Modelling and statistics of branching processes
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Modelling the dynamics of a cellular population
Recent technological development: microfluidics, videomicroscopy, etc.

w Single-cell measurements: heterogeneity of cellular populations
w |ndividual-based models to capture this heterogeneity
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Development of structured individual-based models
4 Study of complex cellular mechanisms (division, ageing,
inheritance)

4 Inference of division rate, gene expression parameters
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Development of structured individual-based models
4 Study of complex cellular mechanisms (division, ageing,
inheritance)

4 Inference of division rate, gene expression parameters
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Structured branching processes
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Model description
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1. The trait (X{),. of each individual u follows a Markov process.

Ex: dXt = r(Xt)dt -+ O—(Xt)thv XO = X.
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2. A cell u divides at time t at rate B(X/), i.e.

P(5(u) > tla(u), (X, afu) <s <t)) =exp ( /( )B(Xs”)d5>

where [3(u) denotes the lifetime of v and «(u) its time of birth. 4/28
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3.- At division, a cell with trait x is replaced by k daughter cells with
probability py(x).
- The traits at birth are given for the ith descendant by F;(x, ).

Ex: Fi(x,0) = 0x, Fa(x,0) = (1 — 0)x, where 6 ~ x(d0).
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4. Conditionally to the trait of their ancestor, the daughter cells evolves
independently following the same dynamics.
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4. Conditionally to the trait of their ancestor, the daughter cells evolves
independently following the same dynamics.
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Examples

¢ Study of ageing: age-structured populations

4 Study of the division mechanism: asymmetry, size-dependency,
heritability

4 Switching dynamics: different division rate for different
subpopulations (dormant cells, etc.)
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Example: study of the proliferation of an infection in a
cellular population

Ay B
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(division)

Figure: Image : Soifer, Robert & Amir, 2016.

4 Asymmetric division : asymmetric sharing of the parasites in the
daughter cells

4 Strategy to eliminate the infection?

@ A. Marguet, C. Smadi, Long time behaviour of a general class of
branching Markov processes, Preprint, 2019.

6/28



Inference in branching processes
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Inference of the division rate
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Inference of the division rate

¢ Piecewise Deterministic branching processes

¢ Stochastic flow
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Inference of the division rate

¢ Piecewise Deterministic branching processes
4 Genealogical time, Size-structured population:

[} M. Doumic, M. Hoffmann, N. Krell, L. Roberts,
Statistical estimation of a growth-fragmentation model
observed on a genealogical tree, 2015 (generalization to
any flow along a branch, N. Krell, 2018).

4 Continuous time, Age-structured population:

[ M. Hoffmann, A. Olivier Non-parametric estimation of
the division rate of an age-dependent branching process,
2016.

4 Stochastic flow
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[8 M. Hoffmann, A. Olivier Non-parametric estimation of
the division rate of an age-dependent branching process,
2016.

4 Stochastic flow
4 Genealogical time

[@ M. Hoffmann, A. Marguet. Statistical estimation in a

randomly structured population, 2018.

8/28



Inference of the division rate

¢ Piecewise Deterministic branching processes
4 Genealogical time, Size-structured population:

[} M. Doumic, M. Hoffmann, N. Krell, L. Roberts,
Statistical estimation of a growth-fragmentation model
observed on a genealogical tree, 2015 (generalization to
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4 Stochastic flow
4 Genealogical time

[ M. Hoffmann, A. Marguet. Statistical estimation in a

randomly structured population, 2018.

¢ Continuous time 7
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Genealogical time
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Bifurcating Markov chains

We consider Ulam-Harris-Neveu notations: for n,m > 0, let

n

T=J{01}", T.=J{0,1}", T;=T,\{0}.

meN m=0

Let X, be the trait at birth of cell v € T. Assume that we are given

observations
X" = (Xu)ueTn .

The process (X, u € T) is a bifurcating Markov chain with transition
kernel P from R into R x R such that:

E[ H @DU(XU7XUO7XU1)‘-FIT7} = H Pipu(Xu),

UEGm UEGm

for all m > 0.
[§ Guyon 2007.
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Example of trajectory
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Example of trajectory
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Example of trajectory
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¢ Deterministic dynamic: as if we observed trajectories.
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Example of trajectory
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¢ Deterministic dynamic: as if we observed trajectories.

4 Stochastic dynamic: unknown trajectories.
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Kernel estimation
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Kernel estimation
A function G : R — R is a kernel of order k if for all i =0,..., k.

XiGXdX:].,':
For h > 0, we define /R ) (=0}

Gh(y) =h'G(hly), VyeR
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Kernel estimator of the invariant measure

Consider the empirical measure

If M, (¢) converges towards (), we have

Mp(Gh(- — x0)) —— [ Gp(x — xo)v(x)dx.

n—o0 R
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Kernel estimator of the invariant measure

Consider the empirical measure

If M, (¢) converges towards (), we have
Ma(Gh(- — x0)) —— [ Gp(x — xo0)v(x)dx.

n—o0 R

An estimator of (xp), for xp € R is then given by

/V\n(Xo) = Mn(Gh( — Xo)).

wHow good is this estimator?
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Convergence of the empirical measure
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Process of the tagged cell

Let Y be the Markov chain corresponding to the trait of the tagged

cell.
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Process of the tagged cell
Let Y be the Markov chain corresponding to the trait of the tagged

cell.

| |
||| I|| |!| !‘\
O[T blalel]

W

Caractere

The transition operator of Y is given by O = (P1 + P2)/2, where

P1(x, dy):/P(x, dydy>) Pa(x, dy):/P(x, dy1dy).
R R
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Convergence of the tagged chain

Theorem
Under assumptions, Q admits an invariant measure v. Moreover, there
exist C > 0 and p € (0,1) such that for all m € N:

Q™ — ()|, < Cp™|e —v(p)|,,

17 /28



Convergence of the tagged chain

Let

|o(x)]

= Sup —m———
Plv=sup V6

Theorem
Under assumptions, Q admits an invariant measure v. Moreover, there
exist C > 0 and p € (0,1) such that for all m € N:

Qe —v(p)|, < Cp"|e —v(yp)

for all measurable function ¢ : R — R such that ||y < oo, where

V(x) = x2.
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Convergence of estimator

Let 8 > 0 and let G be a kernel of order kK > 3. Let us set

1
h = |T,|z7+1

Theorem
Under assumptions ensuring the ergodicity of the tagged chain Y, we
have

(E[(ﬁn(xo) - v(x0)>2}>1/2 < |T,|~B/(28+1),

uniformly in Q for Q in a given Holder regularity class depending on S.
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Estimation of the division rate
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Size-structured population

Assume that the cells grow exponentially at rate a, and divide in two
equal parts. Then, the transition kernel of the chain of successive size
at birth along a branch is given by

B(2y) -2 %

Op(x,dy) = laysx——>e "2 * dy.

Moreover, if vg is the invariant measure of the chain, we have
B(2x)

vp(x) = ax Evg 1{xu2x, X, <2x}|>

where X, denotes the size at birth of cell v and v~ is the ancestor of
u. Then, an estimator of B is given by

Y weu, Gh(Xu — x/2)
-t Zueun l{XUZX, X,— §2x}

~ X
B(x) = a=
(x) = a5~

[ M. Doumic, M. Hoffmann, N. Krell, L. Roberts, Statistical estimation of
a growth-fragmentation model observed on a genealogical tree, 2015.
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Randomly structured population
Assume that the dynamic of the trait follows

dbx(t) = H(9x(£))dt + 0(6:(£))dWe,  64(0) = x.

The dependency in B of the transition function is complex but explicit:

z

1 00 .

abe) = [ bty 2oty /28] [T e BB (6] dz,
0 0

where L (¢y) is the local time at time t at position y of ¢, and

Q(dey) - q(Xv)/)dy

ﬁ M. Hoffmann, A. Marguet. Statistical estimation in a randomly

structured population, 2018.
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Randomly structured population
Assume that the dynamic of the trait follows

dbx(t) = H(9x(£))dt + 0(6:(£))dWe,  64(0) = x.

The dependency in B of the transition function is complex but explicit:

-1 00 .
q(x,y) = /0 K(Z)B(y/Z)a(y/Z)QE{ / e Jo BN G174, | o,

z 0
where L (¢y) is the local time at time t at position y of ¢, and

Q(dey) - q(X7)/)dy

w | ikelihood contrast in a parametric framework with (r, o, <) known.

[@ M. Hoffmann, A. Marguet. Statistical estimation in a randomly

structured population, 2018.
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Parametric model

Assume that the division rate B belongs to a class
B={B:[0,L] = R, B(x) = By(¥,x),x € [0,L],9 € O},

where x — Bo(x,4) is known up to a parameter ¥ € ©, and © C RY
is a compact set.

Aim

Estimate ¥ from (X, u € T)).
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Likelihood contrast

A likelihood contrast is given by:
Lo(0,(Xuu € To)) = [ a0(Xe-, Xu),
ueTy
where X, is the trait of the ancestor of u. We consider the estimator

of ¢ given by:

~

1
I € argmax T Z log (g (Xu—, Xu))

JeEO n ,eT*
n

ﬁ M. Hoffmann, A. Marguet. Statistical estimation in a randomly
structured population, 2018.

23/28



Likelihood contrast

A likelihood contrast is given by:

En(”v (XLH ue Tn)) = H qﬁ(Xu*7XU)7

ueTy

where X, is the trait of the ancestor of u. We consider the estimator
of ) given by:

~

1
Do € argmax { = 3 log (g1 (X, Xu)

JeEO n ,eT*
n

Under regularity assumptions on B, we prove that
¢ 9, converges in probability to ¥/ when n tends to infinity.
¢ 9, is asymptotically efficient.

[@ M. Hoffmann, A. Marguet. Statistical estimation in a randomly
structured population, 2018.
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Continuous time
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Data : continuous time vs genealogical time

ladimais o

¢ Random size of the population

4 Sampling bias: more cells coming from fertile lineages
¢ Censored data: the cells at the bottom of the tree have not
divided yet
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Behavior of a typical individual

For all t > 0, xp € X, for all measurable positive function
F:D([0,t],X) — R, we have:

Esg [ D F(XEs < )| =Eay (N)E |F (Y4 s <t)],

X0
ue Vs

with (Ys(t)) a time-inhomogeneous Markov process.
s<t

4 Tool: First moment semigroup transformation (Del Moral 2004,
Bansaye 2013, Champagnat et Villemonais 2016, Cloez 2017)

4 Interest : A unique process to summarize the dynamic of the
whole population

@ A Marguet, Uniform sampling in a structured branching population,
2019
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Estimation of the division rate: age-structured population
¢ Many-to-One formula

Agt

em E [g(xe)B(xe) THa(xe)] »

E|> e(xt)| =

ueVs

where y is an auxiliary process.
¢ Convergence of the empirical measure: using the geometric
ergodicity of .
4 Representation of B: combining
( ) B(x)e’ Jo B(z)dz
x) = .
1— fOX B(y)e— jg B(z)dzdy

and the invariant measure of y.

@ M. Hoffmann, A. Olivier Non-parametric estimation of the division rate

of an age-dependent branching process, 2016.
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Perspectives
4 estimation of B continuous time & stochastic flow

4 study of asymmetry in division

¢ dependency of the division mechanism in some trait

R oo

1382
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Thank you for your attention!
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Asymptotic normality

Let us define W(¥) the Fisher information matrix which coefficients are
given for all 1 </, j < d by:

09.090y.
V() = vy Q) (W> _

q;

Theorem
Under regularity assumptions and if W(¥}) is invertible, for all ¥ in the
interior of ©, we have:

IT,|1/2 (5 . 0) — N (0,W(9)71),
in law when n tends to infinity, where A" (0, W(9)~1!) is the
d-dimensional normal law with mean 0 and the inverse of the Fisher

information matrix ¢ (¢) as covariance matrix.
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