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Something about me...

Theoretical physicist, currently with a joint appointment between
Chemistry and Applied Mathematics

[ before that, faculty post at Dept of Physics, Bath Uni ]

Main interests:

Statistical mechanics
(physical systems with many interacting particles)

Rare events in physics and chemistry
Soft matter, biomolecular physics, self-assembly, ...

Glassy materials



Today

Very simple model for a growing cluster with two kinds of particle

Spontaneous symmetry breaking / "de-mixing"

Analysis of (complex) fluctuations of cluster composition
Rare events with non-typical composition in large clusters

Mechanisms for rare events, and strategies for controlling
the observed behaviour

[ lllustration of research questions and methods |



Motivation (i)

[ Barish-Schulman-Rothemund-Winfree, PNAS 106, 6054 (2009) ]

tiles bind by two inputs e

Idea: use small synthetic pieces
of DNA to grow ordered nano-
structures ("origami")

"Algorithmic
crystal”
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Motivation (ii)
[ Whitelam-Haxton-Schmidt, Phys Rev Lett 112, 155504 (2014) ]
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How to predict "patterns” in
systems with growth fronts?

[ also Morris-Rogers, J. Phys. A 47,
342003 (2014) ]



Simple model
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Particles are added, one at a time

If the cluster has K particles then its composition is m g = fred—Rblue thijg
is between —1 and +1

If the cluster is mostly red (large m) it tends to recruit more red particles,
and vice versa. The strength of this effect is controlled by a parameter J.

[ Klymko-Garrahan-Whitelam, Phys Rev E 96, 042126 (2017) ]
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Specifically, on step K the cluster has K particles and composition mg-.
We add:

red particle  with probability 3 (1 + tanh Jm )
blue particle  with probability (1 — tanh Jm)

Prob4 First particle : Prob (1/2)

1 (Nothing about spatial

structure...)

mi [Polya urn...]



Behaviour

[ Klymko, Garrahan, Whitelam,

O Phys Rev E 96, 042126 (2017) ]
‘: O ..Q e®
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0.. O between red and blue

For J = 0 then particles are added with random colours

After a large number of steps then m g ~ 0 with
(small) standard deviation y/1/K (...binomial)

For J > 1 and large times then one typically finds either mx ~ m* or
mg ~ —m™*, with equal probability.
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"de-mixing"



Intuition from continuous time

For intuition, define a model in continuous time, let M; = Nyeqd — Nblue

d
EMt = tanh(JM;/t) + (noise)

SDE / Langevin

We consider m; = M, /t, it follows

d 1
= [tanh(Jm;) — m; + (noise)]

Fixed points solve m = tanh Jm, noise is weak at large times

Rescaling time as v = log t, we have (for Gaussian noise)

d
—my, = tanh(Jmy) — m, + e~ %“/?(noise)

du



Summary

mixed de-mixed
l l >
0 1

[similar behaviour also demonstrated for models with "reversible"” growth]

[ Klymko, Garrahan, Whitelam,

_ Phys Rev E 96, 042126 (2017) ]
Questions:

This is the typical behaviour, what about the variance?
central limit theorems

For J > 1, we sometimes see mixed clusters, how rare is this?
(similarly, do we ever see de-mixed clusters for J < 17?)

large deviations...
Are there efficient ways to modify system behaviour?
(not simply changing .J)

[ Klymko, Garrahan, Geissler, Whitelam, Phys Rev E 97, 032123 (2018),
RLJ, Phys Rev E 100, 012140 (2019).]



lllustrative results
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Sharp peaks, broad “trough”
[ Klymko, Garrahan, Geissler, Whitelam, PP g

Phys Rev E 97, 032123 (2018
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Optimal control theory for rare events

[ Dupuis-Ellis, etc ]

We want to know about unusual behaviour which happens only rarely...

To analyse this, we modify the model so that the unusual behaviour
becomes typical

In this way we can show that (roughly-speaking)
Prob(rare event) 2 exp [—Dkr,(new model || old model)]

where Dy, is called Kullback-Leibler divergence. ("at least as likely as...")

The KL divergence is small if we didn’t modify the model too much

The best choice of new model (“optimally controlled model”) gives a
good estimate of the log-probability of interest. Can take something like

d 1
7 = b(t) + Z(noise)



IIIustratlve results

102 [ RLJ, Phys Rev E 100, 012140 (2019).]
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Fluctuations with |m| > m* have very small probabilities,

—logpx(m)

~I(m)K

Fluctuations with |m| < m* have moderately small probabilities,

—logpk (m) = f(m)log K + g(m)



Controlled process (i)

[ RLJ, Phys Rev E 100, 012140 (2019).]
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For events with mx =~ 0, the optimally-controlled process stays close to
my. = 0 throughout.

The system “doesn’t know whether to be red or blue”, it turns out that
this results in a small KL divergence

J2(J—1)

We estimate px (0) >~ cK~ 27-1




Controlled process (ii)

[ RLJ, Phys Rev E 100, 012140 (2019).]
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For m g between 0 and m*, can consider two different controlled
Processes:
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Controlled process (lii)

[ RLJ, Phys Rev E 100, 012140 (2019).]
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Conclusion : the "least unlikely" fluctuation mechanism is
"delayed de-mixing".

(Use the fact that the system "doesn't know whether to be red or blue" at

early times)
[ General results for urns, Franchini, Stoch Proc Appl 127, 3372 (2017)]

[ Also: positive feedback for de-mixing, so invest "control budget" at the start |



Other regimes

[ RLJ, Phys Rev E 100, 012140 (2019) + (unpublished),
Franchini, Stoch Proc Appl 127, 3372 (2017) ]

mixed de-mixed
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—logpx(m) = I(m)K peaks have width ~ K/2

but no central limit theorem, I""(m) =0 with o > 1
Var(mpg) o< K<, a>1

Mechanism : make a rare excursion at early times, follow the natural
dynamics at late times (generic for positive feedback(?)).

[ Harris, J Stat Mech (2015) P07021 ]

All this behaviour (and more) can be recapitulated in "reversible" growth model



One word on methods

[ RLJ, Phys Rev E 100, 012140 (2019) + (unpublished),
Franchini, Stoch Proc Appl 127, 3372 (2017) ]

The method described so far only gives lower bounds on probabilities
[ "at least as likely as..." ]

In the large-deviation regime [where log px (m) ~ —KI(m)] results of

Franchini also give upper bounds, using that all rare-event trajectories
are similar

[ concentration on a single path, following Dupuis-Ellis ]

In this case, sufficient to consider biased random walks as controlled
processes (but with bias dependent on £, so inhomogeneous).

(optimal path can be found by numerical minimisation)

[ see also Harris-Touchette, J Phys A 42, 342001 (2009);
Harris, J Stat Mech (2015) P07021 ]



Outlook

Growing systems have interesting fluctuations
One reason is that smaller systems tend to fluctuate more,
bigger systems are more robust
Non-typical behaviour at long times originates (in this case) from unusual

short-time behaviour, coupled with positive feedback

(generic feature?)

This suggests that growing systems are generically very susceptible to
interventions or perturbations at early times...

Simple models can still have surprising behaviour, but (more importantly)
a combination of simulation + theory can also be used to study more
realistic + complicated models



