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Something about me...
Theoretical physicist, currently with a joint appointment between 
Chemistry and Applied Mathematics

Main interests: 

[ before that, faculty post at Dept of Physics, Bath Uni ]

Statistical mechanics 
(physical systems with many interacting particles)

Glassy materials

Rare events in physics and chemistry

Soft matter, biomolecular physics, self-assembly, ...



Today
Very simple model for a growing cluster with two kinds of particle

Analysis of (complex) fluctuations of cluster composition

Rare events with non-typical composition in large clusters

Mechanisms for rare events, and strategies for controlling  
the observed behaviour

Spontaneous symmetry breaking / "de-mixing"

[ Illustration of research questions and methods ]



Motivation (i)
[ Barish-Schulman-Rothemund-Winfree, PNAS 106, 6054 (2009) ]

Idea: use small synthetic pieces 
of DNA to grow ordered nano-
structures ("origami")

Experiments: 
scale bar 50nm

"Algorithmic 
crystal"



Motivation (ii)
[ Whitelam-Haxton-Schmidt, Phys Rev Lett 112, 155504 (2014) ]

How to predict "patterns" in 
systems with growth fronts?

[ also Morris-Rogers, J. Phys. A 47, 
342003 (2014) ]

(fast)

(slow)



Simple model

[ Klymko-Garrahan-Whitelam, Phys Rev E 96, 042126 (2017) ]

Growth

Cluster
(well-mixed)

Particles are added, one at a time

If the cluster has K particles then its composition is mK = Nred�Nblue
K , this

is between �1 and +1
<latexit sha1_base64="OwqMfl9evy/UHPSfGapvrrlHpIg="></latexit>

If the cluster is mostly red (large m) it tends to recruit more red particles,
and vice versa. The strength of this effect is controlled by a parameter J .

<latexit sha1_base64="MDZPdiOC6jOa5cAG7ZtQCtFRAJs="></latexit>



Model
[ Klymko, Garrahan, Whitelam, 

Phys Rev E 96, 042126 (2017) ]

Specifically, on step K the cluster has K particles and composition mK .
<latexit sha1_base64="PrIg6PSKkIS/CHuf2Q3PsMBcOA0="></latexit>

We add:

red particle with probability 1
2 (1 + tanh JmK)

blue particle with probability 1
2 (1� tanh JmK)

<latexit sha1_base64="2FTOU6+5mZst/kTdYvtuUq6BOAY="></latexit>

mK
<latexit sha1_base64="FwvtqBTfT1VFwWQaDtWH27Rx/MI="></latexit>

Prob
<latexit sha1_base64="p5qKUlBAr1H94j2niAEOdG6e/h8=">AAACSnicbVDLattAFB25aZuqL7dddjPEFLoyUkIfgS4C3nTRhQtxErCMuRpdyUPmIWZGSc2gn+p39APaZbLpvrvSTUeOCXkdGDiccy9n7slrwa1Lkl9R797G/QcPNx/Fj588ffa8/+LlgdWNYThhWmhzlINFwRVOHHcCj2qDIHOBh/nxqPMPT9BYrtW+W9Y4k1ApXnIGLkjz/pfMliVILpZxpvCUaSlBFT4bjVqfSXALBsKP2jbOajC5/ubTdPiOydbTzEBVYWF4tXDx2Og8buf9QTJMVqC3SbomA7LGeN7/nRWaNRKVYwKsnaZJ7WYejONMYAhtLNbAjqHCaaAKJNqZX13d0jdBKWipTXjK0ZV6dcODtHYp8zDZHWJvep14lzdtXPlx5rmqG4eKXQSVjaBO065CWnCDzIllIMAMD3+lbAEGmAtFX0tZoDhB18Z01cxuh/eXPdwmB9vDdGe483V7sPdp3dEmeU22yFuSkg9kj3wmYzIhjHwnP8kZOY9+RH+iv9G/i9FetN55Ra6ht/EfeR20Gw==</latexit>

1<latexit sha1_base64="6NmN5ciFeGEo/9I436rghpvFnCY=">AAACSXicbVBNaxRBFOzZRBPHr008emmyETwtMwlqAh4CexG8RHCTwM6yvOl5M9ukP4bunujSzI/yd+QHiDc9efYmnuzZLCExFjQUVe9R/SqvBbcuSb5FvbX1e/c3Nh/EDx89fvK0v7V9YnVjGI6ZFtqc5WBRcIVjx53As9ogyFzgaX4+6vzTCzSWa/XRLWqcSqgULzkDF6RZ/31myxIkF4s4U/iJaSlBFT4bjVqfSXBzBsKP2jbOajC5/uzTdPiKydbTzEBVYWF4NXfxbrobt7P+IBkmS9C7JF2RAVnheNb/mRWaNRKVYwKsnaRJ7aYejONMYMhsLNbAzqHCSaAKJNqpXx7d0hdBKWipTXjK0aV6c8ODtHYh8zDZ3WH/9Trxf96kceXB1HNVNw4VuwoqG0Gdpl2DtOAGmROLQIAZHv5K2RwMMBd6vpUyR3GBro3pspnDDq+ve7hLTvaG6f5w/8Pe4OjtqqNN8pzskJckJW/IEXlHjsmYMPKFfCXfyY/oMvoV/Y7+XI32otXOM3ILvbW/cjqy9w==</latexit>

[Polya urn...]

(Nothing about spatial 
structure...)

First particle : Prob (1/2)



Behaviour

The model is symmetrical
between red and blue

<latexit sha1_base64="Y0TI5Ozqw5EZ3hvpoRZM1lbIYhE=">AAACcHicbVFNaxRBEO0ZP7KOX2u8CB5sXQTxsMwmqBE8BPbiMUI2CewsS01PzWyT/hi6axKXYf6n/gLv/gCxZ7OIMT5oeLyq6lf9Oq+V9JSm36P41u07d3cG95L7Dx4+ejx8snvibeMEzoRV1p3l4FFJgzOSpPCsdgg6V3ian0/7+ukFOi+tOaZ1jQsNlZGlFEBBWg5d5ssStFTrJDN4KazWYIo2m067NtNAKwGqnXZdktXgcvu1fSd01/LMQVVh4WS1ouR4hVzbAhWXnvu11kguGCieI10iGu6w4OFWnqsGk245HKXjdAN+k0y2ZMS2OFoOf2SFFY1GQ0KB9/NJWtOiBUdSKAyrNR5rEOdQ4TxQAxr9ot1k0/HXQSl4aV04hvhG/XuiBe3Dznno7J/r/6314v9q84bKg0UrTd0QGnFlVDaKk+V90LyQDgWpdSAgnAy7crECB4LCd1xzWaG6QOoSvknmY4/3f3K4SU72xpP98f6XvdHhp21GA/acvWJv2IR9YIfsMztiMybYN/Yr2okG0c/4WfwifnnVGkfbmafsGuK3vwHgsr8R</latexit>

For J = 0 then particles are added with random colours
<latexit sha1_base64="y0qfpefZP+WyazqXh/m+x+706/c=">AAACenicbVFba9RAGJ3E2xpv2/roy9CtoAhL0oqtoFBYEPGpgtsWNsvyZfIlGTqXMDNpXWJ+qK+++Cd8cLINYq3n6fBd5pzvTFYLbl0cfw/CW7fv3L03uh89ePjo8ZPx1vaJ1Y1hOGdaaHOWgUXBFc4ddwLPaoMgM4Gn2fms759eoLFcqy9uXeNSQql4wRk4X1qNv6W2KEBysY5ShZdMSwkqb9PZrGtTCa5iINpZ10VpDSbTX9skYbJraWqgLDE3vKxc9EEbuvvpfbxLXYWK+knHmUBLwSCFPMecXnJXUeOf1pL2rhtjo241nsTTeAN6kyQDmZABx6vxzzTXrJGoHBNg7SKJa7dsBz1vsrFYAzuHEheeKpBol+0mpY4+95WcFt5roZXbuDB/b7QgrV3LzE/2h9t/e33xf71F44rDZctV3ThU7EqoaAR1mvaR05wbZE6sPQFmuPdKWQUGmPMfc02lQnGBrovoJpm3Pd78yeEmOdmbJvvT/c97k6N3Q0Yj8ozskBckIQfkiHwkx2ROGPkRjIKtYDv4Fe6EL8NXV6NhMOw8JdcQvv4N2ybBFQ==</latexit>

After a large number of steps then mK ⇡ 0 with
(small) standard deviation

p
1/K (. . . binomial)

<latexit sha1_base64="Me9QMa5U79jnx07SAlLSTIKlyt8="></latexit>

For J > 1 and large times then one typically finds either mK ⇡ m⇤ or
mK ⇡ �m⇤, with equal probability.

<latexit sha1_base64="gv0bi5+ryuGpWX+ooNR+7lQLR1Y="></latexit>

or

"Spontaneous 
symmetry 
breaking" 
or
"de-mixing" 

[ Klymko, Garrahan, Whitelam, 
Phys Rev E 96, 042126 (2017) ]



Intuition from continuous time
For intuition, define a model in continuous time, let Mt = Nred �Nblue

<latexit sha1_base64="fkOLN/BKXVWgSY7hM/qQ6cgNmzQ="></latexit>

d

dt
Mt = tanh(JMt/t) + (noise)

<latexit sha1_base64="rjHVRz2JgPhlqjhOZX3h9oqq11g="></latexit>

We consider mt = Mt/t, it follows

d

dt
mt =

1

t
[tanh(Jmt)�mt + (noise)]

<latexit sha1_base64="S2wJQp4MF9SNm46aChoOGiELN6M="></latexit>

Fixed points solve m = tanh Jm, noise is weak at large times
<latexit sha1_base64="qT608vHXAYFkiZwOXbLDtBrkfo0="></latexit>

SDE / Langevin

Rescaling time as u = log t, we have (for Gaussian noise)

d

du
mu = tanh(Jmu)�mu + e�u/2(noise)

<latexit sha1_base64="z4eHYf/xLIVtgwvrgXmVQwiJM1Y="></latexit>



Summary

[ Klymko, Garrahan, Geissler, Whitelam, Phys Rev E 97, 032123 (2018), 
RLJ, Phys Rev E 100, 012140 (2019).]

J
<latexit sha1_base64="6iNp6+Np2bber5NjfeYI1Y/UQuc="></latexit>

0
<latexit sha1_base64="0UtbdK2cI7arMDJpRr8ZHY/YJ0U="></latexit>

1<latexit sha1_base64="aZ9OcBppiZ9ebkt39UYeE2cNmHE="></latexit>

de-mixed mixed

Questions: 

This is the typical behaviour, what about the variance?
<latexit sha1_base64="4c3GVaiLoyXFAfkNygryajoxCoA="></latexit>

For J > 1, we sometimes see mixed clusters, how rare is this?
<latexit sha1_base64="12twyePuu0uhWU6wBWMfVRdQ63U="></latexit>

(similarly, do we ever see de-mixed clusters for J < 1?)
<latexit sha1_base64="q2mU9abG7T2zl3oRNY7VKSoKZo4="></latexit>

Are there efficient ways to modify system behaviour?
(not simply changing J)

<latexit sha1_base64="MaiiJYBtT094DsuOZTHZMNWXuUA="></latexit>

[similar behaviour also demonstrated for models with "reversible" growth]
[ Klymko, Garrahan, Whitelam, 

Phys Rev E 96, 042126 (2017) ]

central limit theorems

large deviations...



Illustrative results

RARE BEHAVIOR OF GROWTH PROCESSES VIA … PHYSICAL REVIEW E 97, 032123 (2018)
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FIG. 3. Demonstration of two-dimensional sampling of the reversible model of growth. (a) Direct simulation (dots) vs enhanced sampling
(i.e., the reference-model method, lines) for two intensive variables, n ≡ N/K and µ ≡ M/K , whose extensive counterparts N and M we
bias. The comparison validates the reference-model method within the small window in which direct sampling is effective. (b) The resulting
large-deviation rate function for intensive magnetization m, together with results from direct simulation, for J = 2.0 and c = 2.5. Panel (c)
shows enhanced sampling at the critical point J = c = 2, compared with the bound (32).

trajectory. For a reversible model the system size is also a
fluctuating quantity. As illustrated in Appendix G, sampling
the ratio M/N requires introduction of fields conjugate to both

extensive parameters. To do so we note that the reference-
model method can be straightforwardly generalized to sample
a collection A = (A1, . . . ,AL) of dynamic order parameters.
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FIG. 4. The irreversible model of growth. (a) Phase diagram. (b) Large-deviation rate functions I (m) = −K−1 ln ρ(m,K) for magnetization
m. (c) A collection of trajectories at the associated phase points. Note that m is a time-integrated observable; each trajectory experiences
fluctuations of events (additions of red and blue particles), and the sum of these events results in the behavior shown. In the one-phase region
(A) trajectories are of one type, involving the addition (on average) of equal numbers of red and blue particles, and trajectories “concentrate”
at the unique minimum of the rate function. At the critical point (B) fluctuations of the trajectory ensemble are anomalously large, in the sense
that the rate function is nonquadratic at its unique minimum. In the two-phase region (C) trajectories spontaneously adopt one of two types,
involving distinct red-blue addition statistics. The resulting rate function for the time-integrated observable m is nonconvex. Moving from A to
B to C, the rate function shows behavior qualitatively similar to that of a Landau free energy upon crossing a continuous phase transition.
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mK
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K/100
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[ Klymko, Garrahan, Geissler, Whitelam, 
Phys Rev E 97, 032123 (2018)] 

Trajectories / histories /
sample paths for J = 1.5

<latexit sha1_base64="W6jI8opcoHJqDIyCGTBVZT1Xous="></latexit>

[ RLJ, Phys Rev E 100, 012140 (2019)]

ROBERT L. JACK PHYSICAL REVIEW E 100, 012140 (2019)

with k occurs because there are already many particles in the
cluster, so making a significant change in its magnetization
requires the addition of many particles.)

In order to establish a bound on IK (m, ϵ), we treat m as
a target value for mK : suitable controlled processes should
hit this target with high probability. We choose b and k∗ to
achieve this, as follows.

We solve (numerically) the differential equation (21),
going backward in time. This yields a path that ends at
mK = m and can be propagated back to any earlier time k, for
example by Euler’s method. The magnetization on this path
is b̃(k) with k ! K and b̃(K ) = m. Both k and b̃(k) decrease
as we solve the equation backward in time. As k → 0 then
b̃→ 0. (Note that m = 0 is an unstable fixed point of the
forward equation, which corresponds to a stable fixed point
of the backward equation.) We stop the solution at the point
(k, b̃) = (k∗, b), where

b2k∗ = a
√

K, (22)

where a is a numerical parameter, of order unity (we take
a= 2, results depend weakly on this choice).

These b, k∗ are the parameters that we use for the con-
trolled dynamics. As long as K is reasonably large, the algo-
rithm gives b≪ 1 and k∗ ≫ 1. Then the action for this con-
trolled process can be estimated from (20), with K replaced
by k∗. This yields

⟨A⟩con ≈ k∗ b2(J − 1)2

2
. (23)

Since (b, k∗) solve (22), this means that ⟨A⟩con is of order
√

K .
Combining this result with (15) and assuming that the con-
trolled system hits the target with probability 1, one obtains

HK (m, ϵ) ≃ a(J − 1)2

2
√

K
. (24)

Hence, the bound HK tends to zero as K → ∞. This result
applies for large K and is independent of the target chosen
for mK (always assuming that this target is between ϵ and
mS − ϵ). Note, however, that the controlled process depends
on K , in that the parameters b, k∗ are chosen separately for
each value of K . The assumption that the controlled system
hits the target with probability 1 is valid as long as the
magnetization distribution at k∗ is sharply peaked in the sense
that its mean is much larger than its standard deviation. This
requires b2k∗ ≫ 1, which is true by (22) as long as K is large.

Numerical results based on this construction are shown in
Fig. 2. In particular, Fig. 2(a) shows that the parameters (b, k∗)
obtained by this method are such that the controlled system
hits the target m with high probability. Also, Fig. 2(b) confirms
that on increasing K , the bound HK is quantitatively consistent
with (24). This establishes that limK→∞ HK (m, ϵ) = 0, and
hence from (14) one has limK→∞ IK (m, ϵ) = 0, for this value
of m. Figure 2(c) shows that the same behavior occurs for
several values of m with |m| < mS − ϵ. This is expected since
the theoretical argument above is independent of the target
for mK . Hence limK→∞ IK (m, ϵ) = 0 throughout this range,
which establishes that the rate function (6) obeys

I (m) = 0, |m| < mS. (25)
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FIG. 3. (a) Estimated probability density for mK obtained by
direct sampling of the irreversible growth model at J = 1.3. Note that
K varies over more than two decades. The binning parameter is ϵ =
10− 3 for values of m near the peaks and ϵ = 10− 2 for intermediate
values. (Results depend weakly on ϵ, which is chosen to reduce sta-
tistical uncertainties while maintaining adequate resolution.) (b) The
logarithms of the same probability densities, scaled by ln K . The
prediction (28) is that for every |m| < mS − ϵ one should observe
convergence of this quantity to some negative (nonzero) limit, as
K → ∞. The data are consistent with this prediction.

This was the result anticipated in Fig. 1. A similar result has
been proven by a rigorous analysis of a general class of Pólya
urns; see Corollary 5 of [34]. We emphasize here that while
the numerical results in Fig. 2 are a useful confirmation of
our theoretical calculations, the bound in (24) is an analytical
result.

B. Scaling of the probability that |mK| < mS

As K → ∞, we have shown that IK (m, ϵ) → 0
throughout the regime |m| ! mS − ϵ. The shows that
Prob(|mK − m| < ϵ) does not decay exponentially with
K . Nevertheless, we expect that this probability should vanish
as K → ∞, so the natural question is, how small is it?

To address this question we define an estimate of the
probability density for mK as

ρK (m, ϵ) = 1
2ϵ

Prob(|mK − m| ! ϵ). (26)

(In this section, we emphasize that all large-K limits are to be
taken at fixed ϵ > 0; note also that we are assuming J > 1.)

012140-6

Probability distribution
(histograms), for J = 1.3

<latexit sha1_base64="3YQMc/3+nrw6CtxezC1oojxRAYA="></latexit>

Sharp peaks, broad “trough”
<latexit sha1_base64="ygYccjxXy7AcyfIq8ZX47rZR9z0="></latexit>



Optimal control theory for rare events

We want to know about unusual behaviour which happens only rarely...

To analyse this, we modify the model so that the unusual behaviour 
becomes typical

In this way we can show that (roughly-speaking)

Prob(rare event) & exp [�DKL(new model k old model)]

where DKL is called Kullback-Leibler divergence.
<latexit sha1_base64="swTZF7JSPh3ceS8bQL4M63ROZ5M="></latexit>

The KL divergence is small if we didn’t modify the model too much
<latexit sha1_base64="je3dT2yr+yzhWDU3HQUZFDKf3r4="></latexit>

[ Dupuis-Ellis, etc ]

The best choice of new model (“optimally controlled model”) gives a
good estimate of the log-probability of interest. Can take something like

d

dt
mt = b(t) +

1

t
(noise)

<latexit sha1_base64="S38qZlo+glYwHutZUPJ1zag0G3g="></latexit>

("at least as likely as...")



Illustrative resultsROBERT L. JACK PHYSICAL REVIEW E 100, 012140 (2019)

with k occurs because there are already many particles in the
cluster, so making a significant change in its magnetization
requires the addition of many particles.)

In order to establish a bound on IK (m, ϵ), we treat m as
a target value for mK : suitable controlled processes should
hit this target with high probability. We choose b and k∗ to
achieve this, as follows.

We solve (numerically) the differential equation (21),
going backward in time. This yields a path that ends at
mK = m and can be propagated back to any earlier time k, for
example by Euler’s method. The magnetization on this path
is b̃(k) with k ! K and b̃(K ) = m. Both k and b̃(k) decrease
as we solve the equation backward in time. As k → 0 then
b̃→ 0. (Note that m = 0 is an unstable fixed point of the
forward equation, which corresponds to a stable fixed point
of the backward equation.) We stop the solution at the point
(k, b̃) = (k∗, b), where

b2k∗ = a
√

K, (22)

where a is a numerical parameter, of order unity (we take
a= 2, results depend weakly on this choice).

These b, k∗ are the parameters that we use for the con-
trolled dynamics. As long as K is reasonably large, the algo-
rithm gives b≪ 1 and k∗ ≫ 1. Then the action for this con-
trolled process can be estimated from (20), with K replaced
by k∗. This yields

⟨A⟩con ≈ k∗ b2(J − 1)2

2
. (23)

Since (b, k∗) solve (22), this means that ⟨A⟩con is of order
√

K .
Combining this result with (15) and assuming that the con-
trolled system hits the target with probability 1, one obtains

HK (m, ϵ) ≃ a(J − 1)2

2
√

K
. (24)

Hence, the bound HK tends to zero as K → ∞. This result
applies for large K and is independent of the target chosen
for mK (always assuming that this target is between ϵ and
mS − ϵ). Note, however, that the controlled process depends
on K , in that the parameters b, k∗ are chosen separately for
each value of K . The assumption that the controlled system
hits the target with probability 1 is valid as long as the
magnetization distribution at k∗ is sharply peaked in the sense
that its mean is much larger than its standard deviation. This
requires b2k∗ ≫ 1, which is true by (22) as long as K is large.

Numerical results based on this construction are shown in
Fig. 2. In particular, Fig. 2(a) shows that the parameters (b, k∗)
obtained by this method are such that the controlled system
hits the target m with high probability. Also, Fig. 2(b) confirms
that on increasing K , the bound HK is quantitatively consistent
with (24). This establishes that limK→∞ HK (m, ϵ) = 0, and
hence from (14) one has limK→∞ IK (m, ϵ) = 0, for this value
of m. Figure 2(c) shows that the same behavior occurs for
several values of m with |m| < mS − ϵ. This is expected since
the theoretical argument above is independent of the target
for mK . Hence limK→∞ IK (m, ϵ) = 0 throughout this range,
which establishes that the rate function (6) obeys

I (m) = 0, |m| < mS. (25)
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FIG. 3. (a) Estimated probability density for mK obtained by
direct sampling of the irreversible growth model at J = 1.3. Note that
K varies over more than two decades. The binning parameter is ϵ =
10− 3 for values of m near the peaks and ϵ = 10− 2 for intermediate
values. (Results depend weakly on ϵ, which is chosen to reduce sta-
tistical uncertainties while maintaining adequate resolution.) (b) The
logarithms of the same probability densities, scaled by ln K . The
prediction (28) is that for every |m| < mS − ϵ one should observe
convergence of this quantity to some negative (nonzero) limit, as
K → ∞. The data are consistent with this prediction.

This was the result anticipated in Fig. 1. A similar result has
been proven by a rigorous analysis of a general class of Pólya
urns; see Corollary 5 of [34]. We emphasize here that while
the numerical results in Fig. 2 are a useful confirmation of
our theoretical calculations, the bound in (24) is an analytical
result.

B. Scaling of the probability that |mK| < mS

As K → ∞, we have shown that IK (m, ϵ) → 0
throughout the regime |m| ! mS − ϵ. The shows that
Prob(|mK − m| < ϵ) does not decay exponentially with
K . Nevertheless, we expect that this probability should vanish
as K → ∞, so the natural question is, how small is it?

To address this question we define an estimate of the
probability density for mK as

ρK (m, ϵ) = 1
2ϵ

Prob(|mK − m| ! ϵ). (26)

(In this section, we emphasize that all large-K limits are to be
taken at fixed ϵ > 0; note also that we are assuming J > 1.)
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Fluctuations with |m| > m⇤ have very small probabilities,

� log pK(m) ⇡ I(m)K
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Fluctuations with |m| < m⇤ have moderately small probabilities,
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with k occurs because there are already many particles in the
cluster, so making a significant change in its magnetization
requires the addition of many particles.)

In order to establish a bound on IK (m, ϵ), we treat m as
a target value for mK : suitable controlled processes should
hit this target with high probability. We choose b and k∗ to
achieve this, as follows.

We solve (numerically) the differential equation (21),
going backward in time. This yields a path that ends at
mK = m and can be propagated back to any earlier time k, for
example by Euler’s method. The magnetization on this path
is b̃(k) with k ! K and b̃(K ) = m. Both k and b̃(k) decrease
as we solve the equation backward in time. As k → 0 then
b̃→ 0. (Note that m = 0 is an unstable fixed point of the
forward equation, which corresponds to a stable fixed point
of the backward equation.) We stop the solution at the point
(k, b̃) = (k∗, b), where

b2k∗ = a
√

K, (22)

where a is a numerical parameter, of order unity (we take
a= 2, results depend weakly on this choice).

These b, k∗ are the parameters that we use for the con-
trolled dynamics. As long as K is reasonably large, the algo-
rithm gives b≪ 1 and k∗ ≫ 1. Then the action for this con-
trolled process can be estimated from (20), with K replaced
by k∗. This yields

⟨A⟩con ≈ k∗ b2(J − 1)2

2
. (23)

Since (b, k∗) solve (22), this means that ⟨A⟩con is of order
√

K .
Combining this result with (15) and assuming that the con-
trolled system hits the target with probability 1, one obtains

HK (m, ϵ) ≃ a(J − 1)2

2
√

K
. (24)

Hence, the bound HK tends to zero as K → ∞. This result
applies for large K and is independent of the target chosen
for mK (always assuming that this target is between ϵ and
mS − ϵ). Note, however, that the controlled process depends
on K , in that the parameters b, k∗ are chosen separately for
each value of K . The assumption that the controlled system
hits the target with probability 1 is valid as long as the
magnetization distribution at k∗ is sharply peaked in the sense
that its mean is much larger than its standard deviation. This
requires b2k∗ ≫ 1, which is true by (22) as long as K is large.

Numerical results based on this construction are shown in
Fig. 2. In particular, Fig. 2(a) shows that the parameters (b, k∗)
obtained by this method are such that the controlled system
hits the target m with high probability. Also, Fig. 2(b) confirms
that on increasing K , the bound HK is quantitatively consistent
with (24). This establishes that limK→∞ HK (m, ϵ) = 0, and
hence from (14) one has limK→∞ IK (m, ϵ) = 0, for this value
of m. Figure 2(c) shows that the same behavior occurs for
several values of m with |m| < mS − ϵ. This is expected since
the theoretical argument above is independent of the target
for mK . Hence limK→∞ IK (m, ϵ) = 0 throughout this range,
which establishes that the rate function (6) obeys

I (m) = 0, |m| < mS. (25)
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FIG. 3. (a) Estimated probability density for mK obtained by
direct sampling of the irreversible growth model at J = 1.3. Note that
K varies over more than two decades. The binning parameter is ϵ =
10− 3 for values of m near the peaks and ϵ = 10− 2 for intermediate
values. (Results depend weakly on ϵ, which is chosen to reduce sta-
tistical uncertainties while maintaining adequate resolution.) (b) The
logarithms of the same probability densities, scaled by ln K . The
prediction (28) is that for every |m| < mS − ϵ one should observe
convergence of this quantity to some negative (nonzero) limit, as
K → ∞. The data are consistent with this prediction.

This was the result anticipated in Fig. 1. A similar result has
been proven by a rigorous analysis of a general class of Pólya
urns; see Corollary 5 of [34]. We emphasize here that while
the numerical results in Fig. 2 are a useful confirmation of
our theoretical calculations, the bound in (24) is an analytical
result.

B. Scaling of the probability that |mK| < mS

As K → ∞, we have shown that IK (m, ϵ) → 0
throughout the regime |m| ! mS − ϵ. The shows that
Prob(|mK − m| < ϵ) does not decay exponentially with
K . Nevertheless, we expect that this probability should vanish
as K → ∞, so the natural question is, how small is it?

To address this question we define an estimate of the
probability density for mK as

ρK (m, ϵ) = 1
2ϵ

Prob(|mK − m| ! ϵ). (26)

(In this section, we emphasize that all large-K limits are to be
taken at fixed ϵ > 0; note also that we are assuming J > 1.)
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For events with mK ⇡ 0, the optimally-controlled process stays close to
mk = 0 throughout.
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The system “doesn’t know whether to be red or blue”, it turns out that
this results in a small KL divergence
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with k occurs because there are already many particles in the
cluster, so making a significant change in its magnetization
requires the addition of many particles.)

In order to establish a bound on IK (m, ϵ), we treat m as
a target value for mK : suitable controlled processes should
hit this target with high probability. We choose b and k∗ to
achieve this, as follows.

We solve (numerically) the differential equation (21),
going backward in time. This yields a path that ends at
mK = m and can be propagated back to any earlier time k, for
example by Euler’s method. The magnetization on this path
is b̃(k) with k ! K and b̃(K ) = m. Both k and b̃(k) decrease
as we solve the equation backward in time. As k → 0 then
b̃→ 0. (Note that m = 0 is an unstable fixed point of the
forward equation, which corresponds to a stable fixed point
of the backward equation.) We stop the solution at the point
(k, b̃) = (k∗, b), where

b2k∗ = a
√

K, (22)

where a is a numerical parameter, of order unity (we take
a= 2, results depend weakly on this choice).

These b, k∗ are the parameters that we use for the con-
trolled dynamics. As long as K is reasonably large, the algo-
rithm gives b≪ 1 and k∗ ≫ 1. Then the action for this con-
trolled process can be estimated from (20), with K replaced
by k∗. This yields

⟨A⟩con ≈ k∗ b2(J − 1)2

2
. (23)

Since (b, k∗) solve (22), this means that ⟨A⟩con is of order
√

K .
Combining this result with (15) and assuming that the con-
trolled system hits the target with probability 1, one obtains

HK (m, ϵ) ≃ a(J − 1)2

2
√

K
. (24)

Hence, the bound HK tends to zero as K → ∞. This result
applies for large K and is independent of the target chosen
for mK (always assuming that this target is between ϵ and
mS − ϵ). Note, however, that the controlled process depends
on K , in that the parameters b, k∗ are chosen separately for
each value of K . The assumption that the controlled system
hits the target with probability 1 is valid as long as the
magnetization distribution at k∗ is sharply peaked in the sense
that its mean is much larger than its standard deviation. This
requires b2k∗ ≫ 1, which is true by (22) as long as K is large.

Numerical results based on this construction are shown in
Fig. 2. In particular, Fig. 2(a) shows that the parameters (b, k∗)
obtained by this method are such that the controlled system
hits the target m with high probability. Also, Fig. 2(b) confirms
that on increasing K , the bound HK is quantitatively consistent
with (24). This establishes that limK→∞ HK (m, ϵ) = 0, and
hence from (14) one has limK→∞ IK (m, ϵ) = 0, for this value
of m. Figure 2(c) shows that the same behavior occurs for
several values of m with |m| < mS − ϵ. This is expected since
the theoretical argument above is independent of the target
for mK . Hence limK→∞ IK (m, ϵ) = 0 throughout this range,
which establishes that the rate function (6) obeys

I (m) = 0, |m| < mS. (25)
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FIG. 3. (a) Estimated probability density for mK obtained by
direct sampling of the irreversible growth model at J = 1.3. Note that
K varies over more than two decades. The binning parameter is ϵ =
10− 3 for values of m near the peaks and ϵ = 10− 2 for intermediate
values. (Results depend weakly on ϵ, which is chosen to reduce sta-
tistical uncertainties while maintaining adequate resolution.) (b) The
logarithms of the same probability densities, scaled by ln K . The
prediction (28) is that for every |m| < mS − ϵ one should observe
convergence of this quantity to some negative (nonzero) limit, as
K → ∞. The data are consistent with this prediction.

This was the result anticipated in Fig. 1. A similar result has
been proven by a rigorous analysis of a general class of Pólya
urns; see Corollary 5 of [34]. We emphasize here that while
the numerical results in Fig. 2 are a useful confirmation of
our theoretical calculations, the bound in (24) is an analytical
result.

B. Scaling of the probability that |mK| < mS

As K → ∞, we have shown that IK (m, ϵ) → 0
throughout the regime |m| ! mS − ϵ. The shows that
Prob(|mK − m| < ϵ) does not decay exponentially with
K . Nevertheless, we expect that this probability should vanish
as K → ∞, so the natural question is, how small is it?

To address this question we define an estimate of the
probability density for mK as

ρK (m, ϵ) = 1
2ϵ

Prob(|mK − m| ! ϵ). (26)

(In this section, we emphasize that all large-K limits are to be
taken at fixed ϵ > 0; note also that we are assuming J > 1.)
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FIG. 2. Results for the irreversible growth model in the representative case J = 1.4, for which mS ≈ 0.82. (a) Trajectories of the controlled
dynamics for K = 108, which all achieve mK ≈ 0.4. For the k-dependent force then (b, k∗) = (0.10, 2.0 × 106). (b) Results for HK using
the same controlled dynamics, as a function of K . (For the time-dependent forces, the values of b, k∗ are different for each K .) Error bars
are comparable with symbol sizes. The dashed line is the prediction of (24), without any fitting parameters. (c) The behavior of HK as a
function of m. The data in (b), (c) and the agreement with (24) indicate that limK→∞ HK (m, ϵ) = 0 throughout the range |m| < mS −ϵ, so
limK→∞ IK (m, ϵ) = 0 within this range, by (14).

We used that the fraction of steps with sk = ± 1 is (1 ±
b)/2 and the contribution to the action for each such
hop is ln[(1 ± b)(1 + e∓2Jm)/2]; also mk is sharply peaked
at b, so the average action for such a hop can be es-
timated as ln[(1 ± b)(1 + e∓2Jb)/2]. Since mk is sharply
peaked, we note that this result for the action is somewhat
insensitive to details of the controlled dynamics. For example,
if the rates in (16) depended also on mk , the action would only
be sensitive to the values of the rates at the mean value of
mk . This insight is related to the temporal additivity principle
of Harris and Touchette [20,21]. In our context, it means that
adding extra complexity to the controlled process (16) does
not yield improved bounds on I.

Using again that mK is sharply peaked, the conditional
average of the action in (15) can be replaced by the simple
average in (18), and one obtains [after simplifying the right-
hand side of (18) and setting b= m]

HK (m, ϵ) ≃ 1
2

ln(1 −m2) + ln cosh(Jm)

+ m
2

ln
1 + m
1 −m

−Jm2 (19)

as in [11]. This result is valid for large K . It is easily checked
that HK (m, ϵ) is non-negative for all m (as it must be, since it
is a bound on I). Using 2 tanh−1 m = ln(1 + m)/(1 −m), one
also sees that HK (m, ϵ) = 0 if m = tanh(Jm). That means that
IK (m, ϵ) = 0 if m is a fixed point of (5). For b≪ 1 we also
obtain

⟨A(m)/K⟩con ≃ b2(J −1)2

2
+ O(b4), (20)

which determines the action of trajectories with m ≈ 0. [Re-
call that we are considering J > 1 so m = 0 is an unstable
fixed point of (5).]

At this fixed point, one sees that IK (m, ϵ) ≃0 (for large
K). This means that trajectories with mK = 0 have proba-
bilities that do not decay exponentially in K . The physical
interpretation of this fact is that if the growing cluster contains
a symmetric mixture of up and down spins, there is no force
that acts to increase or decrease the magnetization. On the
other hand, if m is intermediate between 0 and mS, there is
a force that drives the system toward the stable fixed point at

mS. This is the intuition behind the LDP (6): the probability to
remain for a long time at a nontypical value of m is suppressed
exponentially in K , because of the forces in the model that
tend to drive m toward a typical value. At m = 0, the force is
zero, so the probability to remain near this value is suppressed
less strongly.

So far, all results are fully consistent with KGGW [11]. We
now show that for m < mS, the true value of IK is much less
than HK in (19). We will obtain improved bounds by taking a
controlled process in (14) in which the transition rates depend
explicitly on the step k.

2. Control forces that depend on k

We take a controlled process that is a mixture of (16) and
(4), as follows. We choose two parameters, which are the
bias bin (16) and a step k∗ at which the controlled dynamics
changes its character. For the early part of the trajectory, which
is k ! k∗, the controlled system is an asymmetric random
walk as in (16); for the later part (k > k∗) we revert to the
original dynamics (4). One sees that the action A in (13) has
no contribution from the later part of the path. Since smaller
values of A lead to more accurate bounds, this is a desirable
feature. We restrict to |b| < mS, which is sufficient for our
purposes.

Typical trajectories of this controlled dynamics are illus-
trated in Fig. 2(a). If b2k∗ ≫ 1 then one sees from (17) that
the distribution of mk∗ is sharply peaked, in the sense that
its mean b is much larger than its standard deviation, which
is of order (k∗)−1/2. In this case, the distribution of mk also
remains sharply peaked for the later part of the trajectory.
For k > k∗, the system follows the original dynamics and the
mean of mk can be obtained from (5) by solving dm/dk =
(tanh Jm −m)/k, as in [11]. It is natural to change variables
to u = ln k so that

dm
du

= tanh Jm −m. (21)

This means that for k > k∗, trajectories will flow away from
the unstable fixed point at m = 0 and toward the stable point
at m = mS, as in Fig. 2(a). Moreover, this evolution is very
slow: the natural time variable is not the number of steps k but
the rescaled “time” u = ln k. (Physically, the slow variation
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For mK between 0 and m⇤, can consider two different controlled
processes:
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(i) Stay near the final value mK throughout
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(ii) Start near m ⇡ 0 and de-mix only at late times
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FIG. 2. Results for the irreversible growth model in the representative case J = 1.4, for which mS ≈ 0.82. (a) Trajectories of the controlled
dynamics for K = 108, which all achieve mK ≈ 0.4. For the k-dependent force then (b, k∗) = (0.10, 2.0 × 106). (b) Results for HK using
the same controlled dynamics, as a function of K . (For the time-dependent forces, the values of b, k∗ are different for each K .) Error bars
are comparable with symbol sizes. The dashed line is the prediction of (24), without any fitting parameters. (c) The behavior of HK as a
function of m. The data in (b), (c) and the agreement with (24) indicate that limK→∞ HK (m, ϵ) = 0 throughout the range |m| < mS −ϵ, so
limK→∞ IK (m, ϵ) = 0 within this range, by (14).

We used that the fraction of steps with sk = ± 1 is (1 ±
b)/2 and the contribution to the action for each such
hop is ln[(1 ± b)(1 + e∓2Jm)/2]; also mk is sharply peaked
at b, so the average action for such a hop can be es-
timated as ln[(1 ± b)(1 + e∓2Jb)/2]. Since mk is sharply
peaked, we note that this result for the action is somewhat
insensitive to details of the controlled dynamics. For example,
if the rates in (16) depended also on mk , the action would only
be sensitive to the values of the rates at the mean value of
mk . This insight is related to the temporal additivity principle
of Harris and Touchette [20,21]. In our context, it means that
adding extra complexity to the controlled process (16) does
not yield improved bounds on I.

Using again that mK is sharply peaked, the conditional
average of the action in (15) can be replaced by the simple
average in (18), and one obtains [after simplifying the right-
hand side of (18) and setting b= m]

HK (m, ϵ) ≃ 1
2

ln(1 −m2) + ln cosh(Jm)

+ m
2

ln
1 + m
1 −m

−Jm2 (19)

as in [11]. This result is valid for large K . It is easily checked
that HK (m, ϵ) is non-negative for all m (as it must be, since it
is a bound on I). Using 2 tanh−1 m = ln(1 + m)/(1 −m), one
also sees that HK (m, ϵ) = 0 if m = tanh(Jm). That means that
IK (m, ϵ) = 0 if m is a fixed point of (5). For b≪ 1 we also
obtain

⟨A(m)/K⟩con ≃ b2(J −1)2

2
+ O(b4), (20)

which determines the action of trajectories with m ≈ 0. [Re-
call that we are considering J > 1 so m = 0 is an unstable
fixed point of (5).]

At this fixed point, one sees that IK (m, ϵ) ≃0 (for large
K). This means that trajectories with mK = 0 have proba-
bilities that do not decay exponentially in K . The physical
interpretation of this fact is that if the growing cluster contains
a symmetric mixture of up and down spins, there is no force
that acts to increase or decrease the magnetization. On the
other hand, if m is intermediate between 0 and mS, there is
a force that drives the system toward the stable fixed point at

mS. This is the intuition behind the LDP (6): the probability to
remain for a long time at a nontypical value of m is suppressed
exponentially in K , because of the forces in the model that
tend to drive m toward a typical value. At m = 0, the force is
zero, so the probability to remain near this value is suppressed
less strongly.

So far, all results are fully consistent with KGGW [11]. We
now show that for m < mS, the true value of IK is much less
than HK in (19). We will obtain improved bounds by taking a
controlled process in (14) in which the transition rates depend
explicitly on the step k.

2. Control forces that depend on k

We take a controlled process that is a mixture of (16) and
(4), as follows. We choose two parameters, which are the
bias bin (16) and a step k∗ at which the controlled dynamics
changes its character. For the early part of the trajectory, which
is k ! k∗, the controlled system is an asymmetric random
walk as in (16); for the later part (k > k∗) we revert to the
original dynamics (4). One sees that the action A in (13) has
no contribution from the later part of the path. Since smaller
values of A lead to more accurate bounds, this is a desirable
feature. We restrict to |b| < mS, which is sufficient for our
purposes.

Typical trajectories of this controlled dynamics are illus-
trated in Fig. 2(a). If b2k∗ ≫ 1 then one sees from (17) that
the distribution of mk∗ is sharply peaked, in the sense that
its mean b is much larger than its standard deviation, which
is of order (k∗)−1/2. In this case, the distribution of mk also
remains sharply peaked for the later part of the trajectory.
For k > k∗, the system follows the original dynamics and the
mean of mk can be obtained from (5) by solving dm/dk =
(tanh Jm −m)/k, as in [11]. It is natural to change variables
to u = ln k so that

dm
du

= tanh Jm −m. (21)

This means that for k > k∗, trajectories will flow away from
the unstable fixed point at m = 0 and toward the stable point
at m = mS, as in Fig. 2(a). Moreover, this evolution is very
slow: the natural time variable is not the number of steps k but
the rescaled “time” u = ln k. (Physically, the slow variation
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[ RLJ, Phys Rev E 100, 012140 (2019).]



Controlled process (iii)
[ RLJ, Phys Rev E 100, 012140 (2019).]
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FIG. 4. Irreversible model with J = 1.3. (a) Probability distribution of mK under the controlled dynamics, with k∗ chosen as in (29). The
form of the distribution depends weakly on K and the probability density is of order unity across a wide range of m. (b) The bound (31)
for K = 105, compared with the (numerically) exact distribution ρK for the original model, obtained by direct sampling. (c) The negative of
the asymptotic bound H̃∞

K that appears in (33), for various K . As an illustrative comparison, this is compared with the (numerically) exact
distribution at K = 105 from panel (b), shown as a thin black line. We emphasize that the asymptotic bound is not a bound on this finite-K
distribution.

Figure 3(a) shows the distribution of mK , obtained by direct
sampling of trajectories of the system, for the representative
parameter value J = 1.3. Two features are notable. First, the
probability that mK ≈0 is small and decreases with K , but
the decay is much slower than exponential in K , consistent
with the arguments of Sec. III A. Second, there is no evidence
for a local maximum in the probability at the unstable fixed
point mK = 0. We have verified that the behavior for |m| < mS
is similar for larger J , so this is a representative state point.
However, the behavior close to the peaks of ρK has a more
complex dependence on J; see Sec. III C below.

To estimate ρK for |m| < mS, it is possible to repeat the
argument of Sec. III A, replacing (22) with b2k∗ = aKα for
any α ∈ (0, 1). This can be used to show that for any β > 0
one has

lim
K→∞

K−β ln Prob(|mK − m| < ϵ) = 0, (27)

for |m| ! (mS − ϵ) as usual. In other words, the probability of
a nontypical value of mK decays slower than exp(− cKβ ), for
any c,β > 0. Based on this observation, we propose that the
probability decays as a power law in K . In that case

JK (m, ϵ) = − ln ρK (m, ϵ)
ln K

(28)

should have a positive (nonzero) limit as K → ∞. Figure 3(b)
shows results that are consistent with (28). We now present
theoretical arguments that further support this conjecture,
including bounds based on (14).

1. Accurate bounds for large K

Consider the same controlled dynamics as in Sec. III A,
but with b= 0. The remaining parameter is k∗: this means
that the extensive magnetization Mk in the controlled process
is a simple (unbiased) random walk for k < k∗. We use the
original growth dynamics (4) for k > k∗. In this case the
distribution of mk∗ has mean zero and its standard deviation
is (k∗)− 1/2, by (17). We will take k∗ ≫ 1 so the distribution of
mk∗ is sharply peaked in the sense that its variance is small
compared to unity. However, in contrast to Sec. III A, this
distribution does not remain sharply peaked under the time
evolution (see below).

To fix a suitable value for k∗, it is useful to consider the de-
terministic evolution of the mean of mk for k > k∗, assuming
that mk∗ has a typical value of order (k∗)− 1/2. Since m is small,
one may linearize (21), leading to (dm/du) = (J − 1)m and
hence mk = mk∗ (k/k∗)J− 1. We choose k∗ in such a way that
this deterministic equation gives mK = O(1). This leads to

k∗ = γ K
J− 1

J− (1/2) (29)

with γ a constant of order unity. We take γ = 1.
By analogy with (26), we define an estimate of the proba-

bility density for mK under the controlled dynamics as

ρ̃K (m, ϵ) = 1
2ϵ

Probcon(|mK − m| ! ϵ), (30)

where Probcon indicates a probability under the controlled
dynamics. Numerical results for ρ̃ are shown in Fig. 4(a),
for several values of K , always with k∗ chosen according to
(29). One sees that the distributions of mK are not sharply
peaked. Instead ρ̃ is of order unity everywhere between ± mS.
Moreover, this distribution depends very weakly on K (which
varies over three decades). This is due to the choice proposed
in (29): the value of γ is not important but the correct
power-law exponent is essential. (Different values of γ lead
to different distributions, but they are all similarly broad.)

Repeating the argument of Sec. II C, one obtains

JK (m, ϵ) ! H̃K (m, ϵ) (31)

with

H̃K (ρ, ϵ) = − 1
ln K

ln ρ̃K (m, ϵ)

+ 1
ln K

⟨χϵ (mK − m)A[m]⟩con

⟨χϵ (mK − m)⟩con
. (32)

This bound is shown in Fig. 4(b), for the representative case
K = 105. It shows almost quantitative agreement over a range
of m that includes m = 0. However, the agreement breaks
down as m gets close to mS. [Better bounds for larger m
might be obtained by using smaller c in (29), but we have
not explored this in detail. See also Sec. III C.]
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With a bit more work, we can
get a good estimate of the
rare-event probability.

<latexit sha1_base64="+SOzjEHuSDBqLiQLIzWKLtDSZtY="></latexit>

Conclusion : the "least unlikely" fluctuation mechanism is  
"delayed de-mixing".  
(Use the fact that the system "doesn't know whether to be red or blue" at 
early times)

[ Also: positive feedback for de-mixing, so invest "control budget" at the start ]

[ General results for urns, Franchini, Stoch Proc Appl 127, 3372 (2017)]



Other regimes
[ RLJ, Phys Rev E 100, 012140 (2019) + (unpublished),  

Franchini, Stoch Proc Appl 127, 3372 (2017)  ]

J
<latexit sha1_base64="6iNp6+Np2bber5NjfeYI1Y/UQuc="></latexit>

0
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de-mixed mixed

0.5
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⇡ 1.37
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� log pK(m) ⇡ I(m)K
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but no central limit theorem, I 00(m) = 0
<latexit sha1_base64="SkyVBB7aMiidUewRe1ykSWtOfC0="></latexit>

Var(mK) / K↵, ↵ > 1
<latexit sha1_base64="XxY023yA6IoLPwiGp7iM/8HXAz4="></latexit>

peaks have width ⇠ K↵/2

with ↵ > 1
<latexit sha1_base64="8BTivjjfvxCwAluITsjfO+qQkm8="></latexit>

Mechanism : make a rare excursion at early times, follow the natural 
dynamics at late times (generic for positive feedback(?)).

All this behaviour (and more) can be recapitulated in "reversible" growth model

[ Harris, J Stat Mech (2015) P07021 ]



One word on methods
[ RLJ, Phys Rev E 100, 012140 (2019) + (unpublished),  

Franchini, Stoch Proc Appl 127, 3372 (2017)  ]

The method described so far only gives lower bounds on probabilities
<latexit sha1_base64="FKxL7w4VOkSHZjVo2AoPnpI2Do0="></latexit>

[ "at least as likely as..." ]

In the large-deviation regime [where log pK(m) ⇡ �KI(m)] results of
Franchini also give upper bounds, using that all rare-event trajectories
are similar

<latexit sha1_base64="5VvAPtJj9vwOn2EXo278EcHL+dU="></latexit>

[ concentration on a single path, following Dupuis-Ellis ]

In this case, sufficient to consider biased random walks as controlled
processes (but with bias dependent on k, so inhomogeneous).

<latexit sha1_base64="KmcVr8EG3l/CKuc00XVGlaVEitg="></latexit>

(optimal path can be found by numerical minimisation)
<latexit sha1_base64="SHCz8K1WIQHSX3ME4J1w0LdTcdI="></latexit>

[ see also Harris-Touchette, J Phys A 42, 342001 (2009);   
Harris, J Stat Mech (2015) P07021 ]



Outlook
Growing systems have interesting fluctuations 

One reason is that smaller systems tend to fluctuate more, 
bigger systems are more robust

Non-typical behaviour at long times originates (in this case) from unusual 
short-time behaviour, coupled with positive feedback

(generic feature?)

This suggests that growing systems are generically very susceptible to 
interventions or perturbations at early times...

Simple models can still have surprising behaviour, but (more importantly) 
a combination of simulation + theory can also be used to study more 
realistic + complicated models 


