(x) =
B(x)e−

∫ x
0 B(z)dz

1−
∫ x
0 B(y)e−

∫ y
0 B(z)dzdy

and the invariant measure of χ.

M. Hoffmann, A. Olivier Non-parametric estimation of the division rate
of an age-dependent branching process, 2016.
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Perspectives

© estimation of B continuous time & stochastic flow
© study of asymmetry in division
© dependency of the division mechanism in some trait

13.82

Thank you for your attention!
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Asymptotic normality

Let us define Ψ(ϑ) the Fisher information matrix which coefficients are
given for all 1 ≤ i , j ≤ d by:

Ψ(ϑ)i ,j = νϑQ(ϑ)

(
∂ϑiqϑ∂ϑjqϑ

q2
ϑ

)
.

Theorem
Under regularity assumptions and if Ψ(ϑ) is invertible, for all ϑ in the
interior of Θ, we have:

|Tn|1/2
(
ϑ̂n − ϑ

)
→ N

(
0,Ψ(ϑ)−1) ,

in law when n tends to infinity, where N
(
0,Ψ(ϑ)−1) is the

d-dimensional normal law with mean 0 and the inverse of the Fisher
information matrix ψ(ϑ) as covariance matrix.
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